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Abstract

We propose a novel post-production facial performance relighting system for human actors.
Our system uses just a dataset of view-dependent facial appearances with a neutral expres-
sion, captured for a static subject using a Light Stage apparatus. For the actual performance,
however, a potentially different actor is captured under known, but static, illumination. Dur-
ing post-production, the reflectance field of the reference dataset actor is transferred onto the
dynamic performance, enabling image-based relighting of the entire sequence. Our approach
makes post-production relighting more practical and could easily be incorporated in a tra-
ditional production pipeline since it does not require additional hardware during principal
photography. Additionally, we show that our system is suitable for real-time post-production
illumination editing.
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Figure 1: From left to right: A reference (source) subject relit wittetdesired target illumination. A frame of the performarteeget) actor captured under uniform illumination.
The quotient image of the reference actor relit using thgeaillumination and the uniform performance illuminatimarped into the pose of the performance actor. The perfooman
actor with the desired shading transferred from relit r&fiece actor using the quotient image.

Abstract

We propose a novel post-production facial performancemgéhg
system for human actors. Our system uses just a datasetvof vie
dependent facial appearances with a neutral expressiptyred
for a static subject using a Light Stage apparatus. For theabhc
performance, however, a potentially different actor istaegd un-
der known, but static, illumination. During post-prodactj the
reflectance field of the reference dataset actor is traesfesnto
the dynamic performance, enabling image-based religttfrige
entire sequence. Our approach makes post-productiorhtialig
more practical and could easily be incorporated in a trawii pro-
duction pipeline since it does not require additional handdur-
ing principal photography. Additionally, we show that oystem
is suitable for real-time post-production illuminationitaty.

Keywords: image-based relighting, reflectance transfer, interac-
tive lighting design.

1 Introduction

A central challenge in film production is for each shot to capt
the best possible performance of the actor at the same tiatét th
features the cinematographer’s best choice of lightingor@ioat-
ing the crafts of acting, directing, and cinematography doieve
the best results from each discipline is both difficult andemsive,
as the frequent interruptions to set up lights and make camer
justments limit the time available to obtain the best pdsgierfor-
mances from the actors. Traditional filmmaking also recua@m-

mitting to particular lighting choices at the time of filminghich
is increasingly troublesome when so many other elements asic
backgrounds and visual effects are created and refinedgdthen
post-production process.

Recent animated films such donster Househave successfully
used performance capture techniques [Williams 1990; Pauios
and Waters 1993] to drive animated 3D characters in a wayteat
serves much of the believability and emotional engagemgtiteo
actors’ performances. In this way, performances are cegtsep-
arately from determining how the characters should be ithated
and (virtually) photographed, which significantly redudkd time
and expense of principal photography. While appropriateafo-
mated films, these techniques do not leverage the real apypear
and reflectance of the actors, and can miss fine-scale penfizen
motion below the spacing of the motion capture markers.

Techniques for post-production performance relightinghsas
[Wenger et al. 2005; Einarsson et al. 2006] have been deselop
for recording live-action performances in a manner thatves|sub-
sequent relighting and photography after the performaasebeen
recorded. To date, these techniques record the actorsrpahce
under rapidly changing basis illumination conditions, gfhallows
an image-based relighting process to be applied in postyotmn.
While the results are realistic, existing techniques negcbmplex,
computer-controlled lighting systems and specializeghtspeed
cameras. These limitations present challenges for cupreaiuc-
tion workflows and prevent application of the techniques ¢o-p
formances shot under static lighting conditions or to agxisting
footage of an actor’s performance.

In this work we present a new technique for realisticallygteiing
performances that uses only standard video of the actorferpe
mance under static illumination. Changes in performaramiha-
tion are computed based on reflectance reference data oftitre a
(or of a different person similar in appearance) photogedpin a
neutral pose under many lighting conditions.

This technique is derived from three key observations vwapect
to lighting faces. First, relighting of an existing imageao$ubject
without saturated or underexposed areas (e.g., ideallglen\iap-
tured under a uniform illumination condition) amounts teideg
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a quotient image [Riklin-Raviv and Shashua 1999], that winei
tiplied by the existing image, produces an image with thérdds
lighting. Second, the underlying geometry and skin prage(e.g.,
subsurface scattering, the specularity of the skin) do iffatrdig-
nificantly between subjects with a similar appearance. Trakes
it possible to seamlessly transfer reflectance (capturepiatient
images) between two similar subjects. Third, we observeiea
can relight a sequence of images by propagating the refleeian
formation through the consecutive frames using dense smore
dences (computed via an optical flow algorithm) between &am

To relight a performance, the reflectance reference infoomas
derived from a static reflectance field of a single individphb-
tographed under all possible lighting and view directiofise per-
formance itself, is recorded under known (ideally unifoiitimi-
nation, potentially with a different, but similar lookinggson. Ini-
tially, we only transfer the reflectance, using quotientges from
the dataset to a limited number of key frames of the perfooman
Subsequently, the reflectance is propagated from the keyefdo
the remainder of the sequence using a bidirectional optioai,
such that temporal coherence is maintained.

