
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Motion Mapping for MPEG-2 to H.264/AVC
Transcoding

Jun Xin, Jianjun Li, Anthony Vetro, Huifang Sun

TR2007-085 April 2008

Abstract

This paper describes novel motion mapping algorithms aimed for low-complexity MPEG-2 to
AVC transcoding. The proposed algorithms efficiently map incoming MPEG-2 motion vectors
to outgoing AVC motion vectors regardless of the block sizes that the motion vectors correspond
to. Extensive simulation results show that our proposed transcoder incorporating the proposed
algorithms achieves very good rate-distortion performance with low complexity. Compared with
the cascaded decoder-encoder solution, the proposed approach could achieve similar coding ef-
ficiency while significantly reduce the complexity.

IEEE International Symposium on Circuits and Systems, May 2007

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2008
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Motion Mapping for MPEG-2 to H.264/AVC
Transcoding

Jun Xin, Jianjun Li, Anthony Vetro, Huifang Sun
Mitsubishi Electric Research Laboratories

Cambridge, MA, USA
jxin,jli,avetro,hsun@merl.com

Shun-ichi Sekiguchi
Mitsubishi Electric Corporation

Ofuna, Kamakura, Japan
Sekiguchi.Shunichi@eb.MitsubishiElectric.co.jp

Abstract— This paper describes novel motion mapping algo-
rithms aimed for low-complexity MPEG-2 to AVC transcoding.
The proposed algorithms efficiently map incoming MPEG-2
motion vectors to outgoing AVC motion vectors regardless of
the block sizes that the motion vectors correspond to. Extensive
simulation results show that our proposed transcoder incorporat-
ing the proposed algorithms achieves very good rate-distortion
performance with low complexity. Compared with the cascaded
decoder-encoder solution, the proposed approach could achieve
similar coding efficiency while significantly reduce the complexity.

I. INTRODUCTION

MPEG-2 [1] has become the primary format for broadcast
video after being developed in the early 1990’s. The new
video coding standard, referred to as H.264/AVC [2] or simply
AVC, as will be used in this paper, promises the same quality
as MPEG-2 with about half the data rate. Since AVC has
been adopted into storage format standards, such as Blu-ray
Disc, we expect AVC decoders to appear in consumer video
recording systems soon. Certainly, as more high-definition
content becomes available and the desire to store more con-
tent or record more channels simultaneously increases, long
recording mode will become a key feature for future consumer
video recorders. To satisfy this need, we have developed novel
techniques that convert MPEG-2 broadcast video to the more
compact AVC format with low complexity. Complexity is kept
low by reusing information contained within the MPEG-2
video stream. At the same time, high quality is maintained.

Straightforward cascading of an MPEG-2 decoder and a
stand-alone AVC encoder would form a transcoder; this will
be referred to as the reference transcoder later on in this paper.
The reference transcoder is computationally very complex due
to the need to perform motion estimation in the AVC encoder.

It has been well understood that one could reduce the
complexity of the reference transcoder by reusing the motion
and mode information from the input MPEG-2 video bitstream
[3], [4]. However, the reuse of such information in the most
cost-effective and useful manner is an open problem.

The transcoder architecture that is targeted for consumer
storage applications is shown in Fig. 1. It consists of an
MPEG-2 decoder and a simplified AVC encoder. The en-
coder is ”simplified” relative to the encoder in the reference
transcoder, since the motion and mode information may be
derived based on input MPEG-2 video. In this paper, we

Fig. 1. MPEG-2 to AVC transcoding architecture with motion and mode
mapping.

focus on the motion mapping algorithm, which is the main
obstacle in low-complexity transcoder design. We assume the
input MPEG-2 video is coded using frame pictures, and the
output is coded using AVC frame pictures with macroblock
adaptive frame/field (MBAFF) turned off. However, the pro-
posed method could easily be generalized for other input and
output picture formats. In addition, we disable inter prediction
for block sizes 8x4, 4x8 and 4x4, although the proposed
algorithms can be applied to these modes as well. We think this
is a reasonable design for practical applications since block
sizes larger than 8x8 are believed to achieve most of the gains
promised by variable block size motion compensation.

