
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

A New Weak Learning Algorithm for Real
Hyperplane Features Applied to Face

Detection

Raphael Pelossof, Michael Jones

TR2007-074 June 2008

Abstract

This paper explores the use of thresholded hyperplanes as the building blocks of a classifier for
face detection. We are motivated by the work of Viola and Jones [10] who used Haar-like wavelet
features as their weak classifiers in the AdaBoost learning algorithm. These weak classifiers were
chosen for their speed. We explore how much may be gained by using more powerful but less
computationally efficient weak classifiers. The generalized haar wavelets used in Viola and Jones
can be viewed as a constrained subset of linear hyperplanes. Can a more powerful detector be
constructed if we use unconstrained linear hyperplanes in place of the generalized Haar wavelets.
In addition to being of theoretical interest, this question has practical importance for hardware
implementations of a face detector in which dot products may be very fast to compute. The
difficulty with using thresholded hyperplanes as weak classifiers is that the brute force search
over all possible hyperplanes which was used in Viola-Jones is no longer practical. We propose a
new gradient descent based algorithm which finds separating hyperplanes by directly minimizing
the AdaBoost Z score. We also provide a baseline comparison to other search algorithms for
unconstrained hyperplanes.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2008
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

A new weak learning algorithm for real hyperplane features applied to face
detection

Raphael Pelossof
Columbia University

1214 Amsterdam Ave, New York, NY 10027
pelossof@cs.columbia.edu

Michael J. Jones
MERL

201 Broadway, Cambridge, MA 02144
mjones@merl.com

Abstract

This paper explores the use of thresholded hyperplanes
as the building blocks of a classifier for face detection. We
are motivated by the work of Viola and Jones [10] who used
Haar-like wavelet features as their weak classifiers in the
AdaBoost learning algorithm. These weak classifiers were
chosen for their speed. We explore how much may be gained
by using more powerful but less computationally efficient
weak classifiers. The generalized Haar wavelets used in
Viola and Jones can be viewed as a constrained subset of
linear hyperplanes. Can a more powerful detector be con-
structed if we use unconstrained linear hyperplanes in place
of the generalized Haar wavelets? In addition to being of
theoretical interest, this question has practical importance
for hardware implementations of a face detector in which
dot products may be very fast to compute.

The difficulty with using thresholded hyperplanes as
weak classifiers is that the brute force search over all possi-
ble hyperplanes which was used in Viola-Jones is no longer
practical. We propose a new gradient descent based algo-
rithm which finds separating hyperplanes by directly min-
imizing the AdaBoost Z score. We also provide a baseline
comparison to other search algorithms for unconstrained
hyperplanes.

1. Introduction

Automatic face detection in photographs has undergone
rapid development in recent years. One important develop-
ment was the rapid detection framework of Viola and Jones
[10]. Part of the success of their framework is the use of
fast-to-compute weak classifiers that are combined to yield
a very accurate face detector. These weak classifiers are
thresholded Haar-like wavelets also called rectangle fea-
tures. One interesting question that arises is how much
better could more powerful weak classifiers do? Haar-like
wavelets can be represented as hyperplanes with particular

constraints. Applying the Haar-like wavelet to the input im-
age patch is then simply a dot product. In practice, Haar-like
wavelets are computed more efficiently by using an integral
image representation, but they are equivalent to a dot prod-
uct (followed by thresholding). Thus, one natural choice
for a more powerful weak classifier is an unrestricted hy-
perplane followed by thresholding. This paper answers the
question of how much better such thresholded hyperplanes
are than rectangle features for face detection.

This question has practical importance as well as the-
oretical interest. Various companies are putting face de-
tectors into products (digital cameras, cell phones, digital
video recorders, etc). In some of these products the face de-
tector is implemented on either a specialized ASIC or on an
embedded processor or DSP chip. Some such hardware can
compute a general dot product just as fast as a rectangle fea-
ture. In such cases, a significant advantage may be gained
by using a face detector based on unrestricted hyperplanes
instead of Haar-like wavelets.