Our approach is entirely image-based and does not requirge3D
ometry of the performance or the source reflectance field tddte
nique is straightforward and robust, and typically requiittle or
no user-assistance. Our results model all the major conmp®ne
of skin reflectance and shading including hard and soft shado
specular highlights, and subsurface scattering. Our tqabris es-
pecially well-suited to entertainment applications, vehtire high-
est priority is for the relit sequences to be perceptuallyawing
rather than being radiometrically accurate.

Our main contributions consist of:

e The first complete system for post-production performagee r
lighting thatcompletely decouples performance capture from
lighting design.

e A method for all-frequency, view-dependent reflectancestra
fer from a static reflectance dataset of a source subjectaonto
dynamic performance of a different subject.

e Areal-time relighting preview and design system.

e A user-assisted modification of an optical flow algorithnd an
a new optical flow refinement algorithm.

2 Previous Work

Previous work can be divided into four categories: hardware
systems for post-production relighting, morphable facalefiog
and lighting, modeling faces using quotient images, andsoméagy
skin reflectance.

Post-production Relighting Hardware-systems. The first sys-
tems for measuring reflectance of human faces [Debevec et al.
2000] collected images of a static face from a dense arraglaif-|

ing directions. This allowed them to relight the subjectngsa
linear combination of the original images. These systeme ha
been extended to dynamic performances by acquiring refleeta
fields for a large number of key poses and then blending betwee
the reflectances [Hawkins et al. 2004]. Alternatively, dyiare-
flectance fields have been captured by means of time-mutiygje
using a high-speed camera and light sources [Wenger etGB].20
The main difference between these approaches and ours thélga
are either not suited for capturing dynamic performancesaquire

a sophisticated hardware setup during the performance.shoo

Morphable Face Modeling and Lighting. In morphable face
modeling and lighting, a general face representation ik from

a collection of examples. Pighin et al. [1999] representacemf
expressions for a given subject. Blanz and Vetter [1999]aulse-
ear model to represent changes in 3D geometry and textureodue
identity. This work has been extended to handle identitpres-
sion, and visemes [Vlasic et al. 2005; Blanz et al. 2003],riofeo

to resynthesize video footage. In the context of morphaliddets,
only diffuse reflectance or simple analytic reflectance robtave
been used and these approaches offer limited realism ofethie r
images (e.g., no subsurface scattering).

Modeling Faces using Quotient (Ratio) Images. Marschner
and Greenberg [1997] compute ratios of synthesized imaggsru
two different lighting conditions and modify a photogragken
under the first illumination to generate the photo under ge®sd
illumination. However, Riklin-Raviv and Shashua [1999]re/¢he
first to introduce the notion of a quotient image for imagsdzh
relighting of faces. In particular, they model human face&am-
bertian surfaces and use the fact that the image space ofdrtienb
faces can be modeled using a low-dimensional representdtiey
assume a fixed (frontal) viewpoint and no dense correspaeden
Stoschek [2000] extends this to arbitrary viewpoints agtiting
using image morphing. Liu et al. [2001] capture the illuntioa
change due to one person’s expression and map it to a diffeeen
son using an expression ratio image. Wen et al. [2003] relagies
using a reference sphere (radiance environment map) tolrtiale
skin reflectance. They represent the radiance environmaptus-
ing spherical harmonics. Thus, they are able to rotate gieitig
or change the coefficients of the basis, but in principle doly-
frequency shading can be achieved. These methods, in sbntra
to the presented method, are limited to still images. Funtloee,
we use a data-driven method based on detailed, high rezolgt
flectance fields instead of assuming a simple analyticalateftee
model. Additionally, we introduce a spatial filtering tedure to re-
move artifacts from the obtained quotient images in ordactoeve
movie-quality relit results.

