
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Workflow Trees for Representation and
Mining of Implicitly Concurrent Business

Processes

Daniel Nikovski, Akihiro Baba

TR2007-072 October 2007

Abstract

We propose a novel representation of business processes called workflow trees that facilitates
the mining of process models where the parallel execution of two or more sub-processes has not
been recorded explicitly in workflow logs. Based on the provable property of workflow trees
that a pair of tasks are siblings in the trees if and only if they have identical respective workflow-
log relations with each and every remaining third task in the process, we describe an efficient
business process mining algorithm of complexity only cubic in the number of process tasks, and
analyze the class of processes that can be identified and reconstructed by it.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2007
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Workflow Trees for Representation and
Mining of Implicitly Concurrent

Business Processes

Daniel Nikovski
Akihiro Baba

TR2007-72 October 2007

Abstract

We propose a novel representation of business processes called workflow trees that
facilitates the mining of process models where the parallel execution of two or more
sub-processes has not been recorded explicitly in workflow logs. Based on the provable
property of workflow trees that a pair of tasks are siblings in the tree if and only if
they have identical respective workflow-log relations with each and every remaining
third task in the process, we describe an efficient business process mining algorithm of
complexity only cubic in the number of process tasks, and analyze the class of processes
that can be identified and reconstructed by it.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such
whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research
Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions
of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment
of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2007
201 Broadway, Cambridge, Massachusetts 02139



Released October 2007.



Workflow Trees for Representation and Mining

of Implicitly Concurrent Business Processes

Daniel Nikovski1 and Akihiro Baba2

1 Mitsubishi Electric Research Laboratories,
201 Broadway, Cambridge, MA 02139, USA

nikovski@merl.com
2 Mitsubishi Electric Corporation,

5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan
Baba.Akihiro@ab.MitsubishiElectric.co.jp

Abstract. We propose a novel representation of business processes called
workflow trees that facilitates the mining of process models where the
parallel execution of two or more sub-processes has not been recorded
explicitly in workflow logs. Based on the provable property of workflow
trees that a pair of tasks are siblings in the tree if and only if they have
identical respective workflow-log relations with each and every remaining
third task in the process, we describe an efficient business process mining
algorithm of complexity only cubic in the number of process tasks, and
analyze the class of processes that can be identified and reconstructed
by it.

Key words: Process mining, business process management, implicit
concurrency

1 Introduction

The organization and optimization of business processes within an enterprise
is essential to the success of that enterprise in the marketplace, and the ex-
plicit management of business processes within dedicated software suites has
emerged as an important class of information technology [1]. Key to the suc-
cessful management of business processes is the nature of the models used for
process representation, construction, maintenance, and improvement. Whereas
some kind of graphical representation has been used almost universally, the types
of proposed models and the semantics associated with them have varied widely.
Some of the more popular representations include Petri nets [2], finite state ma-
chines and Markov models [3], as well as special-purpose graphic formalisms
such as AND/OR trees [4] and block diagrams [5]. In most cases, these graphic
representations are also associated with a corresponding formal language that
is interpretable by BPM sequencing middleware. For an extensive comparison
between business process modeling formalisms from several perspectives, see, for
example [6].

The abundance of modeling formalisms suggests that there isn’t a single best
representation, but rather, multiple trade-offs exist when adapting formalisms to



2 Daniel Nikovski, Akihiro Baba

a particular task, and the wide choice of available formalisms is in fact beneficial.
The specific task of interest addressed in this paper is the learning from data of
representations for processes with implicit concurrency. We propose a solution
to this problem in the form of a novel representation for business processes, and
an associated algorithm for mining such models from data with very favorable
computational complexity (cubic in the number of process tasks). Whereas the
proposed model has been tailored to facilitate mining of processes with implicit
concurrency, it is still fully compatible with the most popular modeling languages
and their underlying formalisms, such as BPMN, UML Activity Diagrams, and
Workflow nets (WF-nets), and can easily be converted to any of them.

The general problem of process mining from data is described in Section 2,
and several inductive and constructive solutions are reviewed. One specific prob-
lem of these solutions is identified and discussed: their inability to mine processes
with implicit concurrency. Section 3 describes a new formalism for representa-
tion of business processes, called workflow trees (WF-trees). The properties and
semantics of WF-trees are explained, and their relationship to more established
formalisms, such as WF-nets, is discussed. It is shown that the relations between
a pair of tasks and all remaining tasks are completely sufficient to indicate the
relative position of the two tasks in the workflow tree. This property of WF-trees
is exploited in Section 4 to develop an efficient algorithm for mining WF-trees
from data. Section 5 discusses the current restrictions of WF-trees and several
possible directions for eliminating them, and concludes the paper.

2 Process Mining and Implicit Concurrency

The objective of process mining algorithms and systems is to construct an ex-
plicit process model from recorded event logs [7]. This functionality is especially
useful when a new business process management (BPM) system is deployed at a
customer site and explicit models of the existing processes have to be produced
as a starting point for analysis, process re-engineering, etc. The traditional alter-
native to process mining — the manual construction of process models, usually
using graphic editors — can be very time- and labor-intensive, because it typ-
ically involves interviews with executives, and also very imprecise, because hu-
mans can only describe the way they imagine business processes operate, and not
the way these business processes actually operate. At the same time, if the busi-
ness processes already involve information technology (e.g. enterprise resource
planning systems, customer relationship management systems), in all likeliness,
abundant execution logs from these systems already exist. In such cases, using
these execution logs to automatically extract process models can result in major
savings in time and effort and improve model accuracy significantly.