2. Related Work

An extensive survey of multiple different face detection
algorithms was conducted by Lienhart and Maydt [5]. We
however, constrain the discussion to research related to hy-
perplane based weak classifiers. There have been a few
other papers that have explored the idea of using more pow-
erful hyperplane based weak classifiers within AdaBoost to
build a face detector. In their paper on Kullback-Leibler
boosting, Liu and Shum [6] also used a hyperplane as their
weak classifier. They provide a very detailed framework
to find the most informative classifying hyperplanes. How-
ever, they mention that the stochastic ascent that is used as
the optimization algorithm in lower dimensional problems
becomes inefficient in high dimensions because of the size
of the search space. They propose a 1D optimization to find
optimal features which seems to work very well. Their al-
gorithm also uses multiple thresholds for each hyperplane
to form a sophisticated decision boundary. In comparison,

1

our optimization algorithm works on classification tasks in-
dependent of the dimensionality of the data, treating low
and high dimensional problems similarly. Additionally, our
weak classifier uses only a single threshold which results in
a much simpler decision boundary, and requires less over-
head and less time to evaluate.

Another paper that used more powerful weak classifiers
is Huang et al. [3]. They introduced the idea of granular fil-
ters which are linear combinations of sums within squares.
These filters can also be computed as a dot product. The
granular filters can thus also be viewed as a constrained set
of hyperplanes although less constrained than the Haar-like
filters. Their goal was to use a more powerful set of weak
classifiers but ones that are still computationally efficient in
software. Huang et al. also had to struggle with the problem
of a huge search space and they developed a heuristic based
weak learning algorithm to solve this problem.

Using thresholded hyperplanes as classifiers, both Li and
Zhang [4], Viola and Jones [10], and Lienhart and Maydt
[5] select at each AdaBoost iteration a single filter that mini-
mizes a cost function from a fixed overcomplete set of Haar-
like filters. Due to the size of the Haar-like feature space,
the methods are forced to sample only a subset of the Haar-
like filters. This subset, although overcomplete, includes
only filters with a small number of boxes (up to 4 boxes per
filter). It is very likely that by either enlarging the sampled
set by adding more boxes, or removing the box restrictions
on the hyperplane, the accuracy of the detector will be in-
creased.

3. Overview of Viola-Jones detection frame-
work

The Viola-Jones [10] detection framework is based on
learning a strong classifier that distinguishes face patches
from non-face patches using the AdaBoost learning algo-
rithm. The core of AdaBoost is the weak learning algorithm
that chooses a weak classifier which has better than chance
error on the weighted training data. The weak classifier can
be any classifier. In the case of Viola-Jones, it is a thresh-
olded rectangle feature as illustrated in figure 1. The strong
classifier,

�������
resulting from confidence-rated AdaBoost

training has the following form (which is slightly different
from that used in [10]):�������
	���
���������������� � ������� �!� (1)

where

� � �����"	$#&% � if ' � �����)(+* �, � otherwise
(2)% �.- , �0/21 , ' � ����� is a rectangle filter and

�
is an input

image patch. We call � � ����� , which is a classifier, a rect-

343434343343434343343434343343434343343434343343434343343434343343434343343434343545454545545454545545454545545454545545454545545454545545454545545454545545454545
646466464664646646466464664646646466464664646747477474774747747477474774747747477474774747
848484884848488484848848484884848488484848848484884848488484848848484884848488484848848484884848488484848848484884848488484848848484894949949499494994949949499494994949949499494994949949499494994949949499494994949949499494994949

:4:4::4:4::4:4::4:4::4:4::4:4::4:4::4:4::4:4::4:4:;4;4;;4;4;;4;4;;4;4;;4;4;;4;4;;4;4;;4;4;;4;4;;4;4;<4<4<<4<4<<4<4<<4<4<<4<4<<4<4<<4<4<<4<4<<4<4<=4=4==4=4==4=4==4=4==4=4==4=4==4=4==4=4==4=4=
A B

C D

Figure 1. Example rectangle filters shown relative to the image
patch. The sum of the pixels in the gray rectangles are subtracted
from the sum of pixels in the white rectangles.

angle feature and ' � ����� , which is a linear function of the
image patch, a rectangle filter.