In recent works [5], [6] for motion mapping, a complete
motion estimation algorithm is still performed. For inter 16x16
prediction, the motion vectors from incoming MPEG-2 video
are used as additional motion vector predictors. For smaller
block sizes, e.g. 16x8, 8x16 and 8x8 etc, motion vectors are
estimated not directly from incoming motion vectors since
MPEG-2 does not have such motion vectors. Instead, they are
estimated using pure encoding algorithms without considering
incoming motion vectors. Therefore, such an approach still
needs complicated motion search algorithms. In this paper,
we propose very efficient motion mapping algorithms that
directly map incoming MPEG-2 motion vectors to outgoing
AVC motion vectors, regardless of their supporting block
sizes. Hence, the need for complex motion search algorithm
is completely eliminated. In addition, we present algorithms



to that support field to frame motion vector mapping.
The remainder of this paper is organized as follows. In Sec-

tion II we describe our proposed motion mapping algorithms.
Experimental results are then shown in Section III. Finally,
concluding remarks are provided.

II. MOTION MAPPING

The motion mapping algorithm has to solve the following
three mismatch problems between MPEG-2 motion vectors
and AVC motion vectors: field/frame mismatch, reference
picture mismatch and block size mismatch.

The first type of mismatch is frame/field mismatch. In
MPEG-2 frame picture coding, each macroblock can be coded
with either frame prediction or field prediction. In frame
prediction, a macroblock is predicted from a 16x16 block in
the reference frame positioned by a motion vector. In field
prediction, a macroblock is divided into two 16x8 blocks, one
block belonging to the top field, and the other block belonging
to the bottom field. Each 16x8 block has a field selection
bit that specifies whether the top or the bottom field of the
reference frame is used, and a motion vector that points to
the 16x8 pixel block in the appropriate reference field. On the
other hand, only frame prediction is allowed in H.264/AVC
frame picture coding when MBAFF is disabled. Therefore,
we need to convert incoming MPEG-2 field motion vectors to
frame motion vectors.

Reference picture mismatch arises in cases when a picture
type change is required or the output bitstream utilizes pre-
diction from multiple reference picture in AVC. The change
in picture type would be required when the incoming MPEG-
2 bitstream is coded with B-frames, but the target output is
compliant with the AVC Baseline Profile that does not support
B-frames. Under such circumstances, it is quite likely that the
target motion vector references a different picture from the
motion vectors available from the input MPEG-2 video. The
basic idea for reference picture mapping is to compose the
target motion vector from existing MPEG-2 motion vectors.
We refer the readers to the details of the mapping algorithm to
our previous work [7] as well as [8], and we will not discuss
it in this paper.

The third type of mismatch is block size mismatch. AVC
allows the use of various block sizes for inter prediction,
while there are only motion vectors based on 16x16 blocks
from MPEG-2. This creates the need to map motion vectors
corresponding to a given block size to a much wider range of
block sizes.

Based on the above discussions, we propose a three-step
motion mapping approach that applies to each target AVC
block motion vector. We first convert the incoming MPEG-
2 field motion vectors to frame motion vectors, and then map
them to reference the same picture as the target motion vector.
Finally, we map the resulting motion vectors to the set of target
AVC motion vectors with various supporting block sizes.

After the above process is finished, we perform motion
refinement centered at the mapped motion vector. We first
perform an integer refinement with window of ±1, and then

perform half-pel refinement around the best integer motion
vector and finally quarter-pel refinement around the best half-
pel motion vector.

In what follows, we describe in detail the algorithms for
field-to-frame mapping and block size mapping.

A. Field-to-frame mapping

The following algorithm deal with the case where the
incoming MPEG-2 motion vectors for a macroblock are field
motion vectors. If a field motion vector refers to a field of
the same parity in the reference frame, then it can be directly
used as frame motion vector. If a field motion vector refers to
a field of the opposite parity , then this motion vector has to
be modified as follows.

Without loss of generality, we assume that the top field
comes first in time in the video sequence. Let us examine
the case where the input forward motion vector is for the
top field referencing the bottom reference field. Based on the
assumption that motion is linear over a short period of time,
we can modify the field motion vector to reference the top field
by scaling the input motion vector. Also notice there is a half
pel vertical displacement between top field and bottom field,
as illustrated in Fig. 2, where the temporal distance between
the current frame and the reference frame is one frame. In the
figure, the input vertical field motion is 0.5, and the output
field motion is 2 in field pixel units, and therefore the frame
motion is 4 in frame pixel units. For the case of forward motion
vectors where the top field references the bottom field, the
general formula for field-to-frame mapping is:

MVframe,y =
2 × (MVfield,y + 0.5) × (2 × tp)

(2 × tp − 1)

MVframe,x =
2 × (MVfield,x) × (2 × tp)

(2 × tp − 1)
(1)

where tp is the temporal distance between the current frame
and the reference frame. Following the same process, it is
straightforward to derive formula for field-to-frame mapping
for other cases of field/frame mismatches.

