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Abstract

In this paper we describe a methodology for model-based single channel separation of sounds.
We present a sparse latent variable model that can learn sounds based on their distribution of
time/frequency energy. This model can then be used to extract known types of sounds from
mixtures in two scenarios. One being the case where all sound types in the mixture are known,
and the other being being the case where only the target or the interference models are known.
The model we propose has close ties to non-negative decompositions and latent variable models
commonly used for semantic analysis.
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Abstract. In this paper we describe a methodology for model-based
single channel separation of sounds. We present a sparse latent variable
model that can learn sounds based on their distribution of time/frequency
energy. This model can then be used to extract known types of sounds
from mixtures in two scenarios. One being the case where all sound types
in the mixture are known, and the other being being the case where only
the target or the interference models are known. The model we propose
has close ties to non-negative decompositions and latent variable models
commonly used for semantic analysis.

1 Introduction

Separation of sounds from single-channel mixtures can be a daunting task. There
is no exact solution nor a process that guarantees good separation behavior.
Most approaches in this scenario are model-based and perform separation by
splitting the spectrogram of the mixture in parts that correspond to a single
source. This approach has been taken in [1–4] among many others and has been
one of the easiest ways to obtain reasonable results. In this paper we employ a
similar approach using a new decomposition algorithm which is best suited for
spectrogram analysis. We show how this approach can be used both supervised
and semi-supervised settings for separation from monophonic mixtures, and draw
connections to various types of known analysis methods.

1.1 Probabilistic Latent Component Analysis

In this section we describe the statistical model we will use for acoustic modeling.
Probabilistic Latent Component Analysis (PLCA) is a straightforward extension
of Probabilistic Latent Semantic Indexing (PLSI) [5] which deals with an arbi-
trary number of dimensions and can easily extended to exhibit various features
such as sparsity or shift-invariance. The basic model is defined as:

⋆ Work performed while at Mitsubishi Electric Research Laboratories. M. Shashanka
was partially supported by an AFOSR grant to Prof. Barbara Shinn-Cunningham.



P (x) =
∑

z

P (z)
∏N

j=1P (x(j)|z) (1)

where P (x) is a distribution over the N -dimensional random variable x and
x(j) denotes j’th dimension. The random variable zis a latent variable, and the
P (x(j)|z) are one-dimensional distributions. Effectively this model represents
a mixture of marginal distribution products to approximate an N -dimensional
distribution. Our objective is to discover the most appropriate marginal distri-
butions. The estimation of the marginals P (x(j)|z) is performed using the EM
algorithm. In the expectation step we estimate the posterior probability of the
latent variable z:

P (z|x) =
P (z)

∏N
j=1P (x(j)|z)∑

z′ P (z′)
∏N

j=1P (x(j)|z′)
(2)

and in a maximization step we re-estimate the marginals using the above
weighting to obtain a new and more accurate estimate:

P (z) =

∫
P (x)P (z|x)dx (3)

P ∗(x(j)|z) =

∫
· · ·

∫
P (x)P (z|x)dx(k), ∀k 6= j (4)

P (x(j)|z) =
P ∗(x(j)|z)

P (z)
(5)

Repeating the above steps in an alternating manner multiple times produces
a converging solution for the marginals P (x(j)|z) along each dimension j, and
the latent variable priors P (z). In the case where P (x) is discrete we only have
to substitute the integrations with summations. Likewise the latent variable z
can be continuous valued in which case the summations over z become integrals.
In practical applications P (x) and z will both be discrete and we assume that
to be the case in the remainder of this paper.

1.2 Sparsity Constraints

In this section we will introduce a modification to the PLCA algorithm which
enables us to produce sparse (or maximally non-sparse) estimates of P (x(j)|z).
Since the estimated quantities of PLCA are probability distributions, we can
directly obtain sparsity by imposing an entropic prior instead of obtaining the
effect by more traditional means such as L1-norm minimization. This prior can
can impose a bias towards estimating a low (or high) entropy P (x(j)|z). We
can thus obtain a sparse estimate by requesting low entropy results, a flatter
estimate by requesting high entropy results, or any combination of the two cases
for different values of the latent variable z.