To this end, process mining has been an active area of research and software
development in recent years. The problem is to find a model of a business process
(represented in a suitable formalism) solely by inspecting the relative order of
tasks as manifested in logs collected from the repeated execution of the business
process. It is assumed that N different tasks ti, i = 1, N , ti ∈ T from the set



Workflow Trees for Mining Implicit Concurrency 3

T can be distinguished in the execution log. The workflow logs are divided into
disjoint episodes that correspond to the processing of one work case each. During
one episode, the case takes one possible path through the process. An episode is
represented as a sequence of tasks, and indicates the sequential order in which a
particular case was processed. The objective of process mining algorithms, then,
is to inspect the entire workflow log and induce a process model that could have
produced this log. It is usually desired that the induced model be as compact as
possible, and have no duplicate tasks.

Initial research recognized that process mining is a special case of inductive
machine learning (ML), hence generic ML techniques, most commonly based on
heuristic search, are applicable to this problem. Early examples of this approach
included the algorithms of Cook and Wolf [3, 8], which employed greedy induction
over model spaces representing Markov models and Petri nets. While successful,
the heuristic nature of search in model spaces does not guarantee the discovery
of the optimal model, where optimality is usually defined as a trade-off between
model accuracy and parsimony, much like in other machine learning problems
[9]. Further complicating the problem of finding the optimal model is the issue
of data sufficiency — certainly, if the exact relationship among tasks is not
manifested in the execution logs, a correct (and much less, optimal) model cannot
be mined from these logs.

A major shift from heuristic search and inductive methods occurred with
the emergence of constructive algorithms, such as α, α+, and β [2, 10, 11]. These
algorithms pre-compute the relations between each pair of tasks as manifested in
the execution log and organize the identified relations in a tabular format. After
that, the algorithms construct a model based on this relations table only, without
having to examine the execution log ever again. This approach effectively renders
the complexity of the mining part of such algorithms independent of the size of
the execution log, which can be a very favorable property when large execution
logs have to be mined. Furthermore, by making the assumption that the relation
table is correct, the ability of the algorithm to find the optimal model can be
analyzed in isolation from any data sufficiency and sample complexity issues.

Perhaps the best known example of this class of constructive algorithms is
the α algorithm proposed by van der Aalst et al. [2]. The business process rep-
resentation used by this algorithm is structured workflow nets (SWF-nets) — a
carefully chosen and precisely defined subset of Petri nets that avoids undesirable
situations such as deadlocks, incomplete tasks, indeterminate synchronization,
etc. While the restrictions of SWF-nets with respect to general Petri nets are
fairly significant, van der Aalst et al. [2] argue convincingly that SWF-nets in
fact match the type of processes that exist in the real world, correspond to the
constructs used in most deployed workflow systems, and also result in process
descriptions that are easier to understand and maintain by human designers.

A significant novel idea of the α algorithm is to pre-process the execution log
and determine the pair-wise relations between all pairs of tasks. These so called
log-based ordering relations between a pair of tasks a and b are as follows:



4 Daniel Nikovski, Akihiro Baba

– a > b iff there exists at least one episode of the log where a is encountered
immediately before b,

– a → b iff a > b and b 6 >a,

– a#b iff a 6 >b and b 6 >a, and

– a ‖ b iff a > b and b > a.

The assumption of these algorithms is that the supplied workflow log is com-
plete, i.e. it reflects correctly the relations between the tasks in the real process
that produced the log. In practice, this requirement means that if all tasks that
can potentially follow each other, in fact do so in at least one trace of the log.
The issue of sample complexity, i.e. the problem of estimating the expected nec-
essary size of the workflow log so that it is complete merits additional interest,
but is orthogonal to the operation of the mining algorithm — rather, the mining
algorithm assumes that the workflow is complete, and the computed relations
table is correct.

Once the relation between each pair of tasks has been identified to be one
of these four relations, the algorithm proceeds to construct a minimal SWF-net
that satisfies the relations. Based on the provable property that a → b implies
that a SWF-net place exists immediately between tasks a and b, van der Aalst
et al. [2] devised an algorithm that builds an SWF-net in eight steps, without
any heuristic search. The key step of the algorithm is to identify pairs Y of
maximal sets of tasks A and B, such that all tasks in A have relation # between
each other; similarly, all tasks in B have relation # between each other; for
any pair of tasks a ∈ A and b ∈ B it is true that a → b; no supersets of A

and B, respectively, exhibit these properties. When such a pair (A, B) has been
identified, the algorithm creates a new place P of the SWF-net, adds transitions
from all tasks a ∈ A to P , and transitions from P to all tasks b ∈ B.

The α algorithm is able to mine a large class of SWF-nets, with several limi-
tations. One of them is that the algorithm cannot mine correctly nets with short
loops (of length one or two tasks). This problem was remedied by subsequent
extensions of the algorithm: de Medeiros et al. [10] proposed the α+ algorithm
based on an extended notion of log completeness and two new relations between
tasks, and Wen et al. [11] proposed the β algorithm which exploits the temporal
span of tasks (interval between start and end of tasks) to discover short loops.