The basic AdaBoost algorithm using confidence-rated
predictions [1, 8] slightly specialized for face detection
learning using linear filters is given in figure 2.

In the case of 24x24 pixel example images, the number
of possible rectangle filters is not too large (on the order of
100,000) and so can be searched over in a brute force man-
ner to find the one with lowest error on the weighted data.
As noted previously, a rectangle filter can be represented
as a hyperplane and evaluated on an image patch by a dot
product. In this sense, the set of rectangle filters comprise a
very restricted set of hyperplanes and the interesting ques-
tion arises as to how much better the face detector could be
if it used unrestricted hyperplanes instead. This question
has practical importance when considering hardware im-
plementations in which dot products can be computed very
fast.

Another key component of the Viola-Jones framework is
the use of a cascade of classifiers to dramatically increase
the speed of the detector. Viola and Jones show that using a
cascade, the average number of weak classifiers computed
per patch on a typical image is only 8. For this reason, we
concern ourselves in this paper with only the first 10 weak
classifiers since this is where almost all of the computation
is done.

There are two ways for unrestricted hyperplanes to do
”better” than rectangle filters. One is for the accuracy (mea-
sured as a ROC curve plotting false positives versus false
negatives) to be improved. The other is for the average
number of weak classifiers evaluated per patch to be re-
duced. The speed of the face detector is directly propor-
tional to the average number of weak classifiers computed
per patch. In a software implementation in which dot prod-
ucts are much slower than computing rectangle filters using
the integral image, reducing the average number of weak
classifiers computed is overwhelmed by the slowness of the
dot product. But in a hardware implementation in which
dot products are fast, reducing the average number of weak

2

> Given example images and labels?4@BADCFEGAIHJCDKDK�KLC�?4@NMOCFEPM�H
where

@NQ
is an image rep-

resented as a vector of dimension R and
ESQ�TVUSWYXPC�X[Z

for negative and positive examples, respectively.> Initialize weights \ A ?4]^H�_ AM .> For ` _aX�CDKDKDKDCIb :

1. Call the weak learner using distribution \dc on
the examples to yield a weak classifiere c ?4@fHB_�gih c if j[c ?4@NHlknm co c otherwise

where h c C o c T0p , j[c ?4@NH�_rqtsc @ ,
q c is a vector

with the same dimensionality as
@

and
q sc repre-

sents the transpose of
q c .

2. Update the weights:\dcDu A ?4]^HB_ \dc ?4]^Hwv�xSyf?wW�EPQ e c ?4@zQ�HFH{ c
where

{ c is a normalization factor chosen so that\dcLu A will be a distribution.> The final strong classifier is:| ?4@fH}_�~D]4���B?���cD� A e c ?4@NHfW��
H
where

�
is a threshold which can be adjusted to trade

off false positives with false negatives.
Figure 2. The AdaBoost algorithm used to train a strong classifier
in the Viola-Jones framework. Adapted from Schapire and Singer
[8].

classifiers computed can have a large effect on speed.
The difficulty with using thresholded hyperplanes as

weak classifiers is that the simple brute force weak learner
used in Viola-Jones no longer works. The search space of
576 (= 24x24) dimensional hyperplanes is astronomical so
a manageable subsample of hyperplanes is not sufficient to
cover the space adequately.

The main focus of the remainder of the paper is present-
ing two different weak learner algorithms for thresholded
hyperplanes. We also present results using the same weak
learner as Viola-Jones and 20,000 randomly chosen hyper-
planes to demonstrate that it is indeed inadequate for build-
ing a good detector.

4. Selection algorithms for unrestricted hyper-
planes

Each of the weak learner search algorithms (step 1 of the
AdaBoost algorithm in figure 2) has the following form:� Construct weak learner � � �����

1. Select a hyperplane, � (somehow)

2. Given the hyperplane, find the optimal
*
, % and,

that minimize the � score.