When a macroblock is coded as a field macroblock, it has
two field motion vectors, one for top field, and the other one
for bottom field. Both need to go through the above process.
Then, the two resulting motion vectors are averaged to form
the final mapped frame motion vector.

B. Block size mapping

For target 16x16 motion vectors, the input motion vectors
are directly used. The proposed algorithms apply to target
motion vectors with supporting block sizes smaller than 16x16,
i.e. 16x8, 8x16 and 8x8.

This algorithm has an assumption: the motion vector of
a rectangular block is same as that of its geometric center.
Consequently, the input to the block size mapping becomes the
motion vector of the incoming macroblocks’ geometric center,
and the output becomes the motion vector of the target block’s
geometric center. Note that the assumption of this approach is
more general than translational block motion model typically



Fig. 2. Field to frame motion vector mapping. The existing input motion is
forward motion for top field referencing bottom field. Top field comes first in
the video sequence.

assumed in related works. Even when there are motions like
zoom-in or zoom-out, the motion vector of a rectangular block
can be considered to be approximately same as the motion
vector of its geometric center.

In this algorithm, the output is derived as a weighted
average of the motion vectors of candidate macroblocks. The
candidate macroblocks include the current macroblock and
those immediately adjacent to the current target block. The
weight of an input motion vector is inversely proportional to
the distance between its associated macroblock’s geometric
center to the target block’s geometric center. Therefore, this
algorithm is called Distance Weighted Average (DWA).

In Fig. 3(a), for target macroblock partitions A and B
for inter 16x8 mode, the candidate macroblocks are labelled
with a1 through a6, and with b1 through b6, respectively. A
macroblock has duplicate labels if it is a candidate for deriving
both MV (A) and MV (B). The geometric centers of each
candidate macroblock and target macroblock partitions are also
indicated in the figure. Based on the notations given in the
figures, the target motion vectors for A are computed as:

MV (A) =
∑6

i=1 wi × MV (ai)
∑6

i=1 wi

(2)

where the weight wi is inversely proportional to the distance
between the geometric center of the candidate macroblock ai

and that of target macroblock partition A. In this case, the
values of wi are given as follows:

{wi} = {0.0902, 0.1503, 0.0902, 0.1093, 0.4508, 0.1093}
Similarly the motion vector for macroblock partition B can
be calculated using motion vectors of bi.

Candidate macroblocks are illustrated in Fig. 3(b) and (c)
for inter 8x16 and inter 8x8 modes respectively, and it is
straightforward to perform similar motion vector mapping for
these two cases.

C. Complexity analysis

Each field-to-frame mapping, from (1), needs 1 addition,
2 multiplications and 2 divisions. For the worst case, an

(a)

(b)

(c)

Fig. 3. Deriving motion vectors for various macroblock partitions using
distance weighted average: (a) inter 16x8, (b) inter 8x16, (c) inter 8x8.

incoming B macroblock has 2 forward and 2 backward motion
vectors, and all need field-to-frame mapping, then 4 additions,
8 multiplications, and 8 divisions are needed. For block size
mapping operation, e.g. (2), it is straightforward to use fixed
point algorithm. With such implemenation, for each target
16x8/8x16 motion vector, 8 multiplications, 12 additions and
2 shifts are needed, while for each target 8x8 motion vector, 6
multiplications, 8 additions and 2 shifts are needed. Compared
to even a single block matching operation, the above mapping
operations are much simpler. Therfore, the complexity of the
proposed three step mapping process is dominated by the
refinement step. Consider that the integer refinement only
requires 9 block matching operations for each block size,
and it is much less complex than any full or fast motion
estimation algorithm in the literature. It follows that efficient
sub-pel motion estimation and interpolation algorithms would
be critical to the transcoder design, which will be our future
work.



III. SIMULATION RESULTS

We use two interlaced sequences in the simulations: Har-
bourScene and StreetCar. Both have resolution 1920x1080
with frame rate 30 frames/s, and are 15 seconds (450 frames)
long. They are encoded using the MPEG-2 reference software
[9] at 30Mbps1 and are used as input to the transcoder. The
group of picture (GOP) size for MPEG-2 encoding is N=30
and two B-frames are coded between every consecutive pair
of anchor frames, i.e. M=3.

We simulate two transcoders. In the first transcoder
(“DWA”), I-frames are transcoded to I-pictures, and P and B
frames are transcoded to P-pictures. This effectively simulates
the case in which compliance to the AVC Baseline Profile
is desired. In the second transcoder (“DWA IPB”), P and B
frames are transcoded to P and B frames respectively, i.e.
picture types are kept intact. The QP values are chosen such
that the output bit rate is around 10Mbps, which is the target
bit rate of interest for consumer storage applications.

