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Abstract

Cooperation between the nodes of wireless multihop networks can increase communication re-
liability, reduce energy consumption, and decrease latency. The possible improvements are even
greater when nodes perform mutual-information accumulation, e.g., by using rateless codes. In
this paper, we investigate routing problems in such networks. Given a network, a source and
a destination, our objective is to minimize end-to-end transmission delay under a sum energy
constraint. We provide an algorithm that determines which nodes should participate in forward-
ing the message and what resources (time, energy, bandwidth) should be allocated to each. Our
approach factors into two sub-problems, each of which can be solved efficiently. For any node
decoding order we show that solving for the optimum resource allocation can be formulated as a
linear problem. We then show that the decoding order can be improved systematically by swap-
ping nodes based on the solution of the linear program. Solving a sequence of linear program
leads to a locally optimum solution in a very efficient manner. In comparison to the cooperative
routing, it is observed that conventional shortest-path multihop routings incur additional delays
and energy expenditures on the order of 70%. Since this initial solution is centralized, requiring
full channel stat information, we exploit the insights to design two distributed routing algorithms
that require only local channel state information. We provide simulations showing that in the
same networks the distributed algorithms find routes that are only about 2-5% less efficient than
the centralized solution.
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Abstract—Cooperation between the nodes of wireless multi-
hop networks can increase communication reliability, reduce
energy consumption, and decrease latency. The possible improve-
ments are even greater when nodes perform mutual-information
accumulation, e.g., by using rateless codes. In this paper, we
investigate routing problems in such networks. Given a network, a
source and a destination, our objective is to minimize end-to-end
transmission delay under a sum energy constraint. We provide
an algorithm that determines which nodes should participate
in forwarding the message and what resources (time, energy,
bandwidth) should be allocated to each.

Our approach factors into two sub-problems, each of which
can be solved efficiently. For any node decoding order we
show that solving for the optimum resource allocation can be
formulated as a linear problem. We then show that the decoding
order can be improved systematically by swapping nodes based
on the solution of the linear program. Solving a sequence of
linear program leads to a locally optimum solution in a very
efficient manner. In comparison to the cooperative routings, it
is observed that conventional shortest-path multihop routings
incur additional delays and energy expenditures on the order
of 70%. Since this initial solution is centralized, requiring full
channel state information, we exploit the insights to design two
distributed routing algorithms that require only local channel
state information. We provide simulations showing that in the
same networks the distributed algorithms find routes that are
only about 2 − 5% less efficient than the centralized solution. 1

I. INTRODUCTION

Multihop relay networks are one of the most active research
topics in wireless communications. The use of relays enables a
number of performance improvements. Energy efficiency can
be improved since the distances over which each node must
transmit are often reduced significantly. Improved robustness
to fading results from the increased number of possible
transmission paths connecting source and destination. Greater
system reliability to the failure of individual nodes need also
results from the availability of multiple paths, reducing the
probability of loss of session connectivity.

The most basic form of relaying consists of routing in-
formation along a single path. Data packets are passed from
one node to the next in a manner akin to a bucket brigade.
For example, this principle underlies the widely used Zig-
bee standard [1] for low-rate, low-power networking. More
sophisticated approaches that require tighter synchronization
between nodes at the physical and MAC layer can lead to
much larger performance gains. See, e.g., [2]–[6] and the
references therein.

1S. C. Draper is with the University of Wisconsin, Madison, WI,
USA. L. Liu is with Texas A&M University, College Station, TX, USA.
A. F. Molisch and J. S. Yedidia are with Mitsubishi Electric Research Labs
(MERL), Cambridge, MA, USA. A. F. Molisch is also at Lund University,
Sweden. Emails: {draper, lliu, molisch, yedidia}@merl.com. This work was
done while the authors were at MERL.

At a high level multihop relaying can be broken down
into two distinct sub-problems. The first is the design of
physical-layer and MAC techniques for relaying information
from one set of nodes to the next. The second is routing,
i.e., identifying which of the available nodes should participate
in the transmission and what system resources (time, energy,
bandwidth) should be allocated to each. These two sub-
problems are connected. As we see in this paper the physical-
layer technique used strongly impacts the optimum route.