Measuring Skin Reflectance. Marschner et al. [1999] use
image-based measurements of skin reflectance to estimate ho
mogenous reflectance parameters and skin albedo. Sim and
Kanade [2002] use a collection of images of faces underrdifiie
illumination conditions to build a statistical model of fage nor-
mals. Next, they show how to recover surface normals fromglei
image of a face under an unknown light source. They model¢he d
viation from Lambertian reflectance and are able to religbtface
from arbitrary viewpoints. Georghiades [2003] uses a Tarea
Sparrow reflectance model to estimated both shape and eeftect
based on a small number of images from a single viewpoint-to re
light faces. Fuchs et al. [2005] estimate parameters of/tioalpa-
tially varying BRDF models in order to relight faces and transfer
reflectance to other faces. Weyrich et al. [2006] measuia@ya®,

and transfer parameters of spatially varying analBt&SRDFmod-

els for a large collection of people. All these methods aegsikin
reflectance models of static subjects with varying radioimetc-
curacy. In contrast, in this paper we focus on obtaining aligu
pleasing results for video sequences.

3 Acquisition

The acquisition consists of two steps: capturing a reflegtan
dataset of a source subject and recording the target apinfer-
mance. The first step can be treated as a pre-processingT$tep.
second step, recording the actor’s performance, is a sipipleess
that can be performed at any time.

Face Reflectance Dataset.  Our reflectance acquisition system
is similar to the Light Stage systems [Debevec et al. 2000)g&e

et al. 2005], and consists of 16 synchronized cameras antigti0
sources mounted on a geodesic sphere. During reflectanaoe acq
sition, each light is turned on sequentially, while the ceasecap-
ture images. The lighting sequence is repeated for twordifte
exposure settings and the corresponding images are asseimtal

a high dynamic range (HDR) image. A single reflectance datase
contains 2,400 HDR images. Capturing a complete reflectéelde
takes about 20 seconds during which the subject must reradio. s
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Figure 2: Same-subject relighting(a) The reference dataset pose, relit using an environmeipt nfb) The quotient image of the reference dataset posg lihd desired target
illumination, and the uniform performance illuminationamed into the target pose. (c) Transferring reflectancegshe quotient image maintains fine-scale geometricalideta
in the resulting relitimage. (d) Directly warping image (@)l miss these fine-scale geometrical details. For eachgiera (gamma-enhanced) detail of the subject’s left eye iwsho

to better illustrate the fine-scale geometrical expressietails in (c), absent in the relit reference dataset posetient image, and directly warped relit image.

Performance Capture. ~ Capturing the performance of the actor is
relatively straightforward. We use a Basler A-101fc higisalution
camera with a 130&@ 1030 pixel resolution running at 15 frames
per second. Ideally, the performance is captured at 24 sgee
second or higher with a digital motion picture camera. The pr
sented algorithms should work equally well or better at Suaime
rates. For lighting, we use relatively uniform frontal ithination
which ensures that no pixels are oversaturated or undesegpo
Furthermore, this minimizes the relative contribution pésular
reflections from the skin. Our process requires a known itight
environment. This can either be measured using a light fidee
bevec 1998] or from the reflection in the actor’s eyes [Nistand
Nayar 2004]. During the acquisition we capture the actoramif
of a green screen, allowing us to compute an alpha-mattehéor t
performance.

4 Relighting using Reflectance Transfer

Our post-production relighting process consists of a nurobam-

portant steps. We first discuss how to transfer reflectarmre &
reference reflectance field of a subject to a still image ofssindy
different subject captured under known illumination. Nexé de-
scribe how to propagate the reflectance through the entiteesee
without introducing temporal artifacts.

4.1 Reflectance Transfer for a Still Image

The goal of reflectance transfer is to compute a relit imaggeun
some user-defined environmental lightibgf a framet of a per-
formance by an actd8. To achieve this, information from a static
reflectance fieldRa(-) of an actorA is used as input, whose per-
formance is captured under some known uniform illuminatibn
We denote theinknownreflectance field of the performance actor
B and framet as: Rgt(-). The acquired frames are th&g(U),
and the desired relit frames aRg ¢ (L).