In some of the weak learners, these two steps are iterated.
For example, in the brute force search weak learner these
two steps are iterated for every possible hyperplane, and the
one that minimizes the � score is chosen. The � score is
the normalization factor in the weight update step of the
AdaBoost algorithm.

� � 	��� � ����� � ��
������f�L���S�P������� (3)

The product of the � � ’s was shown by Schapire and
Singer [8] to be a bound on the error and so is a good criteria
for the weak learner to minimize.

The main difference among the weak learning algo-
rithms is how the hyperplane is chosen in step 1. Step 2 is
exactly the same in each algorithm. This step is computed
as follows. First the responses, � � are computed. These are
defined as � � 	 ��� � � for each example image patch,

� �
.

The responses are simply scalars. The responses are then
sorted. Next, every possible threshold that falls midway be-
tween two sorted responses is tested by computing the asso-
ciated Z score. To compute the Z score, the optimal % and,

are required. Schapire and Singer show that the optimal% and
,

depend only on the weights of the true positives
(� ��), false positives (� ��), true negatives (� ��) and false
negatives (� ��) for that threshold and so can be computed
directly from these values. The equations for them are given
below:

� �� 	 ��¢¡ �D� � � �I£�¤I¥ �G¦4§f¨ � ��
�� (4)

� �� 	 ��¢¡ �D� � � �I£�¤ ¥ �G¦4©f¨ � ��
�� (5)

� �� 	 ��¢¡ �D� � � �J£�¤ ¥ � ¦ ©f¨ � ��
�� (6)

� �� 	 ��¢¡ �D� � � �J£�¤ ¥ � ¦ §f¨ � ��
�� (7)

% 	 ª«d¬®­G¯ � ��� �� (8), 	 ª«d¬®­G¯ � ��� �� (9)

These values can be computed easily since the responses
are sorted. Note that each response also has associated with
it the weight and label of its example. After each possible*

(along with the corresponding optimal % and
,

) is tested,
the parameters with lowest � score are returned.

3

We will now focus our discussion on different algorithms
we used for hyperplane selection.

4.1. Random hyperplanes

Our first weak learner selection algorithm is the same
brute force algorithm used in Viola-Jones. We expect this
weak learner to perform poorly but try it anyway for com-
pleteness. A random subsample of all possible hyperplanes
is generated to yield a set of 20,000 hyperplanes. Each one
is then tested by finding the optimal

*
, % and

,
as described

above and its Z score is computed. The hyperplane,
*
, % and,

with minimum Z score are selected as the weak classifier,� ����� .
4.2. Weighted least squares

The next weak learner selection algorithm we try is
weighted least squares (WLS). The problem is formulated
in the traditional least squares regression framework, where
the data labels are the desired outputs ° 	²± ³ � - ³G´ -�µ�µ®µ�- ³ ��¶ � ,
of the projections of the images · 	¸± ¹ � ¹z´ µ�µ®µ ¹ ��¶ � on
the hyperplane � , weighted by example importance. The
weighting is incorporated into the least squares formulation
by introduction of the the diagonal weight matrix � 	º
F»��f� � � ª � - � � « � -[µ®µ®µ�- � �����J� , which weights each example
by its importance.�¼·2� 	 �¼° (10)� �¼· � � � �¼· � � 	 � �¼· � � �¼° (11)� 	 � · � � ´ · � � � · � � ´ ° (12)

The shortcoming of WLS is that correctly classified
patches that yield a dot product larger than one, are penal-
ized with square cost with respect to their distance from the
target label. This motivates us to use margin based methods
which take advantage of correctly classified examples with
a dot product larger than it’s label.

4.3. Gradient descent

We have also developed a new weak learning algorithm
that chooses a hyperplane that directly minimizes � � . Since
this is the same cost function that AdaBoost minimizes, it
would seem to be the best choice. Friedman [2] proposes
a similar gradient based approach. However, the gradient
boosting algorithm proposed in his paper minimizes a dif-
ferent loss function. In the following explanation, we drop
the subscript ½ since it is clear that we are minimizing �
at a particular boosting iteration, ½ . This minimization is
equivalent to maximization of the weighted exponentiated
negative margin.