Most of the routing papers in the literature are based on
physical layer techniques that either use virtual beamforming
or energy accumulation. In virtual beamforming the amplitude
and phases of the signals at transmitting nodes are adjusted
to interfere constructively at the receiver [7]–[9]. On the other
hand, energy accumulation is performed at the receiving nodes,
enabled, e.g., through space-time coding or repetition coding
[10]–[12]. A different approach based on mutual-information
accumulation is proposed in [22], [24]. Note that at low signal-
to-noise ratios (SNRs) the energy accumulation is actually
equivalent to mutual-information accumulation. However, as
SNR increases, mutual-information accumulation gives better
results than the either virtual beamforming or energy accu-
mulation. Therefore, mutual-information accumulation is the
physical-layer technique used in this paper; it can be realized
using rateless codes of which Fountain and Raptor codes [17]–
[19] are two prominent examples. To our knowledge, there
has been little prior work investigating routing in networks
consisting of nodes using mutual-information accumulation.
In [22] only a single-relay network is considered. The analysis
of [24] assumes network “flooding”, i.e., all nodes transmit all
the time; this is not an optimum use of energy. In [10], [11] the
authors also formulated the problem in a linear-program under
energy accumulation but the outcomes of the linear-program
is not further explored to improve the selected route. Another
heuristic algorithm for routing with energy accumulation was
proposed in [12]. Ref. [13] derived a heuristic algorithm for
relaying information with hybrid ARQ (automatic repeat re-
quest) with mutual information accumulation, which is related
to, but different from, our setting.

The contributions of the current paper are threefold
• First, we present a mathematical formulation of the rout-

ing problem with mutual-information accumulation under
a system-wide bandwidth constraint (the case of per-node
bandwidth constraints is discussed in [29]). The case of
energy minimization under an end-to-end delay constraint
can be treated in a completely analogous manner.

• Second, under the assumption of centrally available and
complete channel state information (CSI), we detail a
method to iteratively optimize the route based on the



outputs of the linear program which solves for the optimal
resource allocation within the route. By leveraging our
solution to revise the route, the proposed algorithm can
find a “good” route very efficiently.

• Finally, taking inspiration from our centralized solution,
we provide two distributed solutions that require only
local CSI. Simulations show that the resulting solutions
require only less than 5% additional energy for the same
end-to-end delay as the centralized solution.

An outline of the paper is as follows. We present the
system model in Sec. II. The centralized routing and resource
allocation algorithm, and its constituent parts, are developed in
Sec. III. In Sec. IV we describe the two distributed algorithms.
We provide simulations in Sec. V and conclude in Sec. VI.

II. SYSTEM MODEL

We consider a uni-cast network consisting of N + 1 nodes,
out of which L+1 nodes participate in transmission. Without
loss of generality, we label the source as node 0, and the desti-
nation as node L. The network’s objective is to convey a data
packet composed of B bits from source to destination in the
minimum time under sum-energy and bandwidth constraints.2

Intermediary nodes (1, 2, . . . L − 1) are the relays. They may
take an active role in the transmission, or may remain silent
for the duration of communication. Relays either transmit or
receive but cannot do both simultaneously.

All nodes are assumed to use ideal rateless codes. Rateless
codes encode information bits into a potentially infinite-
length codestreams.3 Each transmitter uses an independently
generated rateless code. This design aspect is key to mutual-
information accumulation. If the same rateless code were used
by each transmitter, the receiver would get multiple looks at
each codeword symbol. This is “energy-accumulation”. By
getting looks at different codes (generated from the same
information bits) the receiver accumulates mutual information
rather than energy. The receiver combines receptions from
multiple transmitters. The requirement for decoding is that the
total received mutual information (summing over all transmit-
ting nodes) exceeds B bits [24]. By “ideal” rateless codes we
mean that the codes are assumed to perform at the Shannon
limit and fully exploit all available degrees-of-freedom. The
energy costs of reception and decoding and the non-ideal
nature of real-world rateless codes can be incorporated into
the optimization framework without undue trouble.

The ith node operates at a fixed transmit power spectral
density (PSD) Pi (joules/sec/Hz), uniform across the trans-
mission band. The bandwidth of the transmission band is W .
When multiple nodes are scheduled to transmit simultaneously,
the bandwidth is allocated among them with the bandwidth
assigned node i being denoted Wi.