Same-subject Reflectance Transfer. We first consider the case

in which both the source and performance actor are the same

(A =B). Itis highly unlikely that the performance actor assumes a
pose/expression in any frarhsimilar to the pose/expression in the

reference reflectance field. Therefore, we compute an irbaged
function that warps the dataset pose to the uniformly litfed:
fi(Ra(U)) = Rat(U). The computation of this warp function is
detailed in Subsection 5.2. We assume that the spatiaicesdbe-
tween arbitrarily lit frames and a relit dataset image cawamped
with sufficient accuracy using the same warp function:

ft(Ra(L)) ~ Rat(L). @

A straightforward solution to transferring the reflectaigeo di-
rectly warp a relit imagéRa(L). Because the large scale geometry
is very similar, the effects of the incident illuminatidnwill be
globally correct onft(Ra(L)). This implies that on a global scale
the occlusions and normals amearly the same. As a result, large
shadows, such as those cast by the nose, and the overaltappea
of highlights will be similar. Locally, however, the effecof small
geometrical details, such as wrinkles caused by the diffee®-
pressions/poses, will introduce localized variances adsig and
occlusion. An example of this effect is shown in Figure 2 vehar
relitimage (Figure 2.a) is warped into the target pose (Feidud).
Apart from obvious errors around the mouth (due to the arear
of teeth), important details conveying the expression assinyg,
such as (lack of) wrinkle detail around the subject’s left.ey

In order to transfer the global reflectance information,levihain-
taining the local details, we take an alternate approachoh¥erve
that occlusions are one of the major contributing factortheodif-
ferences due to small scale geometry, and that the shadiogym+
sponding surface points is similar. This observation igsuied by
the fact that the reflectance of faces has a significant @iftuwsn-
ponent due to subsurface scattering. Finding inspirati@mibient
occlusion we approximate the reflectance fi€d;(-) as the prod-
uct of an ambient occlusion-like terMa (independent of the in-
cident illumination) and the shading informatig; (-) (dependent
on the incident illumination). Note that similar to ambiertclu-
sion, this approximation is not radiometrically correatt provides
a convincing approximation. We can now write:

Rat(L)  Sat(WMar  Sar(L)
Rat(U) ~ Sat(U)Mar  Sar(U)°

)
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This ratio is independent of occlusions and only encodesliael-
ing information. An identical approximation can be made for

Ef;ﬁ‘fﬁ% Since we assumed th8k;(-) ~ ft(Sa(:)), we can com-

bine both equations to:

Rat(L) _ fi(RalL) )
Rat(U) — fi(RaU)

To express the desired relit imagg:(L) in terms of the acquired

Rat(U), we can define the quotient image:

fe(Ra(L))
Using this quotient image, a relit frame can now be approiéaha
by: Rat(L) = Qt(L,U)Rat(U). Our relitimage contains the glob-
ally correct reflectance transferred frdra(L), together with the
local occlusion information fronRa(U). Approximation error is
proportional to how closely similar the expressions andepawe
in the two images. If expression and pose are identical, pooxp
imation error will be made. An example of a quotient image and
reflectance transfer are shown in Figures 2.b and 2.c.

Cross-subject Reflectance Transfer. Transferring reflectance
between two different individualé\ and B produces more pro-
nounced variances in geometry and reflectance then we ebiserv
the same-subject case. Again, we compute a warp functioohwhi
maps subjecA to the pose and expression of subjBdin the tth
frame: f{(Ra(L)) ~ Rg¢(L). This warp function not only matches
pose and expression, but also aligns the large scale gecahé&ta-
tures. The computation of this warp function is detailed ilhSec-
tion 5.2.

In a similar manner to the same-subject case, we can derive a
quotient imageQ:(L,U). However, the assumption th&g:(-) ~
ft(Sa(+)) is now less accurate. The quality of the transfer, will be
greatly dependent on feature similarity between the socamcetar-

get actor in terms of geometry (i.e., normal informatiomd ae-
flectance. However, good results can still be obtained whuth b
subjects are similar in appearance, as evidenced by thepdsam
shown in Figures 1 and 3.

Summary: Relighting using Quotient Images. To compute a
relit frame of a captured performance, we use the followilgg-a
rithm. First, the best matching viewpoint is selected frdma te-
flectance dataset. This can be easily done by comparing #t he
orientation [Jones and Viola 2003] of the target frame aruh ed
the viewpoints in the dataset. Next, given this (fixed vieimpae-
flectance field, two relit images are generated under (1) ¢éseet
target illumination and (2) the illumination in which the rfim-
mance is captured. A quotient image is computed by dividahe
pixel in the target illuminated image by the correspondingeipin
the performance illuminated image. Next, a warp functiocom-
puted between the target frame of the sequence, and thécalgnt
relit reference dataset image. This warp function is sulpsety
used to warp the quotient image to the same pose and expressio
the target frame of the performance. Alternatively, it soabalid to
compute the quotient image on the warped relit source imdges
nally, a relit frame is generated by multiplying the warpemignt
image and the target frame. This process is illustratedgnréi4.