Let us assume that we wish to manipulate the entropy of the distribu-
tion P (x(j)|z). The form of the entropic prior for this distribution is defined

as e−βH(P (x(j)|z) = eβ
P

i P (x
(j)
i |z)logP (x

(j)
i |z), where P (x

(j)
i |z) denotes the i’th ele-

ment of the distribution P (x(j)|z). Incorporating the entropic prior in the PLCA

model and adding the constraint that
∑

i P (x
(j)
i |z) = 1 results into optimizing

the following function:

P ∗(x(j)|z)

P (x
(j)
i |z)

+ β + βlogP (x
(j)
i |z) + λ = 0, (6)

where P ∗(x(j)|z) is defined in equation 4 and λ is the Langrange multiplier
enforcing the unity summation constraint. As shown in [6] this equation can be
solved using Lambert’s W function resulting in:

P (x(j)|z) =
P ∗(x(j)|z)/β

W(−P ∗(x(j)|z)e1+λ/β/β)
. (7)

Alternating between the last two equations for a couple of iterations we
can obtain a refined estimate of P (x(j)|z) which accommodates the entropy
constraint. This process is described in more detail in [7].

2 Applications of PLCA for Source Separation

The two separation scenarios we will introduce in the next sections are both
making use of PLCA models of sounds. We will now briefly introduce how we
can model a class of sounds using PLCA. One major feature that we can use
to describe a sound is that of its frequency distribution. For example we know
that speech tends to have a harmonic distribution with most energy towards the
low end of the spectrum, whereas, say, a siren would have a more simple timbral
profile mostly present at higher frequencies. We can use the PLCA model to
obtain a dictionary of spectral profiles that best describe a class of sounds. To
do so we consider the 2-d formulation of PLCA when applied on time-frequency
distributions of sounds. The model will be:

P (f, t) =
∑

z

P (z)P (f |z)P (t|z) (8)

where P (f, t) is a magnitude spectrogram. The decomposition will result
into two sets of marginals, one for the frequency axis and one for the time axis.
The time axis marginals are not particularly informative, the frequency axis
marginals however will contain a dictionary of spectra which best describe the
sound represented by the input spectrogram. To illustrate this operation consider
the spectrograms in figure 2.1 and their corresponding frequency marginals. One
can easily see that the extracted marginals are latching on to the specific spectral
structure of each sound. These frequency marginals can be used as a model of a
class of sounds such as human voice, speech of a specific speaker, a specific type
of background noise, etc.
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Fig. 2.1. Example of PLCA models of two different sounds. The two left plots display
a spectrogram of speech and a set of speech-derived frequency marginals. Likewise the
two right plots display the same information for a harp sound. Note how the derived
marginals in both cases extract representative spectra for each sound.

The the next sections we describe how this model can be used for a supervised
and semi-supervised source separation.

2.1 Supervised Separation

In the case of supervised separation we assume that the mixture we are operating
on contains classes of sounds for which we have already trained PLCA models
(in the form of frequency marginals, as described above). If the kind of time-
frequency distribution that we use is (at least approximately) linearly additive
in nature, we can assume that the marginal distributions of our trained models
can be used to approximate the mixture’s distribution. For the experiments
presented in this paper we employ the magnitude short time Fourier transform.
Although the linearity assumption does not exactly apply for this transform, it
is sufficiently approximately correct in the context of sound mixtures.