The propagation channel between each pair of nodes is mod-
eled as frequency-flat and block-fading. The channel power
gain between the ith and the jth nodes is denoted hi,j . Under
these assumptions, and a uniform transmit PSD, the spectral

2Multiple messages can be transmitted in parallel over (quasi-) orthogonal
channels. See the discussion in [25] and [24].

3The use of rateless codes isn’t required by the centralized solution, but is
needed for the distributed solutions presented in Sec. IV.

efficiency of data transmission from node i to node j can be
expressed as

Ci,j =log2

[
1+

hi,jPiWi

N0Wi

]
=log2

[
1+

hi,jPi

N0

]
bits/s/Hz,

(1)
where N0/2 denotes the PSD of the (white) noise process.

Due to the block-fading nature of the channel, our routing
algorithms can be executed for arbitrary channel coefficients.
If the channels are time-varying (fading), the routing can be
done for each channel realization separately.

III. CENTRALIZED ALGORITHM

To find the system parameters (routing and resource al-
locations) that yield the minimum end-to-end delay under
sum-energy and a bandwidth constraints we decompose the
problem into two sub-problems:

1) The first sub-problem is the determination of the subset
of nodes that should participate in relaying the message
and the order in which they should decode. Since a node
cannot start to transmit until it has decoded the message,
the decoding order is equivalent to the order in which
nodes come on-line as available transmitters.

2) The second sub-problem is the determination of the opti-
mal transmission parameters for a given ordering. These
include the timing of each node’s transmissions and the
bandwidth allocated. (Recall that the transmission power
of each node is fixed.)

In Sec. III-A we show that given a particular decoding order
the problem of finding the optimal transmission parameters can
be expressed as a linear program. In Section III-B we show
how to use the solution of the LP to get a new ordering that has
a lower-delay solution. Our final route and resource allocation
algorithm, presented in Sec. III-C, iterates between (a) re
orderings based on the LP solution of the last ordering, and (b)
running a new linear programs based on the new ordering. This
iterative procedure finds a very good (often globally optimal –
as we have verified on small networks) route selection and the
corresponding resource allocations efficiently, even for very
large networks.

A. Optimizing resource allocation for fixed decoding order

Without loss of generality nodes are labeled according to
their (current) decoding order: 0, 1, 2, . . . , L. The objective is
to find the transmission times of the nodes such that a single
message of B bits is transmitted with minimum delay under a
sum energy constraint E =

∑L
i=0 Ei. The time at which node

i decodes the message is denoted Ti with T0 = 0 and the
total source-destination transmission duration TL. Instead of
working with the Ti it turns out to be more useful to work with
the inter-node decoding delays, ∆i, where ∆i = Ti − Ti−1

for 1 ≤ i ≤ L. Message transmission can be thought of as
consisting of L phases. The ith phase is of duration ∆i and
is characterized by the fact that by the end of the phase the
first i nodes have all decoded the message. We refer to each
phase as a “time-slot”. It should be noted that these time-slots
are not of predetermined and equal length, being the result of
the optimization problem stated next.



We now state the objective function of the routing problem
(for a given decoding order) as a linear function of the ∆i.
Our objective is to minimize

L∑
i=1

∆i (2)

subject to: (i) ∆i ≥ 0 for all i, (ii) the sum energy constraint,
(iii) node i must decode by time Ti =

∑i
l=1 ∆l, and (iv) the

constraint on degrees-of-freedom in each transmission phase.
We state constraints (ii)–(iv) in turn.

First, consider the energy constraint. Define Ai,j ≥ 0 to be
the degrees-of-freedom, i.e., the time-bandwidth product (or
“area” in sec · Hz), used by the ith node in the jth time slot
where i ∈ {0, 1, . . . , L − 1} and j ∈ {1, 2, . . . , L}. Note that
Ai,j = 0 for j ≤ i since node i has decoded and therefore
can only transmit (and therefore would be allocated positive
bandwidth) in slots i + 1, . . . , L. The energy constraint is

L−1∑
i=0

L∑
j=1

Ai,jPi =
L−1∑
i=0

L∑
j=i+1

Ai,jPi ≤ E. (3)

We next express each of the L decoding constraints as

k−1∑
i=0

k∑
j=i+1

Ai,jCi,k ≥ B for all k ∈ {1, 2, . . . , L}, (4)

where the kth constraint ensures that the kth node can decode
by Tk =

∑k
i=1 ∆i. To see (4) recall that Ai,j is the degrees-

of-freedom (sec · Hz) allocated to the ith transmitter in the
jth phase of transmission and Ci,k is the spectral efficiency
(bits/sec/Hz) of the channel connecting the ith transmitter to
the kth receiver. The kth node is required (by definition) to
decode by the end of the kth transmission phase. Therefore,
the total mutual information flow to the kth node must exceed
B bits by the end of the kth time slot. Only the first k − 1
nodes can contribute to this sum. The remaining nodes have
not yet decoded so cannot yet transmit.