To minimize � we use gradient descent. Since � is a lin-
ear combination of exponentiated threshold functions � ����� ,

we cannot directly take derivatives of it. We therefore ap-
proximate it using a linear combination of exponentiated
sigmoid functions (eq 19).

To approximate � ����� we will scale the sigmoid function
assuming % (i, . Notice that if

, (% we flip the hyper-
plane (by setting �¿¾ � �) and get the desired contraint.

Using a smoothness constant À /�1 , we define:ÁY��¹f�Â	 ªª�Ã � �NÄ (13)� � 	 ÁY� À � � � �BÅN� *��J� (14)

We then approximate � ����� as Æ� ����� by rescaling and
shifting the sigmoid response function from the range

��Ç - ª �
to the range

��, - % � :Æ� ��� � �È	 , Ã � % � ,��J� � (15)	 , Ã % � ,ª�Ã � �}ÉJ� ¤I¥ �G¦¢�}¨J� (16)

The function Æ� ����� is a smooth approximation to the step
function � ����� .For convinience we define ÆÊ � as:ÆÊ � 	 � ��
���� �f�L�F�ÌË � �®Í��ÎË���ÏF�4� (17)

Now that we have a smooth approximation of the step
function, we are able to take derivatives of the estimatedÆ� with respect to the hyperplane � . We would like to find� - * - % - , that minimize Æ� .

Æ� 	 �� � ��� � ��
���� �f�L�F�ÌË � �®Í��ÎË���ÏF�4� (18)	 �� � ��� ÆÊ � (19)

We take derivatives of Æ� with respect to � at each of the
data points. Since the derivative in 22 cannot be analytically
solved when setting to zero, we have to take a gradient de-
scent approach to minimize Æ� . We will iteratively take a
steps of size Ð against the gradient to minimize Æ� :

1. Take derivative with respect to the hyperplaneÑ ÆÊ �Ñ � 	 Ê ��ÒÒ ¤ÔÓ �Y³ ��Õ , Ã Í��ÎË� ��ÖL×�Ø�ÙÛÚ ¥�Ü ¦ ×�Ý�Þ[ß�à (20)	 Ê ��ÒÒ ¤
á �Y³ � ��, Ã � % � ,l�I� � ��â (21)	 � À � % �n,��F³ � ÆÊ � � � � ª �r� � �F� � (22)

2. Update the current hyperplane�!¾ã� � Ð �� � ��� Ñ ÆÊ
�Ñ � (23)

4

3. Normalize the updated hyperplane�¿¾ �ä�ä � ä®ä (24)

4. Update parameters % - , - * to minimize � given
the new hyperplane �

During the gradient descent, the hyperplane has a ten-
dency to grow. Its å « norm grows to 10 in 100 itera-
tions. The growth in the hyperplane’s norm only affects the
threshold in terms of classification. However, when the hy-
perplane’s norm grows, it effectively causes the algorithm
to take larger and larger steps thereby causing oscillations
which prohibit convergence. Normalizing the hyperplane
ensures that the algorithm does not oscillate given a small
enough step size Ð . The sigmoid smoothing parameter À
also has a dual effect. According to equation 16 it controls
the smoothness of the approximation surface Æ� , and accord-
ing to 22 it controls the size of the gradient steps. Choosing
higher values for À would yield better approximations of �
however, the resulting surface would become less smooth
and the optimization would be more likely to get stuck in a
local optimum.

Given the new hyperplane � we would like to find the
new triplet á * - % - ,�â that minimize the real � , since these
parameters are no longer correct for the new hyperplane.
We use the method described at the beginning of this sec-
tion following equations 8, 9 to set alpha and beta for each
possible threshold. We then select the triplet that minimizes� .

This gradient descent process is iterated until there is
no more improvement in � in successive gradient descent
steps. The resulting hyperplane � and parameters

* - % - , are
passed back to Adaboost as the weak learner. The dataset
gets reweighted and a new starting hyperplane is selected.

