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Abstract

This paper presents a joint clustering-and-tracking framework to identify time-variant cluster
parameters for geometry-based stochastic MIMO channel models. The method uses a Kalman
filter for tracking and predicting cluster positions, a novel consistent initial guess procedure that
accounts for predicted cluster centroids, and the well-known KPowerMeans algorithm for cluster
identification. We tested the framework by applying it to two different sets of MIMO channel
measurement data, indoor measurements conducted at 2.55 GHz and outdoor measurements at
300 MHz. The results from our joint clustering-and-tracking algorithm provide a good match
with the physical propagation mechanisms observed in the measured scenarios.
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Abstroci— This paper presenis a joind clustering-and-tracking
framework to ideniify time-variani closter parameters for
geometry-Dased stochastic MIMO channel models.

The method uses a habman filter for tracking and predicting
cluster positions, a novel consistent injtial guess procedure that
aceonnts for predicied chuster centroids, and the weil-known
kPowerMeans algorithm for cluster identification.

We fested the framework by applyving it lo two different
sets of MIMO channel measuremeni dala, indoor measuremsenis
conducted at Z.5%5 GHz and ouidoor measurenents at 300 Mz,
The resuits from our joint clastering-and-fracking algorithm
provide a good match with the physical propagation mechanisins
ohserved In the measured scenarios.

I INTRODUCTION

in order 1o validate algorithms that exploit the opporhuruties
offered by MIMO systems, MIMO channel models that are
accurate, vel ractable are in tugh need. A promismg approach
mvolves cluster-based MIMO channel models {11 As a matier
of fact, the majority of standardized MIMO channel models,
ke 3GPP-6CM 2], IBED 802,110 3], COST 239 DCM, and
COST 273 147 are cluster hased.

In measured MIMO channels the multipath components
(MPCs) tend to occur in clusters. Le., groups of MPCs with
similar parameter values such as delay, directions of arrival
(Do) and directions of departure (Dol3) {51, [6], {71 It was
shown in [8], [¥] that channel models disregarding clustering
effects overestimate the chanmnel capacity.

In order to consisterdly parameterize recent cluster-baged
MIMO channel models {101, the clusters mmst be ideidified
and parameterized from measurements. Initially, cluster iden—
tfication was done visually [11], [8], [7], but this procedure
is cumnbersome and tiring for a large amount of measurement
data, for multi-dimensional parametric data i becomes -
possible. Moreover, visual clustering lacks a clear definition
of what I8 a cluster. Thus, aufomatic cluster identification
algorithms for paramelric MIMO chamels were developed
P21 [13] [14] These algorithms were all designed to identify
clusters I Individual time instants, and did not address the
issue of cluster racking over time. Since clusters can be used
to model time-variant scenarios as well, a consistent approach
is required for joint cluster identification-and-racking over
time. A simple chusier tracking algorithm was presented in

L1551, but it did not take joint clustering and fracking into
account. An alternative method is o track individual paths
directly 1 the impulse response [ 16].

In the present work we develop a joint clustering-and-—
tracking framework that nses (i) a2 Kalman filter [17] to track
and predict cluster positions together with (i) 2 new nitial—
guess procedure allowing to include the prediction of the
Kalman filter, and (iii) the KPowerMeans clustering algorithm
using the MCD distance metric [13] to identify clusters.
To test the framework we used two different sefs of time-—
vartart MIMO channel meastrements, one indoor environiment
showing rich scattering, and an outdoor environment showing
few, very distinet propagation paths and many weak scatiered
paths. We found that this framewaork enabled 1o extract the
clhuster characteristics from time-variant MIMO channel mea-
surements consistently.

The paper is organized as follows: Section [T will describe
the problem and introduce the parameters used. In Section [H
we provide a comprehensive description of the joint clustering—
and-racking framework. Results from applying the framework
to the measurement data are preserted I Section IV, Finally,
we conclude the paper in Section V.

L PROBLEM DESCRIPTION

Like in existing clustering applications, the starting point
is 3 large number of measurements with a MIMO channel
sounder. The parameters of the MPCs are estimated from the
measured impulse responses using a gh-resclubion algorithm,
g.g. BAGH, for each snapshot, individually.

In standard clustering, each snapshot iz clustered indepen-—
dently F18], 1131, and the clusters might be tracked afterwards
[14]. The problem 1o solve is how to combine clustering and
tracking in order to improve the clustering performance and
to consiatently track clusters.