4.2 Reflectance Propagation for an Image Sequence

The previous subsection discussed how to transfer refleefaom

a reflectance reference dataset to a still image, i.e., desfrgme

in the performance sequence. Repeating this procedure/éoy e
frame in the sequence, however, can result in temporal wlisco
nuities in the transferred reflectance. Visually this ttates into a
distracting jittering and waving of shading and shadowser&fore,

we compute quotient images for a select number of key frames,
and use optical flow to propagate the reflectance to non-keyds
through the entire sequence.

APH conference proceedings

Source Subject

Target Subject

Figure 3: Cross-subject reflectance transfeThe reflectance from the top subject is
transferred to the bottom subject. The left column showssttgects relit using an
environment map. The right column shows the subjects rebit épot light.

Propagation.  To propagate the reflectance, we use optical flow
to warp the quotient image at a key frame to the target franue: C
rently, we manually select key frames at 10 to 20 frame itistv

A forward and backward optical flow is computed for in-betwee
frames to the bounding key frames. The optical flow companati
is detailed in Subsection 5.1.

To compute arelitin-between frame, the quotient imagekehext
and previous key frames are computed, and subsequentiedarp
using the forward and backward optical flow to the target ram
pose. Note that the bounding key frame quotient images do not
necessary need to be computed with respect to the same vigwpo
in the reflectance dataset. As a result, the relative coateligys-
tem of the head can change with respect to the incident ilami
tion. Therefore, we rotate the incident illumination in thgposite
direction of the rotation of the head to compensate for thgisit
change of viewpoint in the warp functions. Since the quoiieage
pair will be very similar but not identical, especially if tvdifferent
viewpoints are used, we blend these two quotient imagedy-app
ing blending weights linearly depending on the distancénéokiey
frames. Using the blended quotient images, a relit framesiated.
This process is illustrated in Figure 5.

Cross-bilateral Quotient Filtering. Although the warp function
and optical flow give the most optimal warp function feasilitiés

Target
lllumination

Reflectance

Field Performance

lllumination

Figure 4: An iconic representation of the reflectance transfer althoni.
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Backward Flow

Forward Flow

Ke Target Ke
Frar¥1e Frangne Frar){we
Key Frame Blended . Key Frame

Quotient Target Quotient

Quotient

Backward Flow
Figure 5: An iconic illustration of the reflectance propagation prese

Forward Flow

still possible that some areas are not matched very well. ekor
ample, errors in the optical flow due to drifts, disappeagaacd

appearance of teeth and blinking eyes, and feature diffesehe-
tween the source and target subject will result in an inobnme-

flectance transfer in localized areas. These localizedsanest be
treated specially.

We propose to filter the the quotient images spatially andapaqr-
tion to the error on the warped uniformly relit reflectanc¢adat

the wrinkles on the forehead. Furthermore, the crossedaafilter-
ing allows us to correct for errors in the optical flow, lowegithe
accuracy requirements for the correspondence alignment.

5 Correspondence Estimation

In our system, correspondences need to be estimated in fwo se
arate cases. This is not always trivial because faces doawat h
much texture. First, the optical flow of the performance sdede
estimated with respect to the key frames in order to projeatet
reflectance along the performance. Second, we need to cerfgut
key frame warpings that provide a consistent mapping betwree
source and performance actor for each key frame.

For both correspondence estimations we use an extensidmeof t
powerful optical flow algorithm of Brox et al. [2004]. A keyde
ture of this optical flow algorithm is that the error-functad is not
linearized, but is rather iteratively solved using a nucedrscheme
based on two nested fixed point iterations. Additionallyparse-
to-fine strategy is followed to allow for large scale disglaents.
[Brox et al. 2004] use an atypical ratio offbetween two levels in
the coarse-to-fine refinement rather thengtandard0.5 ratio.

5.1 Optical Flow Computation

image and the target frame of the sequence. The motivation is The algorithm of Brox et al. [2004] is well suited to compufstioal

that pixels with a similar albedo have a similar reflectanaect

flows between individual frames. Occasionally, howeverijffk d

tion, and thus can be used to correct pixels that have an-incor cultframe is encountered for which the algorithm is not ctetely

rect quotient-value. If the error is large, then the qudtiemage
should be smoothed out. However, if the error is small, then t
quotient image is maintained in full detail. Inspired by tress-
bilateral filter [Eisemann and Durand 2004] and the joinateiial
filter [Petschnigg et al. 2004], we introduce a cross-hitdtguo-
tient filter that filters the quotient image based on (1) thalityiof
the warp functions, and on (2) the similarity of pixel albeéddhe
uniformly lit dataset image and the performance frame.