An important comment regards the constraints (4). Not all
N + 1 nodes in the network must decode, but only a subset
of cardinality L+1. If, for instance, one node (neither source
nor destination) is far from the rest (or masked by a building),
then including its decoding constraint in the set (4) would
increase the solution’s objective (2). As we discuss when we
present the swapping algorithm that improves the decoding
order, nodes can be swapped out of the order. Such nodes are
then no longer treated as part of the network, and the total
number of nodes L + 1 is decreased by one in the next LP.

Finally, we limit the allocations of time-bandwidth area to
the total available in each time slot. We constrain the sum
allocation of Ai,j not to exceed the total available in slot j,

j−1∑
i=0

Ai,j ≤ ∆jW for all j ∈ {1, 2, . . . , L}. (5)

A couple aspects of (5) are valuable to note. First, the specific
time-bandwidth allocation to each user within each transmis-
sion phase is not specified. This is because we model the
fading as block-fading and frequency-flat. Therefore, within
the transmission band, each transmitter is agnostic as to what

is its exact time-bandwidth allocation. Degrees-of-freedom are
treated like a fluid. Only the allocated time-bandwidth product
is important. Our ideal rateless codes are assumed to be able
to use optimally whatever region of the spectrum is allocated
each node for transmission.

We conclude the section by showing that in the special case
Pi = P the solution that minimizes delay also minimizes the
sum energy. The sum energy expended Eused is the left-hand
side of (3). Set Pi = P . Substitute in (5) with j = L. Then
since by definition

∑L
j=1 ∆j = TL we have

Eused =
L−1∑
i=0

L∑
j=1

Ai,jPi ≤
L∑

j=1

∆jWP = TLWP (6)

At the delay-minimizing optimum, the inequality must hold
with equality. If it did not some degrees of freedom A go
unallocated in some time slot. If this is the case TL can be
strictly decreased by moving up all subsequent decoding times
by A/W . Thus TL is proportional to Eused and minimizing
one minimizes the other.

B. Optimizing decoding order

While the LP formulation of Sec. III-A tells us how to
allocate resources given a decoding order, it leaves open the
question of how to determine the best decoding order. In a
network of L + 1 nodes there are

∑L−1
i=0

(L−1)!
(L−1−i)! distinct

decoding orders. Exhaustive search of all orderings quickly
exceeds computational capabilities.

In this section, we introduce a novel algorithms that itera-
tively improves the decoding order by exploiting the charac-
teristics of the LP solution obtained in Section III. While in
general we obtain a local minimum, for small networks (of,
say, 15 nodes, where we can exhaustively search all orders) we
almost always reach the global optimum. In addition, since the
algorithm is very efficient, we can try a number of different
initializations to avoid particularly bad local minima.

An arbitrary decoding order is chosen to initialize the
algorithm.4 Without loss of generality we label the nodes in
the initial decoding order as [0, 1, . . . , L]. Define

x∗ =
[
∆∗

1, . . . ,∆
∗
L, A∗

0,1, A
∗
0,2, . . . A

∗
0,L, A∗

1,2, . . . , A
∗
L−1,L

]
to be the optimum solution obtained by the linear program
for the initial decoding order. Denote the optimum decoding
delay as T ∗

L =
∑L

i=1 ∆∗
i .

Lemma 1. If ∆∗
i = 0, use T ∗∗

L to denote the optimum decod-
ing delay (under the same energy and bandwidth constraints)
of the “swapped” decoding order:

[0, . . . , i − 2, i, i − 1, i + 1, . . . , L] if i ≤ L − 1
[0, . . . , L − 2, L] if i = L

. (7)

Then T ∗∗
L ≤ T ∗

L.

Note that in the case i = L the number of nodes in the order
has decreased from L+1 to L. Node L−1 has been dropped
from the order. This was discussed when we first discussed
the decoding constraints (4) of the linear program.