In order to perform the separation let us consider a mixture composed out
of samples from the two sound classes analyzed in figure 2.1. Let us denote
the already known frequency marginals from these two sounds as P1(f |z) and
P2(f |z). The spectrogram of the mixture, which we denote by P (f, t), is shown
in figure 2.2. One can easily see elements of both sounds present in it. Once we
obtain the spectrogram of the mixture we need to find how to use the already
known marginals from prior analysis to approximate it. Doing so it a very simple
operation which involves partial use of the training procedure shown above.
First we consolidate the marginals of the known sounds into one set P (f |z) =
{P1(f |z)

⋃
P2(f |z)}. Since all the of the marginals in P (f |z) should explain the

mixture spectrogram P (f, t) we only need to estimate a set of time marginals
P (t|z) which will facilitate the approximation. We therefore perform the training
outlined in the previous sections, only this time we only estimate P (t|z) and keep
P (f |z) fixed to the already known values. After we obtain a satisfactory estimate
of P (t|z) we appropriately split it to two sets which correspond to each Pi(f |t).
We can then reconstruct the elements of the input spectrogram that correspond
to only one sound class by using only the time and frequency marginals that



correspond to that sound class. The results in this particular case are shown
in figure 2.2. As is evident the contribution to the mixture from each of the
two sources is cleanly separated into two spectrograms. Once the spectrograms
of each known sound have been recovered we can easily transform them back
to the time domain by using the corresponding phase values from the original
mixture.
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Fig. 2.2. Example of supervised separation using PLCA. The leftmost plot displays
the inputs spectrogram. We can easily see features of the speech and harp sounds. The
two remaining plots show the mixture spectrogram as approximated by the speech
marginals (center plot), and the harp marginals (right plot).

As one might suspect this approach does not allow the separation of spectrally
similar sounds since there will be significant similarity between the marginals of
each sound class. The more dissimilar the sounds in the mixture are the better
the quality of the separation will be. In this particular example separation was
almost flawless since the two sounds had a very different spectral profile. For
experiments using 0dB speech mixtures the target source improvement ranged
from 3dB to 10dB depending on the similarity between the speakers. Using
examples such as various types of ambient noise and speech we often achieved
separation of more than 12dB.

2.2 Semi-Supervised Separation

In the case of semi-supervised separation we assume that we only have a PLCA
model for one of the sounds in a mixture. In this case we cannot directly use the
aforementioned procedure to perform separation. In this section we introduce a
methodology which deals with this problem.

Assume that we have a mixture of multiple sounds and we only have a PLCA
model for one of them. We can perform PLCA on the mixture using the known
frequency marginals for one of the sounds and in the process estimate additional
marginals to explain the elements in the mixture we can’t already. Doing so with
the training procedure we have shown in the previous sections is very easy. We
train as we usually do when learning both the frequency and the time marginals,
but we make sure that a portion of the frequency marginals are kept fixed as



we update only the remaining ones using the same training procedure as before.
The fixed marginals are the ones we already know as a model for one of the
sounds. Conclusion of training will result into a set of new frequency marginals
which are best suited to explain the sources in the mixture other than the one we
already know. Since there will most likely be some spectral similarity between the
known sound and the rest of the sources we also encourage sparsity on the time
marginals to ensure that there is minimal co-occurence of frequency marginals
at any time.

Once the marginals of the additional sources have been identified we can
revert back to the supervised separation methodology to obtain the results we
seek. The additional complication in this scenario is that by having a model of
only one of the sources results into the ability to extract either that source by
itself or all the other sources as one. This means that we can use this method
for applications akin to denoising where we either know the target characteris-
tics, of the background noise characteristics. In our experiments we have used
this approach to separate speech from music, where the results often are very
impressive 3. A separation example is shown in figure 2.3, where a soprano is
separated from a piano. We only had a model for the piano and learned the
soprano model using the aforementioned methodology. The suppression of the
piano was audibly flawless and the only artifact of this approach was a slight
coloring of the extracted soprano voice (attributed mostly to the usage of phase
of the original mixture).
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Fig. 2.3. Example of semi-supervised separation using PLCA. The left plot displays
the mixture of a piano and a soprano, the right plot displays the extracted soprano
voice. One can easily see that the harmonic series corresponding to the piano notes are
strongly suppressed.