We consider NV data windows, » = 1... N, each with a
mumber of LU0 MPCs, where every siugle MPC is represented
[ == 1... L0 and a parameter vector
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where the mean angle is calenlated by averaging angles
over thewr respective complex represerdation.
For tracking, also the centroid speed
ferest. so we  combine the position and
m the cluster Hackiﬁg Pdmmu‘u vector i?“q
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5. The cluster’s joins spread (‘( g . which is the power—
weighted covarlance matrix of the path paramesters
within one cluster & fune . The main diagonal contains
the cluster spreads of the individual divgensions, Le. the
chuster delay spread, the cluster AcA spread and the
cluster Aol spread. The off<diagonal elements desoribe
the correlation between these spreads.

The cluster spread matrix 18 caleulated by
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Note that in this equation, whenever adding or sublract—

ing angles, the resuli must be mapped o the principal
easily by the operation

pvie) = angle{exp (o)) 3)

Based on this cluster data model, we will now wiraduce the
clustering-and-fracking framework.

are identified and tracked i the input data {

3 Py, the Kalman filter updates the cluster

{11, FRAMEWORK

For each time snapshot, the following steps are performed
(see Figure 13

oA Kalman filter [17] both iracks the cluster position
over time, and predicts the cluster position in the next
srapshot.

2. The initial-guess routine provides a trustworthy iritial

guess of the cluster centroids, taking the predicted

cluster centroids into account.

The clustering algorithm identifies clusiers in the mea-—

surement data based on the initial guess.

[

A, Kalman cluster sracking

1} Staie-space model: For the Kalman tracking [17], only
the cluster centroid position &, 18 used. We use the following
state equation

f}gﬂ} - @gi‘”*i‘Jr A

)

where w' denotes the state-noise with covariance matrix Q.
and & is the state<dransition matvix given by

1
1 M

where identity matrices are denoted by 13 with o denoting the
dimension, and @ denoles the Kronecker mairix product.

Since we can observe only the cluster centroids and not
their speed, we use following obsarvation model
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where 2 describes the observed cluster centroid position,
thus H is given by

6

and v denotes the observation noise with covariance matrix
2} Tracking eguaiions: The denvation of the Kalman filter
is straight-forward and leads to following prediction and
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3} Cluster association: A major problem m multi-iarget
tracking 18 how to associate the predicted with the dentified
cluster centroids. Usually, such an association is basad on the
finchidean distance in parameter space. Since we are fracking
clusters that show a certain extent in parameter space, we usg
following probabilitv-based method:

o The distance between a cluster with parameters {fs,, C,)

and a cluster centroid fi is defined by
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Since a swall distance between the two centraids now
corresponds to a large value of this function, we refer to
it as the closeness fincron.

« The closengss function is evalusted between all predicted
and all new cluster centroids in both directions, ie.
between the old and the new centrolds using the old
covariance matrix, and between the new and old cluster
centrowds using the new covariance malrix,

+ For each old cluster we detenuine the closest new cluster
by finding the maximum value of the closeness function,
and vice versa, for each new cluster we determine the
closest old cluster in the same way.

« Whenever these two clusters are closest mutoally, these
two clusters are associaled and being considered as the
fracked cluster.

+ Clusters that were not associated from the old snapshot
stop to exist, clusters that were nol associated from the
new snapshot are considered ag new clusters.

B. Cluster iniial guess
A crucial point in any tterative clustering algorithmn is the
mutial guess of the cluster centroids. Our new method chooses
the ceniroids by maximizing the distances between them. In
the following we will present how to choose the initial-guess
centroids i,
1. Initialization:
¢ No cluster prediction available:
The first centroid f3, 18 chosen as the path having
strongest power.

INote that the principafvalve caleviation rules apply for the angular
dimensions

« Claster Prediction available:
Copy the initial-guess centroids from the predicted
values
2. Caleulate 3 weighted distance between any path and all
(iitial-guess) cendroids using the multipath corponent
digtance (MCD) 1197 by

D ey = Togy o (FEY  MODEMY fe)

This lzads to an © x ¢ distance matrix D for every
snapshot n. Here, the MCE is log-power weighted.
3. From these paths we select the one which has the

arg max [min 13, where argmax!| returns the index of
fhe maximum slement.
4. Reallocate sll paths to thetr closest centroid {as m
the KPowerMeans algorithm) and calculate the cluster
power. Note that, in this case, the power-weighted MCD
is also used but the powers confribute Hnearly.
If the maximum munber of clusters was not reached,
and all centroid powers are larger then 1% of the total
snapshol power, then repeat from Step 2.
Blse discard the last centroid and stop. This algorithm
leads to a trustworthy identification of the number of
clusters.

LA

. Clustering algovithm

We use the KPowsrMeans clustering algorithm presented
in {137 with following modifications: (i) we apply the inifial
gugss as degeribed above, (1) since the initial goess s deter—
ministic, the algorithm is performad only once.