4A clever initial choice, e.g., the solution of the distributed algorithm of
Sec. IV, can accelerate convergence; see Sec. V.



Case 1: (i = 1) Combine node 1’s decoding constraint (4)
with the total degrees-of-freedom in time slot 1 to get

B

C0,1
≤ A0,1 ≤ ∆∗

1 W. (8)

Eq. (8) demonstrates the intuitive fact that no node can
decode the message before the source. Thus, ∆∗

1 > 0 is true
for any ordering and we need only consider 2 ≤ i ≤ L.

Case 2: (2≤ i≤L−1) We show that x̃, a “swapped” version
of x∗, is a feasible solution for the swapped ordering that has
a decoding delay equal to the optimal decoding delay of the
original ordering. Define

x̃ =
[
∆̃1, . . . , ∆̃L, Ã0,1, Ã0,2, . . . Ã0,L, Ã1,2, . . . , ÃL−1,L

]
,

where

∆̃i = ∆i for all i

Ãk,l = A∗
k,l for all k, j s.t. k �= i − 1, k �= i

Ãi−1,i = 0
Ãi−1,j = A∗

i,j for all j ∈ {i + 1, . . . , L}
Ãi,j = A∗

i−1,j for all j ∈ {i + 1, . . . , L}.
We immediately see

∑L
i=1 ∆̃i =

∑L
i=1 ∆∗

i . We now show that
x̃ satisfies all problem constraints.

First note that the degree-of-freedom allocations Ai,j made
to each node in each time slot are almost all identical in x∗ and
x̃. There are two exceptions. The first, Ai−1,i doesn’t appear
in x̃, but Ai−1,i = 0 since ∆i = 0. The second, Ãi−1,i = 0.

From this we immediately get that the energy, decoding, and
degrees-of-freedom constraints remain satisfied for x̃. First,
since the non-zero degree-of-freedom allocations are identical
for x∗ and x̃, the energy usage remains the same. For the
same reason the decoding ability of nodes 1, . . . , i− 2, nodes
i + 1, . . . , L, and the “old” (pre-swapped) node i − 1 remain
unchanged. The old node i doesn’t benefit from the old node
i − 1’s transmissions any longer since the order is swapped
in x̃. However, because ∆i = 0, Ai−1,i = 0 and it didn’t
accumulated any mutual information in the old order in any
case. Finally, since the positive degree-of-freedom allocations
remain the same, and the time-slot durations ∆̃i remain the
same, the degree-of-freedom constraints all remain satisfied.

Case 3: (i = L) For the same reasoning as in case 2, if
we define the same vector x̃, the decoding delay remains the
same and all constraints remain satisfied. Now, if we drop the
(new) node L from the problem completely (the destination
is the new node L − 1) the reduced solution is still feasible
since none of the other nodes relied on the dropped nodes
transmission. (It was the last in the order). �
C. Algorithm for route & resource allocation optimization

We now state the iterative route optimization algorithm.
(1) Start with an initial decoding order. The order can be
arbitrary, but all nodes are in the order. (2) Use the LP
of Section III to solve for the parameters of the minimum-
delay solution. (3) Based on Lemma 1 adapt the decoding
order to find an ordering whose minimum-delay solution is
upper bounded by the delay of the current solution. (3a) If
∆i = ∆j = 0 for i < j − 1 swap both nodes i and i − 1 and

j and j − 1. If ∆i = ∆i+1 = 0 we swap only i and i − 1.
(3b) If the L − 1th node is swapped with the L node, drop
that node from the order entirely. That is, the new order has
only L−1 nodes in it. (5) Repeat steps (2)–(4) until one finds
an ordering with an associated set of parameters x∗ satisfying
∆∗

i > 0 for all i. At this point the algorithm terminates.
The joint routing-plus-resource-allocation optimization

problem is extremely complicated to solve exactly. Our al-
gorithm finds an approximate solution by iteratively solving
simpler problems. Due to the non-convexity of the optimiza-
tion problem, our algorithm may terminate at a local optimum.
For networks of small size (less than about fifteen nodes)
where we can test all orderings exhaustively, we often find the
global minimum. However, this depends on the shape of the
optimization space. For example, networks can be constructed
that trick the algorithm to descend in a direction that leads to
a local (non-global) optimum. Examples are given in [29].

The number of constraints in the LP is linear in the network
size. The algorithm can thus be applied to very large networks.