Another limitation of the α algorithm and its derivatives is that they cannot
detect all cases of concurrency in a business process. Concurrent tasks in SWF-
nets are represented by means of a construct involving auxiliary AND-split and
AND-join tasks (cf. Fig. 1). We will refer to this construct as an AND-block. If
we compare it to the case of task choice (exclusive OR, or an OR-block), where
only one of several tasks is executed, it is evident that an OR-block involves no
such auxiliary tasks (cf. Fig. 2). The α algorithm can mine processes with AND-
blocks as long as the two auxiliary tasks, the AND-split and the AND-join, have
been recorded explicitly in the workflow log. We will call such processes explicitly
concurrent, i.e., when concurrency is present, the initiation and completion of
parallel execution is explicit in the log.



Workflow Trees for Mining Implicit Concurrency 5

&-s

A

B

&-j

Fig. 1. A WF-net for representing parallel execution: tasks A and B are executed
concurrently. Here the tasks labeled &-s and &-j are auxiliary and have the sole purpose
of explicitly specifying concurrency.

A

B

Fig. 2. A WF-net for representing exclusive choice: either task A or task B is executed,
but not both.

However, it cannot be expected that workflow logs would contain explicit
AND-splits and AND-joins, because they do not correspond to actual tasks in
the problem domain — whenever parallel execution has been performed in a
given legacy IT system, the decision to initiate it and the logic to synchronize
its completion is usually buried somewhere deep into executable code, and it is
precisely the objective of the process mining algorithm to extract it and model
it explicitly.

When explicit AND-splits and AND-joins are absent from the workflow file
(which we expect to be the typical situation), the mining algorithm would have
to deal with implicitly concurrent business processes. In numerous cases, the α

algorithm and its descendants would have difficulties in handling implicit con-
currency. One specific instantiation of this problem is when an AND-block is
nested within an OR-block. For example, van der Aalst [2] discussed the pro-
cess in Fig. 3, and concluded that if the synchronizing AND-split and AND-join
tasks were not present in the workflow log, the exact workflow net could not be
recovered by the α algorithm. (Still, a behaviorally equivalent, but not sound,
WF-net could be discovered by that algorithm.)

There are several possible explanations of why implicit concurrency is chal-
lenging for the α algorithm and its descendants. The first is in the nature of
SWF-nets as process representations — although they are very powerful and
versatile in terms of the type of processes that can be represented, there is
an inherent asymmetry in the way AND-blocks and OR-blocks are represented.
Since the α algorithm does not create new tasks other than those already present
in the workflow log, it cannot create explicit AND-blocks.



6 Daniel Nikovski, Akihiro Baba

&-s

B

C

&-j

E

DA

Fig. 3. This WF-net that cannot be recovered by the α algorithm, if the auxiliary tasks
&-s and &-j are missing from the workflow log.

A second possible explanation lies in the way the α algorithm constructs the
WF-net: it identifies sets of tasks which are in the # and → relations between
each other, but never analyzes tasks that have the ‖ relation between each other.
The ‖ relation is indicative of possible concurrency, but this class of algorithms
never identifies this concurrency as a step of their operation; rather, concurrent
tasks end up being represented as such merely as a side effect of placing the
tasks in the correct sequential or exclusive-choice order.

This analysis suggests that perhaps it would be worthwhile to explore alterna-
tive representations and mining algorithms that can handle implicit concurrency
better, while still aiming at constructive solutions that build compact relation
tables from workflow logs. Another desirable property of such algorithms would
be more favorable computational complexity — the α algorithms and its deriva-
tives are usually exponential in the number of tasks N , since they involve search
within the space of all pairs of sets of tasks, i.e. the powerset of the set of all tasks.
For practical purposes, a mining algorithm of low-degree polynomial complexity
would be much more desirable.

3 Workflow Trees for Representation of Business

Processes

We propose a representation of business processes that is based on the natural
hierarchical organization of work in most enterprises. The representation is in
the form of an ordered tree, where the leaves of the tree represent tasks, and
the internal nodes of the tree represent the functional blocks in which these
tasks are organized. This representation is similar to the block representation
used by Schimm [5] and the AND-OR graphs proposed by Silva et al. [4] in the
type of the blocks used. Based on its hierarchical organization, it is also close
to the Hierarchical Task Networks [12] that are popular in the field of Artificial
Intelligence, and to the way sub-diagrams can be defined in UML 2.0 Activity
Diagrams.

In this paper, we will consider trees that have four building blocks, labeled
as follows: parallel (AND), choice (OR), sequence (SEQ), and iteration (ITER).
The meaning of the AND and OR blocks is as shown in Figs. 1 and 2, in Petri



Workflow Trees for Mining Implicit Concurrency 7

net notation. The meaning of the SEQ construct is obvious, and is shown in Fig.
4. For the iteration construct, two definitions are possible, depending on whether
zero executions of a task are allowed, or it has to be executed at least once. The
two alternative definitions are shown in Fig. 5.