Because gradient descent may converge to a bad local
minima, we run gradient descent using 10 different random
starting hyperplanes. The final hyperplane with lowest �
score from each of these runs is returned.

5. Experiments

Our training set contains 3000 frontal face images and
10000 non-face images collected from the World Wide
Web. Each face image is scaled and cropped to 24x24 pix-
els. Each non-face is a randomly selected patch from a
larger image and is also scaled to 24x24 pixels. Each ex-
ample image

¹ �
is regarded as a 576 dimensional vector¹ � /æ1�çLèLé . The corresponding labels

³ � / á � ª - Ãêª â are
equal to

� ª for non face patches and Ãêª for face patches.
A classifier with 50 features was trained using each of

the weak learners described above. We found good settings
for À and Ð by trial and error.

Figure 3. (a)Training error for different search algorithms

Figure 4. (a)Test error for different search algorithms

A 50 rectangle feature classifier was also trained using
the brute force weak learner as in [10]. The pool of rectan-
gle filters that the weak learner could choose from consisted
of 26,365 rectangle filters of the types shown in figure 1.

5.1. Results

Each classifier was tested on a test set of 9832 faces and
50,000 non-faces. Like the training set, each example image
was of size 24x24 pixels.

We define the error rate as the weight of misclassified ex-
amples divided by the total weight of all examples where the
total weight of positives examples equals the total weight of
negative examples.

The error rate on the training set versus the number of
features is shown in figure 3. The error rate on the test set
versus the number of features is shown in figure 4. A ROC

5

curve plotting false positive rate versus false negative rate
on the test set is shown in figure 5. For the ROC curves,
only 10 features were used in each classifier. This is because
on a typical face detector cascade, the average number of
features computed per patch is less than 10 so the first 10
features really determine the speed of the classifier.

As expected, the brute force weak learner that uses a ran-
dom sample of hyperplanes, has low accuracy and is signif-
icantly worse than the rectangle feature classifier.

WLS has fairly low error after the first feature, how-
ever, it quickly falls behind the rectangle feature classifier as
more features are selected. We suspect that the main reason
for this behavior is the squared penalty term that penalizes
correct detections with high margin.

The gradient descent weak learner does achieve a sig-
nificant improvement over the rectangle feature classifier at
least until about the 30th feature. In terms of their ROC
curves, the thresholded hyperplanes from the gradient de-
scent weak learner achieve an equal error rate (where the
false positive rate equals the false negative rate) of about
6.8 % while the rectangle features have an equal error rate
of about 9.4 %. The main effect of this improved accuracy
in the beginning stages of a cascade are on the average num-
ber of features computed per image patch. For example the
gradient descent based classifier after one weak classifier
has about the same error on the test set as the rectangle fea-
ture classifier after about 7 weak classifiers. The rectangle
feature classifier takes about 23 weak classifiers to acheive
the same error rate as the gradient descent based classifier
after only 10 hyperplanes. In practice, this means that many
fewer thresholded hyperplanes are needed to achieve the
same error rate as the rectangle features. This leads to a
significant reduction in the average number of features com-
puted per patch in a cascaded detector.

It is also interesting to visualize the first few hyperplanes
selected by each of the weak learners and the first few rect-
angle filters selected. The first few hyperplanes chosen by
the gradient descent weak learner look distinctly face-like
as shown in figure 6. The hyperplane chosen by weighted
least squares has very little face-like structure which also
helps explain why it generalizes more poorly.

5.2. Hardware oriented hybrid detectors

In practice most of the computation of a cascaded face
detector is spent on the first 10 or so features. Therefore, us-
ing on average less features at the beginning of the cascade
while achieving the same error rate will greatly increase the
speed of the detector. This is what is exactly what we get
by using the gradient descent based detector presented here
when concatenated to an existing rectangle filter based de-
tector. Because general dot products can be very fast in
hardware, these results have greatest importance for hard-
ware implementations of face detectors which are becoming