Should the oulcome resull in clusters carrying less than 19%
of the snapshot power, the resull is discarded and the procedure
is restarted with the inftial guess. but reducing the maxumum
mumber of chusters by one. Note that in this algorithm the
existence of singletone clusters is possible, as long as they
show enough power. I this wav we can also account for
strong, far reflections.

[V, REsuors

We applied this joint clustering-and-tracking framework to
two sets of charnmel measurements perforined in to completely
different scenarios.

The frst set of messurenents was conducted in an indoor
scenaric at 2.55 GHz using an Blekirobit Propsound™ €5
MIMO channel sounder, We will present results for a measure—
ment route in a students lab. More details on this measurement
campaign and a foor plan of the scenario is presented in {141
The measured fmpnilse responses were post-processed using
the ISIS high-resolution algorithm [20] to oblain propagation
paths for each spapshot of the channel.

The second set of measwrements were conducied in an
outdoor scenario in the 300 MHz band using the RUSK Lund
MIMO charmel sounder. A description of the measurement
campaign can be found in [21]. The measured impulse re—
sponses were post-processed by a SAGH algortthmo to oblam
propagation paths for each snapshot of the channel.
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We applied our joint clustering-and-tracking framework
to both sets of measurements and found that the algorithm
provides clusters that well-match the time-varying physical
propagation mechanisms observed in the measured scenarios.
Exemplary plots from both measurements are shown in Fig—
ures 2 and 3. The individual plots show the evolution over
time. Propagation paths are marked by dots, their power is
colour coded from red (strong power) to blue (weak power).
Clusters are shown by ellipsoids (capturing 99.9% of the
power of the included paths), where the colour describes the
mean power of the included paths, and the numbers indicate

AoA / rad AoD / rad AoA [ rad

(©)

(a)«{c) show the clusters’ evolution over time

the cluster IDs placed at the cluster centroid.

In the indoor scenario in Figure 2 we observe up to 14
clusters, which can be well tracked over time. Cluster 3
shows strongest power, but many other clusters show rather
high power, too. Cluster 2 is very narrow indicating a strong
reflection with larger delay. When following cluster 14 over
time, one can see that it vanishes slowly. The same holds true
for cluster 15. Also note the movement of both clusters 12
and 13 toward larger AoDs.

The trajectory of the centroid of one exemplary strongly
moving clusters is provided in Figure 4. The cluster is rapidly
moving toward increasing AoD and smaller delay, while it
shows only slow movement in the AoA.

In total, 218 clusters were tracked in 393 snapshots, where
59 clusters existed for just one snapshot and could not be
tracked. A histogram of the (logarithmic) lifetimes of the other
159 clusters is provided in Figure 5. This histogram does not
indicate a good fit to any analytical distribution.

The outdoor scenario in Figure 3 shows few very distinct
small cluster with high powers (clusters 1 and 2) and a large
number of clusters with very low power. The strong clusters
stem from the LOS path and a strong specular reflection,
whereas the weak clusters are due to scattering on trees and
rough surfaces. Also in this scenario the clusters can be tracked
very well.

In this scenario, 169 clusters were tracked in 197 snapshots,
where 132 clusters existed for more than one snapshot. The
histogram in Figure 6 would indicate an exponential distribu—
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tion of the cluster lifetimes.

V. CONCLUSIONS

This paper presented a novel joint clustering-and-tracking
algorithm in order to identify time-variant cluster parameters
for geometry-based stochastic MIMO channel models.

Using a Kalman filter to track the clusters and to predict the
cluster position for the next time instant significantly improves
the ability to track clusters.

For tracking multiple clusters, we introduced a novel
method for cluster association of predicted and identified
clusters. By using the cluster spreads we could improve the
cluster association considerably.

Applying the framework on two highly different types of
MIMO channel measurements led to consistent results. The
combination of tracking and clustering allows to identify the
time-variant properties of clusters coherently.

ACKNOWLEDGEMENTS

We would like to acknowledge Veli-Matti Holappa and
Mikko Alatossava for the help with the indoor measurements.
We thank Elektrobit, Finland for generous support. The au—
thors would also like to thank FOI, the Swedish Defence
Research Agency, for their support in providing the 300 MHz
data, and Gunnar Eriksson for doing the measurements. This
joint work was initiated by a short~Herm scientific mission
within COST 2100 and supported by the Austrian Kplus
program.

(1]

[2

—

[3

[

[4

—

[5]

[6]

[7

—

8

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

P. Almers, E. Bonek, A. Burr, N. Czink, M. Debbah, V. Degli-Esposti,
H. Hofstetter, P. Kyosti, D.Laurenson, G. Matz, A. Molisch, C. Oestges,
and H. Ozcelik, “Survey of channel and radio propagation models for
wireless MIMO systems,” EURASIP Journal on Wireless Communica-
tions and Nefworking, 2007.