Denote the current frame index byand the key frame index ky.
Furthermore, denote thg" pixel of the quotient image of frante
by Qt p- It p is the intensity op" pixel of thet!" frame, andfi, ¢ (-)
is the optical flow warping function from key franigto a framet.
Then, the filtered propagated quotient image of a fraise

1

Qt.,p = m q;! (GS(p7q)GI(p7q7t07t)Gd(p7q7t07t) ftoﬂt (Qtoq)) :
where:
Gs(p,a) = G(lp—al),
Gi(p7q7t07t) = G(Ilt,p_ ftO"t(lthq)|)7
Ga(p,asto,t) = G(llt,g— fio—t(lto,q)]),

G is a Gaussian weighting function(p) a normalization constant,
and Q a neighborhood aroung. The Gs term is a spatial filter,
ensuring that high frequency details are filtered out. Théerm
ensures that pixels with similar albedo in the target frameia the
warped key frame are weighted more. Finally, thgterm gives
more weight to pixels for which the optical flow is accuratee W
use the following deviationsog = g = 0.01, andos = 40.0|lyp —
fio—t (lto,p) |-

The quotient images corresponding to the key frames arecfilia
a similar manner with respect to the reflectance dataseinéigad
of using the optical flowfy, .t (lt,,q), the warp of the uniformly relit
dataset image is used.

An example of a reflectance transfer from a filtered versuséii u
tered quotient image is shown in Figure 6. Not only does therfil
solve warping problems around the ears, mouth and nossepited
moves small scale geometrical effects that are not orilyipa¢sent
on the target subject. The latter is illustrated by the simogtof

successful. Furthermore, when concatenating individoals] un-
desirable drifts can occur due to sub-pixel errors. To catitese
problems we present two new extentions. First, we introdueay

for the user to steer the algorithm in difficult areas by piow)
additionalhints Second, we present an additional refinement step
that is able to correct partially inaccurate flows.

Filtered

Unfiltered

Figure 6: Reflectance transfer using filtered and unfiltered quotiemhages The
filtering not only removes warping artifacts, but also rem®gmall-scale geometrical
effects not present on the target subject (e.g., the wrinifethe forehead).
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User-assistance.  To steer the optical algorithmhints in the
form of point correspondences are provided. The corresgarel
points can be selected manually, or generated automaticsilhg,
for example, the well-knowtKLT technique [Lucas and Kanade
1981]. To take these hints into account, we add an additiemat
term to the energy functional:

Erints = | (z (p<|xxhi2>w<|whi|2>) &

wherex are image coordinatesy = (u,v) the flow vectors¥(-)

is the robust norm used by [Brox et al. 2004}, is theit" hint
(also a flow vector)xy, is the image coordinate for which hint is
given, andg(-) is a weighting function, monotonically decreasing
as a function of the distance between two image coordinafes.
key observation is that the flow field is locally relatively @oth
around these points, and thus, the neighboring pixels hairaitar
flow vector. This error function will guide the optical flow fiie
around the user provided correspondence points, in thetidineof
the hints.

Refinement of Existing Flows. In a number of cases a flow is
obtained by means other than the optical flow algorithm. Rer i

stance, when computing the flow from a key frame to a frame more

than one time-step apart, it is necessary to concatenatedivél-
ual flows between all consecutive frames, such that thethegul
optical flow is temporally coherent. However, due to smaibes
in the individual flows, undesirable drifts can occur in tleacate-
nated optical flow.

We propose a coarse-to-fine refinement technique based opthe
tical flow algorithm discussed previously. The key idea isgt@in
the accurate portions of the optical flow, and refine justeHtmv
vectors that are inaccurate. At each coarse-to-fine levelyarp a
downsampled source franheusing a downsampled optical flow, to
the target framéx. If the error on both images for a specific pixel
is small, then we force the algorithm to output a similar vecto
achieve this, we introduce an additional error term to thergyn
functional:

EFIow:/p(“k.x*ll.x+w"2)q}(|W*W/|2)dX: (6)

wherep(-) is a weighting function decreasing monotonically from
1 (no error) towards 0 at some maximum error threshold velrid
the user-provided flow vector for pixgl