A B

Fig. 4. A WF-net that specifies sequential execution: tasks A and B are always executed
strictly in this order.

A

B

Fig. 5. Two possible WF-nets that specify iterative execution. The net on the left
allows zero or more executions of task A, while the net on the right specifies that task
B should be executed at least once (and possibly many more times).

These constructs are very similar to those used in van der Aalst and van
Hee [1] (with the exception of the iteration construct, which must involve at
least two tasks there). It has been shown that by starting with one of these
constructs, and recursively substituting its component tasks with compound
blocks of more tasks, a large class of sound and safe nets can be constructed.
Our proposal for workflow trees formalizes this intuition: the structure of the
tree prescribes the steps that must be taken during this process of top-down
recursive construction of a business process. It also describes a way to convert
a workflow tree (WF-tree) into a SWF-net: by traversing the WF-tree in any
convenient order, each tree node is replaced by its corresponding Petri net, as
described above, and if any of the children of this node are nodes themselves,
the procedure is recursively repeated until all tasks in the resulting SWF-net are
atomic tasks. As an example, Fig. 6 shows the WF-tree that would result in the
SWF-net previously shown in Fig. 3, if expanded as described.

While this general approach to constructing business process models is in-
tuitive and has been explored before, the specific representation in a tree-like
form that we propose allows us to analyze and identify the properties of this
representation that are useful for the purposes of process mining. In particular,
we are interested in the relations between pairs of tasks that are entailed by



8 Daniel Nikovski, Akihiro Baba

A D

B C

E

SEQ

OR

AND

Fig. 6. A workflow tree that corresponds to the WF-net from Fig. 3.

this representation. We define a set of relations AND, OR, SEQ, and ITER

that are n-ary, and can hold between two or more tasks. Two tasks in the WF
tree have one of these relations between each other. (In this case, the relation is
binary.) We specify that the binary relation between a pair of tasks in a WF-tree
is determined by the node of the tree that is the least common ancestor (LCA)
of these two tasks. For example, for the SWF-net in Fig. 3 (respectively, the tree
in Fig. 6), the tasks A and E are in the SEQ relation, and B and E are in the
OR relation.

In the general case, it would be possible to have process models with nested
blocks of the same type, for example an OR block nested immediately within
another OR block. In the corresponding WF-tree, this would be expressed as one
OR node having as a child (direct descendant) another OR node. While certainly
possible and valid, such WF-trees are redundant, and it is usually desirable to
eliminate this redundancy. We define a compact workflow tree (CWF-tree) to be
a workflow tree where no two nodes of the same label have a direct parent/child
relationship. Compacting a redundant WF-tree to a CWF-tree can be done by
traversing the WF-tree using any suitable (depth-first, breadth-first, etc.) post-
order walk of the WF-tree, and when the current node has a child node of the
same label, eliminating that node and adding its children directly as children
of the current node. We will also stipulate that apart from the ITER node, all
other nodes must have at least two children. (In case they don’t, they can simply
be eliminated from the tree, without loss of correctness.)

Before analyzing the properties of the described relations, we will note that
as a corollary of this specification and the nature of our specific definition of an
iterative block, no two tasks can be in the ITER relation. This is due to the
fact that a tree node labeled with ITER always has only one child, and hence
cannot be the LCA of any pair of distinct tasks. (This is true regardless of which
alternative definition of an ITER block is chosen from the two shown in Fig. 5).

The remaining three relations have the following properties. When these
relations are binary, the binary AND and OR are transitive and symmetric,
while the binary SEQ is transitive and asymmetric ((aSEQb) ⇒ ¬(bSEQa)).



Workflow Trees for Mining Implicit Concurrency 9

Ternary relations can be defined by aRb ∧ bRc ⇒ R(a, b, c), whereas relations
of arbitrary arity have the property that R(a1, a2, . . . , an−1) ∧ an−1Ran ⇒
R(a1, a2, . . . , an−1, an). Here R can be any of the three relations AND, OR,
and SEQ. Note that in combination with the asymmetry of the binary SEQ

relation, the n-ary SEQ relation is guaranteed to hold only between arguments
in the correct order, while the symmetry of the binary AND and OR ensure that
their n-ary counterparts hold for an arbitrary order of their arguments. For the
sake of analytical convenience, we will also define the symmetric relation LIN ,
such that aLINb iff aSEQb ∨ bSEQa. The meaning of this relation is linear
order — it holds true between two tasks when one of them follows the other.

Note also that if three or more tasks are in the same relation, it is not
necessarily true that each pair of them has the same LCA — since more than
one tree node can be labeled with the same block label, it is completely possible
that three or more tasks are in the same relation, but are not descendants of
three different children of the same node.

What is true, though, is that any three tasks a, b, and c of the same WF-tree
can have at most two distinct relations R1, R2 from the set {AND, OR, LIN}
among them.

Lemma 1. aR1b ∧ bR2c ⇒ aR1c ∨ aR2c, for R1, R2 ∈ {AND, OR, LIN}.

Proof. This lemma follows from the general property of trees that three nodes in
the same tree can have at most two distinct pairwise LCA nodes. Let the LCA
of tasks a and b be denoted by L1 and labeled with relation R1. Similarly, let
the LCA of tasks b and c be denoted by L2 and labeled with relation R2. Since
both L1 and L2 are in the same tree, there are three possible cases:

– L1 ≡ L2. This implies that R1 ≡ R2, and aR1c, for a total of only one
relation among a, b, and c.