In the discussion surrounding (6) we showed that for the
special case Pi = P the minimum energy and minimum
delay transmission schemes are the same. Additionally, when
Pi = P for all i, at the optimum allocations only one node’s
transmitter is broadcasting at any particular time, giving

Lemma 2. Let

x∗ =
[
∆∗

1, . . . ,∆
∗
L, A∗

0,1, . . . , A
∗
0,L, . . . , A∗

L−1,L

]
(9)

be the optimum solution of the LP proposed in Section III. If
∆i > 0 there is a unique j ≤ i − 1 such that Aj,i > 0.

Lemma 2 (see [29] for proof) says that one-node-at-a-
time broadcasting strategy is optimal. Note that the strategy
is still quite different from traditional multi-hop due to the
mutual information accumulation at each node. Because of
the broadcast nature of the wireless medium, until it decodes,
each node is accumulating useful information from all trans-
missions. The decoding process thus has a very long memory.
The memory makes it impossible to solve for the best route
efficiently through, e.g., dynamic programming. In contrast, in
traditional multi-hop each node listens only to its immediate
predecessor. The route generated by our algorithm is also quite
different from that of the multi-hop systems. This is seen in
the examples presented in Section V.

IV. DISTRIBUTED ALGORITHMS

It is often not desirable or possible to require centralized
routing. In centralized solutions all CSI must be aggregated
centrally. The resulting routing information is then dispersed
throughout the system. Limitations on centralized solutions are
particularly constraining in the following circumstances:

• Large networks: Since the number of possible links (and
thus CSI that has to be distributed) increases as (L+1)!,
aggregating the CSI of all links can incur an unacceptable
overhead if L is large.

• Temporally varying networks: Even in small networks
time-slotting and other restrictions can cause the CSI to
be outdated by the time it arrives at the central location.

To address these issues we provide two distributed algorithms
inspired by the characteristics of our centralized solution.



A. Distributed algorithm 1

Our first distributed algorithm commences with a direct
source-to-destination transmission. In an iterative fashion in-
termediate nodes are added to the route.5 Specifically, the
source transmits a sounding signal. All nodes estimate their
channel from the source. The destination replies with a second
sounding signal. Nodes then estimate their channel to the
destination. Given this CSI each node determines the potential
energy savings if they were to join the path according to

B

W

(Ci,L − C0,L)(C0,i − C0,L)
C0,iC0,LCi,L

.

Each node then broadcasts this information to the rest of the
network using a contention multiple access scheme. The node
with the highest energy saving is chosen to participate. In the
next step, the CSI from that node to all other nodes in the
network is determined. Again, all nodes analyze whether they
can save energy by joining the route. The process continues
until no further energy savings are possible.

The algorithm is simple and, as we see in Sec. V, very
effective. It does has one drawback. The initial setup takes a
long time because the algorithm starts with a direct source-to-
destination transmission. If the source-to-destination pathloss
is high, a long sounding signal is required (noise averaging
over a long time results in a good estimate of the channel
strength). Adding nodes progressively shortens the transmis-
sion delay. Once a route is set up, changes (due to changing
channel conditions) can be done efficiently, since the route can
be modified without tearing down and rebuilding from scratch.

B. Distributed algorithm 2

A somewhat simpler algorithm can be implemented as
follows. The destination broadcasts a sounding signal and all
nodes estimate their channels to the destination. They broad-
cast this information to all other nodes. The source then starts
to transmit the information packet. The first node that can
decode and has a better channel to the destination takes over
and the source node turns off. New nodes continue to replace
previous nodes until the message reaches the destination.

V. SIMULATION RESULTS

We now present simulation results for energy consumption
and delay. We compare the performances of the centralized
and distributed solutions. We set B = 28.9 (i.e., 20 nats),
N0/2 = 1, W = 1, P = 1 (where Pi = P for all i), so that
delay and energy have the same numerical value. In order to
give a strong sense of the relationship between geometry and
channel strength, we present the case where the channel gain
hi,j between node i and node j is related to the distance di,j

between them as hi,j = (di,j)−2.
Consider the two-dimensional wireless network depicted in

Fig. 1. The network consists of fifty nodes. The source node 0
is located at [0.2, 0.2] and the destination node 49 is located at
[0.8, 0.8]. The remaining nodes are placed randomly according
to a uniform distribution in the unit square. For this example
we find that the optimum decoding order of the subset of nodes
that also transmit is [0, 16, 33, 9, 47, 14, 43, 22, 38, 49] and the

5In principle the algorithm is somewhat similar to the PAR algorithm [26].