“Spatial channel model for Multiple Input Multiple Output (MIMO)
simulations (3GPP TR 25.996), v6.1.0,” Sep. 2003. [Online]. Available:
WWWw.32pp.org

V. Erceg et al., “TGn Channel Models,” IEEE P802.11 Wireless LANS,
Tech. Rep., May 2004, http://fwww.802wirelessworld.com:8802/.

L. Correia, Ed., Mebile Broadband Multimedia Networks. Academic
Press, 2006.

Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst,
“Modeling the statistical time and angle of arrival characteristics of
an indoor multipath channel” IEEE Jouwrnal on Selected Areas in
Communicafions, vol. 18, pp. 347 — 359, March 2000.

C.-C. Chong, C.-M. Tan, D. Laurenson, S. McLaughlin, M. Beach,
and A. Nix, “A new statistical wideband spatiotemporal channel model
for 5-GHz band WLAN systems,” IEEE Journal on Selected Areas in
Communications, vol. 21, no. 2, pp. 139 — 150, Feb. 2003.

M. Toeltsch, J. Laurila, A. F. Molisch, K. Kalliola, P. Vainikainen, and
E. Bonek, “Spatial characterization of urban mobile radio channels”
IEEE JSAC, vol. 20, pp. 539-549, 2002.

K.Li, M. Ingram, and A. Van Nguyen, “Impact of clustering in statistical
indoor propagation models on link capacity,” IEEE Tramnsactions on
Communications, vol. 50, no. 4, pp. 521 — 523, April 2002.

A. F. Molisch, “Effect of far scatterer clusters in MIMO outdoor channel
models,” in Proc. 57th IEEE Vehicular Techn. Conf., 2003, pp. 534-538.
N. Czink, E. Bonek, L. Hentili, J.-. Nuutinen, and J. Ylitalo, “A
measurament-based random-cluster MIMO channel modal” in JEEE
Antfennas and Propagation Sympesiym 2007, Honolulu, USA, June
2007,

K. Yo, Q. Li, D. Cheung, and C. Prettie, “On the tap and cluster angular
spreads of indoor WLAN channels,” in Proceedings of IEEE Vehicular
Technology Conference Spring 2004, Milano, Italy, May 17-19, 2004.
N. Czink, P. Cera, J. Salo, E. Bonek, J.-P. Nuutinen, and J. Ylitalo,
“Automatic clustering of MIMO channel parameters using the multi—
path component distance measure,” in WPMC'05, Aalborg, Denmark,
Sept. 2005.

——, “A framework for automatic clustering of parametric MIMO
channel data including path powers,” in IEEE Vehicular Technology
Conference 2006 Fall, Montreal, Canada, 2006.

N. Czink, E. Bonek, L. Hentild, J.-P. Nuutinen, and J. Ylitalo, “Cluster—
based MIMO channel model parameters extracted from indoor time—
variant measurements.” in JIEEE GlobeCom 2006, San Francisco, USA,
Nov. 2006.

N. Czink, G. D. Galdo, and C. F. Mecklenbriiuker, “A novel cluster
tracking algorithm,” in JIEEE Personal Indoor and Mobile Radie Com-
munications (PIMRC) 20606, September 2006.

I. Salmi, A. Richter, and V. Koivunen, “Enhanced tracking of radio prop—
agation path parameters using state-space modeling,” in I4th European
Signal Processing Conference (EUSIPCO), Florence, Italy, September
2006.

S. M. Kay, Fundamentals of Statistical Signal Processing, Estimation
Theory. Prentice Hall, 1993,

S. Wyne, N. Czink, J. Karedal, P. Almers, F. Tufvesson, and A. F.
Molisch, “A cluster-based analysis of outdoor-to-indoor office MIMO
measurements at 5.2 GHz,” in JEEE VT'C Fall, Montreal, Canada, 2006.
N. Czink, P. Cera, J. Salo, E. Bonek, J-P. Nuutinen, and J. Ylitalo,
“Improving clustering performance by using the multi-path component
distance,” IEE Electronics Letters, vol. 42, no. 1, pp. 4445, Jan. 2006.
B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. L
Pedersen, “Channel parameter estimation in mobile radio environments
using the SAGE algorithm,” IEEE Journal on Selected Areas in Com-
munications, no. 3, pp. 434-450, 17 1999.

G. Eriksson, F. Tufvesson, and A. F. Molisch, “Propagation channel
characteristics for peer+o—peer multiple antenna systems at 300 MHz,”
in IEEE GlobeCom 2006, San Francisco, USA, Nov. 2006,



	Title Page
	Title Page
	page 2


	Tracking Time-Variant Cluster Parameters in MIMO Channel Measurements
	page 2
	page 3
	page 4
	page 5