– L1 is a parent of L2. Since L2 is the LCA of b and c, they must be among
its children. However, a cannot be a child of L2, because then the LCA of
a and b would be L2, and not L1. Then, since a is a child of L1, and c is a
child of L2, which in its turn is a child of L1, the LCA of a and c must be
L1, with aR1c holding true. Note that the LCA of a and c cannot be some
node between L1 and L2, because then that node would be the LCA of a

and b, and not L1. In this case, only two relations R1 and R2 hold among
the three tasks.

– L2 is a parent of L1. Using similar reasoning, it follows that aR2c, for a total
of two relations among the three tasks, again.

We have established that the property holds in each of the three cases. ut

Furthermore, due to the symmetry of the three relations AND, OR, and
LIN , the lemma holds for all possible symmetric exchanges in the order of tasks
in these relations. A direct corollary of this lemma (in one respective instantiation
as regards relation symmetry) is that if two tasks a and b are in relation R1

(aR1b), and one of them (a) is in relation R2 with some third task c (aR2c),



10 Daniel Nikovski, Akihiro Baba

there are only two possibilities for the relation between b and c: it is either bR1c

or bR2c. From the proof of the lemma, we saw that the former case (bR1c) holds
when the LCA of a and b is a descendant of the LCA of a and c, while the latter
case (bR2c) holds when the LCA of a and c is a descendant of the LCA of a and
b.

The latter case is of particular interest, and it is true that the logical impli-
cation in question holds in the other direction, too, even regardless of the exact
relation between a and b. By defining LCA(·, ·) to be the function that returns
the node of a WF-tree that is the LCA of its two arguments, and the binary
relation Descendant such that Descendant(d, a) holds true when node d is a
descendant of node a, we can show that if nodes a and b happen to share the
same relation R respectively with a third task c, it is necessarily true that their
LCA is a descendant of their respective LCAs with this third task:

Lemma 2. aR1b∧aR2c∧bR2c∧R1 6≡ R2 ⇒ Descendant[LCA(a, b), LCA(a, c)].

Proof. Suppose that the consequent were not true. Since R1 6≡ R2, it is not
possible that the LCA of each pair of nodes is the same, because it can be labeled
with only one relation. The only remaining possibility is that L1

.
= LCA(a, b)

is an ancestor to L2

.
= LCA(a, c). But then, since c is a descendant of L2, and

L2 is a descendant of L1, the LCA of b and c would be L1. Then it would be
true that bR1c, because L1 is labeled with relation R1, whereas we know from
the premise that bR2c and R1 6≡ R2. So, by contradiction, it must be true that
LCA(a, b) is a descendant of LCA(a, c). ut

The same stipulation about the validity of this lemma with respect to the
symmetry of R1 and R2 applies here, too. It follows immediately that LCA(a, b)
is a descendant of LCA(b, c), as well. We can also prove that LCA(a, c) ≡
LCA(b, c):

Lemma 3. (aR1b ∧ aR2c ∧ bR2c ∧ R1 6≡ R2) ⇒ (LCA(a, c) ≡ LCA(b, c)).

Proof. Since both LCA(a, c) and LCA(b, c) are ancestors to LCA(a, b) by virtue
of Lemma 2, and three leaves in the same tree can have at most two distinct
LCA nodes, then they must be the same node, i.e. LCA(a, c) ≡ LCA(b, c). ut

Also note that the condition that exactly two relations hold among the three
tasks in Lemmata 2 and 3 is essential: if it is the same (one) relation that holds
between each pair of tasks, nothing can be said about the relative position in
the tree or number of their respective LCA nodes.

Now we are prepared to analyze the relations between a pair of tasks and
all other tasks, and prove that two tasks are children (direct descendants) of
the same node iff they are in the same respective relation with all other tasks.
This property holds for compact workflow trees that do not contain redundant
parent/child nodes of the same label, and also do not contain intermediate nodes
of type ITER.

Theorem 1. (∀c∃RaRc ∧ bRc) ⇔ [∃LChild(a, L) ∧ Child(b, L)].



Workflow Trees for Mining Implicit Concurrency 11

Proof. First, we will prove the theorem in the forward direction: (∀c∃RaRc ∧
bRc) ⇒ [∃LChild(a, L) ∧ Child(b, L)]. Let L1

.
= LCA(a, b), and let the relation

between a and b be R1. We will prove the forward property by showing that
under its hypothesis (∀c∃RaRc ∧ bRc), no internal node of the CWF-tree can
exist on the paths between L1 and either a or b, so L1 must be the parent of
both a and b.

For any task c different from a and b, the relation between a and c and b

and c is the same, from the hypothesis of the theorem. Let that relation be R2.
There are two cases, depending on whether R1 and R2 are the same:

– R1 6≡ R2. Let also L2

.
= LCA(a, c) ≡ LCA(b, c), the latter by virtue of

Lemma 3. Then, by virtue of Lemma 2, L2 is an ancestor of L1, that is, it
is not on the path between L1 and either a or b.