Fig. 1. Location of nodes in the fifty node network. Route for mutual-
information accumulation (solid) and shortest-path route (dashed).

destination decodes after 13.09 seconds. Due to the fact that
channel gain is inversely proportional to the distance squared,
the nodes that are active in the minimum delay (and therefore
minimum energy) solution are those that lie closest to the
direct source-to-destination path. As is shown in Lemma 2
only one node is transmitting at any specific time. That is,
the source node 0 transmits until node 16 decodes. Then the
source node turns off and node 16 keep transmits until node
9 decodes, and so on, until the destination decodes. For the
same source and destination locations we generated another
499 independently generated placements of the other 48 nodes.
The mean delay across all 500 simulations is 12.54 seconds.

We now compare these results to a non-cooperative multi-
hop routing example. In the non-cooperative case, the delay
accrued by the hop from node i to node j is B/W Ci,j =
B/W log2 [1 + hi,jP/N0]. The optimum path is the shortest
path through the network which can be computed with Di-
jkstra’s algorithm [28]. For the node placements in Fig. 1
the shortest path is [0, 9, 49] while the source-to-destination
delay is 21.47 seconds.6 Interestingly, the set of nodes that
transmit in the shortest path problem is a proper subset of
those that transmit in the cooperative protocol. Furthermore,
the only relay node participating in the optimal (shortest-
path) route is the one closest to the direct path connecting
source to destination. Over the 500 simulated placements the
average source-to-destination delay for multihop was 21.52
seconds. On average conventional non-cooperative multihop
transmission incurs additional delay and energy usage on the
order of 70 % as compared to cooperative transmission.

Finally, in Fig. 2 we compare the delay distribution of the
four algorithms: the centralized router, shortest path, and the
two distributed algorithms of Sec. IV. We plot the cumulative
distribution function of the delay incurred by each algorithm

6If we use information-accumulating nodes in conjunction with the route
obtained from Dijkstra’s algorithm (instead of our optimum route), then the
delay is 16.51. Thus, to a very rough approximation, the advantages of our
scheme are half due to the use of mutual-information accumulation, and half
due to the routing that is optimized for these types of nodes.
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Fig. 2. Cumulative distribution of excess delay of distributed solutions as
compared to centralized algorithm.

(under the same BW constraint) as calculated over the 500
placements discussed above. The figure demonstrates that
the penalty for using the distributed algorithms in terms of
delay (or, equivalently, energy) is small, while the penalty
for not using mutual information accumulation is large. On
average the first distributed algorithm incurs less than 2.5%
excess delay as compared to the centralized solution. The
excess delay of the second is less than 4.2%. The distributed
algorithms therefore relax the need for centralized CSI at the
cost of modest increases in delay. Further simulation results
and comparisons with other transmission strategies, omitted
here for space reasons, are presented in [29].

VI. SUMMARY AND CONCLUSIONS

We consider the problem of routing in cooperative relay net-
works that use mutual-information accumulation. Our model
assumes ideal codes, fixed per-node transmit PSD, and a
system-wide bandwidth constraint. We split the problem into
one of finding the best decoding order and one of finding the
best resource allocation given a decoding order. Our solution
is based on solving a sequence of LPs. It is computationally
efficient and can be applied to large networks. Under equal
per-node PSDs, we show that the minimum-delay solution also
minimizes energy consumption. Further, this solution yields a
schedule that calls for only a single node to transmit at any
specific time. All the same, the scheme is markedly different
from conventional shortest-path routing. The delay (and energy
usage) of the latter is about 70 % higher in typical examples.
We also present distributed algorithms that retain most of these
performance gains without requiring centralized CSI.

The approach presented in this paper is a step towards
practically realizing cooperative communications in large net-
works. Future work will focus on algorithms that are suitable
for imperfect CSI and the impact of code and hardware
non-idealities. We note that in the case where bandwidth is
constrained on a per-node basis (e.g., when each node can
only transmit on a fixed channel) rather than on a system-
wide basis, the solution differs in a number of important ways,

including a trade-off between energy consumption and delay.
Details are reported in [29].
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