This error term resembles the previously-introduced hirttreéerm
Eyints in the sense that every vector in the user-provided optical
flow can be seen astant, but now relative weighting dependents
on its accuracy, instead of spatial distance as in Equation 5

5.2 Key Frame Warp Computation

The visual differences between the (relit) source imagepanfbr-
mance key frame can be significant (e.g., different skindabelif-
ferent facial geometry, different pose, etc...) in such @ that the
optical flow assumptions are not completely valid anymoieere-
fore, we first compute an initial homography from a numberas-e
ily detectable points (e.g., corners of the eyes, mouth, &tds ho-
mography is used to warp the source image, and a local histogr
adjustment is applied. Next, the optical flow algorithm is@xted
to further refine the warp.

6 Results

Comparison to Ground Truth. To evaluate our method, we
make a comparison to ground truth relitimages. Althoughgma

is not to create radiometrically correct relit images, ini®resting

to note how well our technique performs. We consider two €ase
the effects of different expressions and poses, and theteftd
cross-subject transfers.

First we study the influence of the expression/pose diffegsrie-
tween the source and target. To do so, we capture two reftactan
fields of a single person, each with a different expressione 6f
the reflectance fields is used to create a quotient imagee whel
other is used to create arelit reference image, and a urifditrrar-
get frame. Figure 7 offers such a comparison. The obtairmdtse
are visually very close to the ground truth images. The Vidifa
ferences are more noticeable in the single light source ddse-
ever, this case is quite difficult, and without a referencagmwith
which to compare, these discrepancies are not easily dotiClee
transfers from a neutral expression provide slightly bettsults
than do transfers from an extreme expression. Finally, peews
lar highlights are globally located at the correct locasicalthough
some detail is missing. This is clearly visible on the forahe

Using a similar approach, we study the effects of a crosgestb
transfer. Such a comparison is shown in Figure 8. The resfilts
the cross-subject reflectance transfer are similar to thengt truth
images. However, the differences are more noticeable thamei
same-subject case. Some of the medium scale features stieh as
forehead ridge are transferred from the source subject. eMexy
the resulting relit images are still quite convincing.

Additional Results. Each column of Figure 10 shows a five
frame sequence of different subjects under various lightiondi-
tions. The first column shows a static frame illuminated bingls
light source moving from the top to the bottom. These franmres a
generated using a same-subject transfer. Note the cohrading
and shadowing of the eye sockets. In the second column & cross
subject transfer is illustrated, relit by an environmenpméa/e used
the same subjects as in Figure 3. The relit results look oo,
and without reference images itis difficult to detectedacts. The
third column also shows a cross-subject transfer. In thie eee
used the same subjects as in Figure 8. Finally, in the lastroo|
we show a same-subject transfer example in which a significan
tation of the head occurs. The quotient images of the pridmeaxt
key frame for this five frame sequence are computed fromreifiie
viewpoints in the reflectance dataset.

To this point, our example target frames were captured uader
formillumination. Figure 9 provides an example in which theget

frame is captured under (low frequency) non-uniform illnation

(i.e., the Uffizi light probe). The obtained results illias that even
in this case our algorithm performs very well.

Real-time Relighting.  An important application of our facial
performance relighting system is cinematic lighting daesig such
an application it is important for the director or lightingtiat to
change the lighting interactively during playback of thefpe
mance. Except for the correspondence estimation, all paxsr
system can be executed in real-time on a GPU. Fortunatelgdi
respondence estimation does not change during religraimdycan
be computed beforehand as a preprocessing step.

The average length of a performance shot in movies is about 4
seconds. Current graphics cards provide sufficient onbaiaeb
memory to load a typical performance sequence, its correipg
optical flows, a single reflectance field, and the key framepwar
ing functions. Computing a relit frame can now be accomplish
by warping the quotient image to the current frame, applyhg
cross-bilateral quotient filter, and multiplying each pixgth this
filtered warped quotientimage. Computing a quotient imagaly
necessary when the illumination or key frame changes, acwhis
putationally the most expensive step. Our real-time systeaile

to playback a sequence with changing incident illuminaéiba res-
olution of 515x 650 at 25- 50 fps (500- 800 fps without changing
illumination) on amVIDIA 8800 GTS with 640MB video memory.