– R1 6≡ R2. Neither Lemma 2 nor Lemma 3 apply. Let L2

.
= LCA(a, c) and

L3

.
= LCA(b, c). At least two of {L1, L2, L3} must coincide, and possibly

all three might coincide. If all three coincide, then neither L2, nor L3 are
descendants of L1, so, just like above, they are not on the path between L1

and either a or b. (In this case, a, b, and c are siblings.)
If one of the nodes L2 or L3 differ from L1 (say, L2 for definiteness), then
we can prove that it must be strictly an ancestor of L1. (The other one,
L3 in this case, must coincide with either L1 or L2.) We can do that by
means of contradiction to the hypothesis of the theorem. Let’s suppose that
L2 is not an ancestor of L1, but a descendant of L1. Then, there must
be at least one other node L4 on the path from L1 to L2 that is labeled
differently from L1 and L2 (both labeled with R1). (This is true, because we
are considering compact workflow trees which do not allow a parent/child
relationship between identically labeled nodes.) Let this node L4 be labeled
with relation R4 6≡ R1. However, then this node must have at least one
descendant different from a, b, and c. This is true because L4 must have
at least two subtrees — one of them contains L2, and hence a and b; c is
not in any of the two subtrees, because it is in a subtree of L1 that does
not contain L4; and the remaining subtree(s) of L4 must have at least one
task leaf. Call this task d. But from the position of L4 between L1 and L2,
it follows that L4 = LCA(a, d) and L1 = LCA(b, d). Since L4 and L1 are
labeled differently, it would appear that aR4d and bR1d, thus violating the
hypothesis that a and b are in the same relation with all other tasks in the
tree. This would lead to contradiction, so we can conclude that L2 (and by
the same reasoning, L3), cannot possibly be descendants of L1.

Above we showed that, in all situations, no internal node that is the LCA
of either a or b with some third node c can be a descendant of L1. However, it
is also true that any internal node of the tree is the LCA of either a or b with
at least some other node c in the tree, since any node has at least two subtrees,
one of which contains a (respectively, b), and the other subtree has at least one
task as descendant. It then follows that no internal node in the tree can be a
descendant of L1, that is, the LCA of a and b is also their direct parent node.
This proves the theorem in the forward direction.



12 Daniel Nikovski, Akihiro Baba

Proving the entailment in the reverse direction — [∃LChild(a, L)∧Child(b, L)] ⇒
(∀c∃RaRc∧ bRc) — is straightforward. If a and b are children of the same inter-
nal node L1, then the paths connecting either of them to any third task c are
identical, except for the edge from L1 to each of them. Since these two paths
include the exact same sequence of internal nodes, whichever one of these nodes
is LCA(a, c), is also LCA(b, c). This proves the theorem in the reverse direction,
too. ut

This theorem shows that we can identify tasks that must have the same
parent node in the CWF-tree by comparing their respective relations with every
other task — if they all match, then the two tasks share the same parent. We will
use this theorem to devise a computationally efficient process mining algorithm
in the next section. Note that the analysis will be limited to CWF-trees without
ITER nodes, since the presence of such nodes makes impossible the application
of this theorem.

4 Mining of Workflow Trees

In the previous section, we assumed that a CWF-tree was given, and analyzed
the properties of the relations among its tasks. In this section, we describe how
such a tree can be constructed, if all that is given is a complete workflow log
from the operation of the corresponding process. We will use a definition of log
completeness identical to that proposed by van der Aalst et al. [2].

Before we describe the algorithm for mining workflow trees, we have to ex-
plain how all possible pairwise relations between two tasks in a model are de-
termined. The binary relation AND is identical to the relation ‖ used in the α

algorithm: aANDb ⇔ a ‖ b. The relation SEQ is based on the relation → from
that algorithm (a → b ⇒ aSEQb), but unlike the latter, is transitive, and is
more comprehensive. From the above implication and the transitivity property
aSEQb ∧ bSEQc ⇒ aSEQc, it follows that aSEQb ∧ b → c ⇒ aSEQc, that
is, the relation SEQ is simply the transitive closure of →, and can be found by
any suitable algorithm, for example Floyd-Warshall of complexity O(N 3) [13].
As described previously, aLINb ⇔ aSEQb∨ bSEQa. Finally, the OR relation is
based on the # relation, but is much more limited. It holds only when the SEQ

relation does not hold: aORb ⇔ a#b ∧ ¬(aLINb).
Consequently, the first step of the mining algorithm is to partition the set of

all task pairs (ti, tj), i = 1, N , j = 1, N , i 6= j into three subsets of task pairs
that obey the original three relations →, ‖, and #, respectively. This is done
by means of establishing the > relation first by performing a single scan of all
traces in the workflow log, identically to the operation of the α algorithm [2].
The computational complexity of this step is linear in the length of the workflow
log, but is independent of the number of tasks N . Establishing →, ‖, and # from
> can be done in time O(N2).

The resulting partition of task pairs can be represented conveniently in the
matrix Mα whose entry Mα

i,j contains the relation label for the pair (ti, tj),



Workflow Trees for Mining Implicit Concurrency 13

i = 1, N , j = 1, N , i 6= j. The diagonal entries Mi,i, i = 1, N are undefined and
excluded from consideration. Note that Mα is not symmetric, in general.