Figure 5. (a)ROC curve for different search algorithms

Figure 6. First 10 hyperplanes chosen by the different algorithms.
Each row represents a different selection algorithm. The features
are sorted by selection order from left to right. (row 1)Viola and
Jones box-filters (row 2) Gradient descent (row 3) Weighted least
squares (row 4) Random hyperplanes

quite common.
To build a full face detector, many more weak classifiers

would have to be learned than just the first 50. The learning
process also requires some form of resampling to generate
more difficult non-face patches. Instead of training a full
gradient descent based detector, we created a hybrid detec-
tor. This was done by adding the first 10 thresholded hyper-
planes learned using the gradient descent to the beginning of
an existing rectangle filter based detector. The original box
filter based detector has 1520 rectangle features. Thus, the
hybrid detector has 1530 features. We tested the average
number of weak classifiers evaluated per candidate patch
for such a hybrid detector. On the MIT+CMU test set [9, 7],
which has 130 images and 507 faces, the box filter based de-
tector at a ë�ë�ì detection rate and a 1/1,014,170 false posi-
tive rate evaluates on average 9.9 features per patch. The hy-
brid detector at a ëGë.ì detection rate and a 1/1,029,310 false
positive rate evaluates on average 8.0 features per patch.
Therefore, for approximately the same point on the ROC
curve the hybrid detector yields almost a

« Ç ì speed up in
terms of the number of features evaluated per patch. Some

6

Figure 7. Example of detections on a low contrast image

detection results for the hybrid detector on difficult images
from the MIT+CMU test set are shown in figures 7 and 8.
These show detections on a low contrast image an image
with a variety of different types of faces and slightly differ-
ent poses.

6. Conclusions

Haar-like features are very difficult to improve on for
general purpose computers in terms of their ratio of clas-
sification accuracy over computational cost. However, for
specialized hardware in which dot products are very fast,
the costs change, and more powerful features such as real
hyperplanes (dot products) can be just as cheap to compute.
For such cases, we have shown that real hyperplane fea-
tures can lead to significant improvements over Haar-like
features. Thus, the main contributions of this paper are
a new gradient descent weak learning algorithm for unre-
stricted thresholded hyperplanes and the demonstration that
such weak classifiers can lead to a significant speed-up in a
cascaded face detector in terms of number of features com-
puted per patch.

References

[1] Y. Freund and R. E. Schapire. A decision-theoretic gener-
alization of on-line learning and an application to boosting.
In Computational Learning Theory: Eurocolt ’95, pages 23–
37. Springer-Verlag, 1995. 2

[2] J. Friedman. Greedy function approximation: a gradient
boosting machine, 1999. 4

[3] C. Huang, H. Ai, Y. Li, and S. Lao. Learning sparse features
in granular space for multi-view face detection. In Proc. of
IEEE International conference on Automatic Face and Ges-
ture Recognition, Southampton, UK, April 2006. 2

[4] S. Li and Z. Zhang. Floatboost learning and statistical face
detection, 2004. 2

Figure 8. Example of detections on a wide variety of faces

[5] R. Lienhart and J. Maydt. An extended set of haar-like fea-
tures for rapid object detection. In International Conference
on Image Processing, pages I: 900–903, 2002. 1, 2

[6] C. Liu and H. Shum. Kullback-leibler boosting. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 587–594, 2003. 1

[7] H. Rowley, S. Baluja, and T. Kanade. Neural network-based
face detection. In IEEE Patt. Anal. Mach. Intell., volume 20,
pages 22–38, 1998. 6

[8] R. Schapire and Y. Singer. Improving boosting algo-
rithms using confidence-rated predictions. Machine Learn-
ing, 37(3), 1999. 2, 3

[9] K. Sung and T. Poggio. Example-based learning for view-
based face detection. In IEEE Patt. Anal. Mach. Intell., vol-
ume 20, pages 39–51, 1998. 6

[10] P. Viola and M. Jones. Robust real-time face detection. Int.
J. Computer Vision, 57:137–154, 2004. 1, 2, 5

7

	Title Page
	Title Page
	page 2

	A New Weak Learning Algorithm for Real Hyperplane Features Applied to Face Detection
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