If only one viewpoint of the reflectance field needs to be loade
sequence of approximately 7 seconds at 30 fps can be fit ieto th
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Figure 7: Reflectance transfers between different expressions ofrgls subject.The top row shows reference images computed directly framised reflectance fields (under an
environment map, and under a single light source). The botmw shows the respective transfers of columas 2, and columns 3- 4.

video memory. Not only is it possible to rotate the illumioatin
real-time, but also tpaint new illumination. This would for exam-
ple allow a lighting artist to add light sources and immegliasee
their effect on the sequence.

We refer the reader to the accompanying video, demongjratin
real-time system on a number of different sequences retit wi
same-subject and cross-subject reflectance transfers.

Limitations and Discussion. The presented system is able to
relight facial performances captured using a lightweigttjuasi-
tion process. No special hardware is required when filmiegtr-
formance, and only a reflectance field of a static pose of a&stbj
similar in appearance is required.

less hardware driven acquisition process. Our resulteasxhdio-
metrically accurate compared to those of Wenger et al., ield y
reasonably plausible relit performance sequence. Finaliysys-
tem is currently limited to facial performances, while €yat sim-
ilar to Wenger et al. [2005] can potentially handle full-goslb-
jects [Einarsson et al. 2006]. On the other hand, our systdess
data intensive and illumination can be manipulated in tigaé dur-
ing post-production. The system of Hawkins et al. [2004]nsilsir
to ours. The main difference is that they capture a largeectitin
of expressions, while we use just a single static expressignif-
icantly simplifying acquisition of the reflectance datasgtrther-
more, we do not require that the subject for which the reftexta
dataset is recorded be the same as the performance subject.

Quotient images, as noted in the previous work section have The presented method is a purely image-based techniquedAn a

been used in many applications to relight faces or to trareste
pressions. The presented technique differs in a number -of as
pects. Quotient images were introduced by Riklin-Raviv and
Shashua [1999] for stillimages of faces recorded from a fixed-
point. Stoscheck [2000] extended this to re-render the faca
variable viewpoint. However, both are limited to a still igga and
assume an underlying Lambertian reflectance model. Themtexs
technique differs from these methods in that we do not makash
sumption that the underlying reflectance model is Lamhbertia-
stead of a sparse training set in terms of lighting direstiand
viewpoints, we use a densely captured reflectance field. [Ifzina
Liu et al. [2001] use ratio images to transfer expressiorga/dsen
different faces. However, they consider only fixed lightitinlike
previous methods, ours is not limited to a still image, buhte to
relight whole video sequences.

Although the goal of the system of Wenger et al. [2005] is sim-
ilar, the accuracy, hardware of the setup, and applicatiersiy-
nificantly different. Our system trades off accuracy for asier,

vantage is that the geometry need not be known, so that issdes
sociated with real-time geometry capture are avoided. Wewe
this also introduces some limitations. Effects due to finaitige-
ometrical changes, such as wrinkles, are not completebntako
account. Conversely, since we transfer only reflectance, ne
geometrical details, the artifacts due to these fine detahgetri-
cal changes are less noticeable. Large scale geometricahde
tions, however, can still result in significant changes ghtitrans-
port (e.g., differently shaped shadows, stronger intBecgons).
About 3% of the frames, and about 25% of the key frames redjuire
manually specifying hints to help the optical flow and wagpétgo-
rithm. This took about 15 minutes per sequence, and is iifsignt
compared to the computation time of optical flow.

7 Conclusions and Future Work

We have presented a novel system for image-based postepiaulu
performance relighting. Our system allows decoupling ef pler-
formance capture and lighting design, which can greatlypifyn
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Figure 8: Reflectance transfer between different individual$he top row shows a reference image of each subject. Thenbatiy shows the reflectance transfers from columns

1+ 2, and columns < 4.

the film-making process. The main advantage of our appragch i
that it does not modify the existing production process arhly
relies on a single reflectance dataset of an actor. The diopuisf
the reference datasets need not to occur at any particuley gither
before or after the performance acquisition. This allows tmpo-
tentially capture a database of face reflectance datasetsedect
the best match from this database rather than acquiringeztafice
field from each particular actor. If the reflectance of thefqren-
ing actor is similar to the actor in the reflectance dataset,relit
video more nearly approaches ground truth. However, if thera
differs from the reference dataset subject, our systeirpstitiuces
realistic results that are qualitatively close to groundtr

There are several avenues for future work. First, we cugremty
handle distant illumination; the next step would be to relpie the
effects of general incident light fields. Second, we wouke lio
extend this method to handle complete bodies instead ofguss.
Finally, we would like to give the designer a way to modify the
surface detail that is transferred (e.g., virtual make-up)
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