The second step is to build the relation matrix M of the workflow tree min-
ing algorithm, whose entries are based on the entries Mα and the definitions
described above. The order of filling in the matrix M is strictly as listed above:
AND, SEQ, LIN , and OR, and since LIN labels overwrite SEQ labels, the
end result is a partition of the task pair set into three relation subsets labelled
with AND, OR, and LIN . Again, the diagonal elements of M are undefined
and excluded from consideration. Note that in contrast to Mα, M is symmetric.
The complexity of this step is O(N 2).

The third, and central, step of the algorithm is to find the difference ∆i,j

between each distinct pair of rows (i, j), i 6= j in the matrix M , defined as
follows:

∆i,j =

N
∑

k=1

δ(i, j, k), δ(i, j, k)
.
=

{

1 iff i 6= k ∧ j 6= k ∧ Mi,k 6= Mj,k

0, otherwise.
(1)

If ∆i,j = 0 for a distinct pair of tasks (i, j), i 6= j, this means that these
two tasks have identical respective relations with respect to all remaining tasks,
and by virtue of Theorem 1 applied in the forward direction, they must have the
same parent. In such case, we can build a workflow subtree that has a root node
labeled with Mi,j , and children ti and tj .

When more than one element ∆i,j = 0 (excluding the symmetric element
∆j, i which is also necessarily zero because of the symmetry of ∆), there are
two possible cases, depending on whether they involve overlapping tasks, or not.
In the workflow tree, when more than two tasks have the same parent node,
every pair of them (i, j) will have pairwise distance ∆i,j = 0 (From Theorem 1,
applied in the reverse direction.) In contrast, if ∆i,j = 0 ∧ ∆k,l = 0 ∧ ∆i,k 6= 0,
it follows that also ∆i,l 6= 0 ∧ ∆j,k 6= 0 ∧ ∆j,l 6= 0, i.e., (i, j) and (k, l) form two
distinct subtrees with two different parent nodes. (Of course, nothing precludes
these two parent nodes from being labeled with the same relation.)

Which of these two situations applies can be determined easily if we consider
the graph whose N vertexes correspond to the tasks, and whose edges exist only
between pairs of vertexes (i, j) such that ∆i,j = 0. It can be seen that each
separate set of tasks that share the same parent node forms a distinct clique
in this graph, and these cliques are disjoint. Identifying these cliques can be
done by scanning the matrix ∆ row-wise until a row i that contains element(s)
equal to zero is found. This indicates that task ti is a member of a clique. From
inspecting that row, all tasks besides i that belong to this clique can be identified,
and their respective rows can be marked by a suitable flag as already processed.
The row-wise scan of ∆ then continues identically, skipping rows marked as
already processed.

Once all cliques have been found, a sub-tree is constructed for each of them.
The root of this subtree is labeled with the relation that holds among these tasks.
Due to the semantics of WF-trees, a sub-tree is simply a composite task that



14 Daniel Nikovski, Akihiro Baba

can participate in a higher-level block just like any other atomic task. Because
of this, we can create a new task label for each sub-tree so identified. Let the
set of these new composite tasks be Tnew; this set complements the initial set
of atomic tasks T . The tasks ti ∈ Tnew are given successive ordinal numbers
beyond N . Let also the atomic tasks that are members of one of the cliques be
defined as Tinc; each task in Tinc is a child of a member of Tnew. Finally, let also
a set Tact of active tasks be identified, and initialized at this point as Tact := T .

The complexity of this (third) step is O(N 3), because it is dominated by
the cost of computing the matrix ∆. (Identifying cliques and building sub-trees
requires a single scan of ∆, or only O(N 2).)

The next series of steps are largely similar to the one just described, only
they work on a progressively modified active set of tasks. During each of these
steps, the following sub-steps are performed:

1. The active set is modified to exclude the tasks that have already been in-
cluded in some composite task: Tact := Tact\Tinc. Their corresponding rows
and columns in the matrix ∆ are marked as processed.

2. The set of active tasks is expanded to include the new composite tasks:
Tact := Tact ∪ Tnew. Furthermore, rows and columns are allocated for the
new tasks in the matrices M and ∆. Pointers are kept from each new task
to its children.

3. For each new composite task ti ∈ Tnew, its relation with the other tasks
tj ∈ Tact is computed and stored in Mi,j . Let tk be one of the children of
ti. When tj is an atomic task, Mi,j = Mk,j , i.e., the composite task has the
same relation with a third task as (any) one of its children has with this
third task. (By construction, all of the children of ti have the same relation
with tj .) When tj is also a composite task, and tl is one of its children, then
Mi,j = Mk,l.

4. For each new composite task ti ∈ Tnew, its row difference with all other active
tasks tj ∈ Tact is computed, similarly to Equation 1, but with the important
distinction that this difference is taken only with respect to active tasks:

∆i,j =

N
∑

k=1,tk∈Tact

δ(i, j, k). (2)

5. Cliques of tasks that have zero pairwise distance are identified exactly as
described in Step 3 of the algorithm, new parent nodes for each of the cliques
are created, and labeled with the respective relation. Each of the nodes forms
a new subtree and corresponds to a new composite task. Analogously to Step
3, the subset of active tasks that are now included in some subtree is assigned
to Tinc, and the set of new composite tasks is assigned to Tnew.