We compare the performance of the proposed two
transcoders to the reference transcoders: “Reference” and
“Ref IPB”, where the AVC encoder is the JM10.2 reference
software [10] with UVLC coding and RDO disabled. Inter
predictions using block sizes 4x8, 8x4 and 4x4 are disabled
to make fair comparisons. The difference between “Reference”
and “Ref IPB” is that “Ref IPB” keeps the same GOP struc-
ture while “Reference” does not encode B pictures.

The results are shown in Fig. 4. First let us examine “DWA”
and “Reference”, where there is no B picture output. It is
clear from these plots that the proposed mapping algorithms
(DWA) achieves comparable performance to the reference
transcoder in terms of coding efficiency. At 10 Mbps rate
point, the performance loss in terms of PSNR is less than
0.4dB for the case of HarbourScene and about 0.15dB in the
case of StreetCar. Compared to the reference transcoder using
exhaustive search, the complexity saving is around 95% which
is measured using consumed CPU time. The computational
saving is similar for both sequences. Comparing “DWA IPB”
and “Ref IPB” also suggests that the proposed DWA algorithm
is cost-effective, as “DWA IPB” achieves comparable perfor-
mance to “Ref IPB”. The RD performance gap and complexity
saving are similar to the case of “DWA” and “Reference”. It
can also be observed that supporting B pictures improves the
RD performance considerably. The complexity increase cause
by adding B pictures, as measured by consumed CPU time, is
approximately 40%.

IV. CONCLUDING REMARKS

We presented motion mapping algorithms that can effi-
ciently map incoming MPEG-2 motion vectors to outgoing
AVC motion vectors, even when they have different block
size support and different reference pictures. Simulation results
show that our proposed transcoder incorporating the proposed

1The input rate of 30Mbps was chosen since the MPEG-2 reference
software is not an optimized encoder and the quality at 30Mbps was found
to be visually comparable to typical broadcast content.

Fig. 4. Motion mapping performance comparison for HarbourScene and
StreetCar sequences: proposed mapping with DWA and reference transcoder.

algorithms could achieve good rate-distortion performance
with low complexity. Compared with the cascaded decoder-
encoder reference, the RD performance is comparable while
the complexity is significantly reduced. Our preliminary com-
plexity analysis show that two major complexity intensive
operations in our current transcoder are motion refinement and
sub-pel interpolation. We are working on further measures to
reduce the complexity of these components.

REFERENCES

[1] “ISO/IEC 13818-2: Information technology - Generic coding of moving
pictures and associated audio information: Video.” 2000.

[2] “ITU-T Rec. H.264 — ISO/IEC 14496-10: Advanced Video Coding,”
2003.

[3] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding architectures
and techniques: an overview,” IEEE Signal Processing Mag., vol. 20,
no. 2, pp. 18–29, Mar. 2003.

[4] J. Xin, C.-W. Lin, and M.-T. Sun, “Digital video transcoding,” Proc.
IEEE, vol. 93, no. 1, pp. 84–97, Jan. 2005.

[5] Z. Zhou, S. Sun, S. Lei, and M. Sun, “Motion information and coding
mode reuse for MPEG-2 to H.264 transcoding,” in IEEE Int. Symposium
on Circuits and Systems, 2005, pp. 1230–1233.

[6] X. Lu, A. Tourapis, P. Yin, and J. Boyce, “Fast mode decision and mo-
tion estimation for H.264 with a focus on MPEG-2/H.264 transcoding,”
in IEEE Int. Symposium on Circuits and Systems, 2005.

[7] J. Xin, A. Vetro, S. Sekiguchi, and K. Sugimoto, “Motion and mode
mapping for MPEG-2 to H.264/AVC,” in IEEE Int. Conf. Multimedia
& Expo, 2006.

[8] T. Shanableh and M. Ghanbari, “Heterogeneous video transcoding to
lower spatio-temporalresolutions and different encoding formats,” IEEE
Trans. on Multimedia, vol. 2, no. 2, pp. 101–110, 2000.

[9] “MPEG-2 encoder/decoder v1.2,” 1996, by MPEG Software Simulation
Group, available online at http://www.mpeg.org/MPEG/MSSG.

[10] “H.264/AVC reference software JM10.2,” 2006, available online at
http://bs.hhi.de/ suehring/tml/download/.


	Title Page
	Title Page
	page 2


	Motion Mapping for MPEG-2 to H.264/AVC Transcoding
	page 2
	page 3
	page 4