3 Demonstration sound samples of this approach can be found in
http://www.merl.com/people/paris/sep.html under the section “PLCA for
spectral factoring”



3 Discussion

In this section we discuss the selection of parameters and their effect in separation
performance and point to some of the relationships of the PLCA model to other
known decompositions.

3.1 Parameter selection

In order to obtain reasonable results we have to make sure that the right param-
eters are used in the process. First we need to ensure that the time/frequency
decomposition we employ is adequate to perform separation. In our experience a
1/10sec analysis window is usually a good choice for separation. As this window
becomes smaller it results in inadequate frequency resolution, and as it grows
larger it results in time smearing. The hop size of the transform also needs to be
small enough to ensure a clean reconstruction during the transformation from
time/frequency to time (a fourth of the transform size is a good choice). Applying
a Hanning window for the frequency analysis is also advised since it minimizes
high frequency artifacts which are not part of the sound we model and can result
into a skewed representation.

The selection of the PLCA parameters is very important in order to achieve
good results. In most of our simulations, sounds were modeled using around 100
marginals (i.e. z = {1, 2, 3, ..., 100}). Using a small number of marginals results
into a poor representation which attains spectrally quantized results, whereas
a large number of marginals results into large sets of simple marginals which
can also describe elements of the interfering sounds. The tradeoff in this case is
between accuracy of model versus separability of models. The sparsity parameter
is something we only use in the case of the semi-supervised learning on the time
marginals. It ensures that the new marginals that we learn will not overlap as
much with the already known ones. Common usage values in our experiments
were β = {0, 0.01, 0.05, 0.1}, where larger values were used in harder to separate
problems where more spectral overlap between sources was present. The audible
effect of using sparsity is a degradation of reconstruction of the sound quality of
the source to be learned. Therefore using the sparsity parameter is best when we
have a model of the target source and we wish to remove the remaining sources.

3.2 Relation to similar decompositions

The PLCA model which we introduced is closely related to a variety of known
decompositions. The non-sparse 2-d manifestation is identical to the Probabilis-
tic Latent Semantic Indexing (PLSI) algorithm [5], which itself is a probabilistic
generalization of the Singular Value Decomposition. The functional difference
is that PLSI/PLCA operate on distributions instead of raw data which means
that they can effectively only analyze non-negative inputs. If we rewrite the 2-d
PLCA model in terms of matrix operations, this relationship is more evident:

P (f, t) =
∑

z

P (z)P (f |z)P (t|z) ≡ V = W · S · H (9)



where V is a matrix containing the distribution P (f, t), W is a matrix con-
taining in its columns P (f |z) for every z, S is a diagonal matrix containing in
its diagonal the values of P (z), and H is a matrix containing in its rows P (t|z)
for every z.

Additionally if we absorb the values of S into the two matrices W and H so
that: V = W · S · H = W̄ · H̄, we can make a connection to the Non-negative
Matrix Factorization (NMF) decomposition [8]. NMF can employ the Kullback-
Leibler divergence to measure how well the factorization W̄ ·H̄ approximates the
input V. The EM training which we perform also indirectly optimizes the same
cost function as it improves the model’s log-likelihood. In fact the two training
procedures for 2-d PLCA and NMF can be shown to be numerically identical.

Finally we can make a loose connection to non-negative ICA by noting that
by using the entropic prior to manipulate the joint entropy of H we can obtain
the equivalent of an ICA mixing matrix in W. Although this is only a conjecture
on our part, preliminary results from simulations are encouraging.

4 Conclusions

In this document we introduced a sparse latent variable model which can be
employed for the decomposition of time/frequency distributions to perform sep-
aration of sources from monophonic recordings. We demonstrated the use of this
model for both supervised and semi-supervised source separation, and discussed
its relationship with other known decompositions. Our results are very encourag-
ing and amenable to various modifications, such as the use of convolutive bases
and transformation invariance, which can help to successfully apply this work
to even more challenging source separation problems.
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