The above five sub-steps are iterated until the set of active tasks Tact re-
maining after sub-step 2 includes only a single task. This task becomes the root
of the mined workflow tree, and corresponds to the outermost block construct.
The overall complexity of this series of steps is again O(N 3), because new rows



Workflow Trees for Mining Implicit Concurrency 15

and columns of the matrices M and ∆ are introduced only for new composite
tasks, and there can be at most N − 1 such tasks. Each new row or column has
O(N) elements, and the computation of each element takes O(N).

The last step of the algorithm is to re-order the children of all LIN nodes,
so that the SEQ relation among them holds, and re-label those nodes with
the label SEQ. This completes the construction of the workflow tree. Since, by
construction, each composite node has at least two children, this workflow tree is
also compact. The complexity of this step is O(N 2 log N), since the induced tree
has at most N − 1 internal nodes, each of which has O(N) children which are
sortable in O(N log N) time. Based on the complexity of each step, the overall
computational complexity of the algorithm is O(N 3).

5 Conclusion

We have described a representation of business processes called workflow trees
that is intuitive and matches the hierarchical organization of most business pro-
cesses used in practice. While similar to other business process representations
used in the past, workflow trees have precise semantics and properties which
derive directly from their tree-like representation. These properties can be lever-
aged to devise a computationally efficient process mining algorithm that can
recover business process models with concurrent tasks that have not been spec-
ified as such explicitly in workflow logs. The algorithm operates by analyzing
and comparing the mutual relations between pairs of tasks, suitably organized
in matrices, and this determines its favorable computational complexity — cubic
in the number of process tasks.

This computational efficiency is achieved at the expense of a slight sacrifice in
the representational power of workflow trees in comparison to other formalisms,
such as workflow nets [2]. The set of process models that can be represented by
workflow trees is a strict subset of the set of models that can be represented by
workflow nets — there exist some processes that can be represented by work-
flow nets, but not by workflow trees, most notably some processes with complex
concurrency and mixed synchronization. It is debatable, though, whether such
complex synchronization would be encountered often in actual business situa-
tions, and whether this would be a serious restriction in practice.

A more serious limitation of the current version of the mining algorithm is
that it cannot recover models with looped execution. While such models are
easily represented by workflow trees, using several possible iterative constructs,
the mining algorithm proposed in this paper relies on the property of induced
trees that each of their internal nodes must have at least two children. This
effectively excludes iterative constructs from the set of blocks that can be used
for building induced models.

However, this is not a principled restriction — in fact, the presence of looped
execution can easily be detected as a by-product of computing the transitive
closure SEQ of the → relation. If there exists a task a such that aSEQa, then
the process must contain a loop. However, identifying how many loops exist,



16 Daniel Nikovski, Akihiro Baba

where the corresponding ITER constructs should be positioned in a workflow
tree, and how the tree should be mined in the presence of such constructs, is
still an open problem to be addressed by future work.

References

1. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods,
and Systems. MIT Press (2002)

2. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering pro-
cess models from event logs. IEEE Transactions on Knowledge and Data Engi-
neering 16(9) (2004) 1128–1142

3. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Trans. Softw. Eng. Methodol. 7(3) (1998) 215–249

4. Silva, R., Zhang, J., Shanahan, J.G.: Probabilistic workflow mining. In: KDD ’05:
Proceeding of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, New York, NY, USA, ACM Press (2005) 275–284

5. Schimm, G.: Mining exact models of concurrent workflows. Comput. Ind. 53(3)
(2004) 265–281

6. List, B., Korherr, B.: An evaluation of conceptual business process modelling
languages. In: SAC ’06: Proceedings of the 2006 ACM symposium on Applied
computing, New York, NY, USA, ACM Press (2006) 1532–1539

7. van der Aalst, W.M.P., Weijters, A.J.M.M.: Process mining: a research agenda.
Comput. Ind. 53(3) (2004) 231–244

8. Cook, J.E., Wolf, A.L.: Event-based detection of concurrency. In: SIGSOFT
’98/FSE-6: Proceedings of the 6th ACM SIGSOFT international symposium on
Foundations of software engineering, New York, NY, USA, ACM Press (1998) 35–
45

9. Mitchell, T.M.: Machine Learning. McGraw-Hill Higher Education (1997)
10. de Medeiros, A., van Dongen, B., van der Aalst, W., Weijters, A.: Process mining:

Extending the α-algorithm to mine short loops. BETA Working Paper Series, WP
113, Eindhoven University of Technology, Eindhoven (2004)

11. Wen, L., Wang, J., van der Aalst, W., Wang, Z., Sun, J.: A novel approach for
process mining based on event types. BETA Working Paper Series, WP 118,
Eindhoven University of Technology (2004)

12. Erol, K., Hendler, J., Nau, D.S.: Semantics for hierarchical task-network planning.
Technical Report UMIACS-TR-94-31, University of Maryland at College Park,
College Park, MD, USA (1994)

13. Sedgewick, R.: Algorithms in C. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2002)


	Title Page
	Title Page
	page 2


	Workflow Trees for Representation and Mining of Implicitly Concurrent Business Processes
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18


