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Abstract

In an Ultra-wide band (UWB) sensor network signal reflections from objects can be used to ac-
curately determine the location. UWB signals are preferred in these types of sensor networks
since they provide a very good resolution due to their fine time granularity. We propose an arti-
ficial neural network based localization to detect single object in a sensor network and compare
its performance to Cramer-Rao bound and least squares estimator. Then we propose a two phase
algorithm for multiple object detection and evaluate the algorithm for the case when there are
two objects in a sensor network with three nodes.
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Abstract—In an Ultra-wide band (UWB) sensor network signal  perfect fit for wireless position location since they areeatol
reflections from objects can be used to accurately determine the resolve multipath components which provide accurate iooat
location. UWB signals are preferred in these types of sensor eqtimates without the need for complex estimation algorith
networks since they provide a very good resolution due to their .
fine time granularity. We propose an artificial neural network UWB sensor networ.k p.rowdes a str.qcture Where low to
based localization algorithm to detect single object in a sensor medium rate communication and position location can be
network and compare its performance to Cramer-Rao bound and performed simultaneously. UWB technology not only faciéta
least squares estimator. Then we propose a two phase algorithm centimeter accuracy in ranging but also make low power and

for multiple object detection and evaluate the algorithm for the 4 cost implementation of communication systems possible
case when there are two objects in a sensor network with three

nodes. [71. . L
IEEE introduced a new standardization group 802.15.4a

|. INTRODUCTION for low data rate communications combined with positioning
Localization and tracking have been the focus of both tle@pabilities which employs UWB technology as its physical
industry applications and academic research. There are tager.
main approaches: active (e.g. [6], [7], [8], [9]) and passiv Our contributions in this study are: We first define a frame-
ranging (e.g. [1], [2], [3], [4], [5]). work for passive localization in 802.15.4a sensor networks
In the active approach, tags are attached to objects to Heen we introduce a neural network based algorithm (NNBA)
tracked. These tags communicate with the nodes in the sertediocate a single object with the known sensor node position
network. Sensor nodes thus estimate the distances betheenrhe main obstacle in locating multiple objects is to identif
objects and the nodes which are used to locate the objects mialtipaths between different sensor nodes that correspmnd
triangularization. different objects. We devise a two-step algorithm whichsuse
In the passive approach, objects do not wear tags aN8lBAs as building blocks to overcome this problem. Finally,
hence they are not collaborating with the positioning pssce we present performance results for locating two objects in a
When the nodes communicate with each other, the preseBeerode sensor network using this algorithm.
of the object causes disturbances in the received signgls. BWe only consider the cases where the objects are relatively
analyzing these disturbances the location of the objectbeancloser to the nodes, which enables us to work in a high
estimated. SNR regime. Although we focus on two-dimensional sensor
Active tags are used in a new range of applicationagtwork, it is straightforward to extend the algorithmshuoete-
including logistics (package tracking), security apgiicas dimensional space.
(localizing authorized persons in high-security areagdical
applications (monitoring of patients), family communioat/ ll. A FRAMEWORK FOR DETECTING PASSIVE TARGETS
supervision of children, search and rescue (communication The IEEE 802.15.4a packet consists of a synchronization
with fire fighters, or avalanche/earthquake victims), canaf  header (SHR) preamble, a physical layer header (PHR) and
home appliances, and military applications [7] a data field. The SHR preamble is composed of the ranging
The systems built based on passive approach, on the otheramble and the start of frame delimiter (SFD).
hand, have great potential for perimeter security and $idru ~ The ranging preamble can consist §16,64,1024,4096
detection and they can be deployed around buildings or at thembols. The longer length§1024, 4096 are preferred for
borders between countries. non-coherent receivers to help them improve the signal to
In this paper, we are considering the passive approach amase ratio (SNR) via processing gain. Hence, they can have a
proposing a neural network based algorithm to locate objedtetter time-of-arrival estimate. The underlying symbolttoé
in an UWB sensor network. ranging preamble uses one of the length-31 ternary segsience
UWB is preferred in passive approach applications sincg, in Table |. EachS; of length L = 31 contains 15 zeros
it provides high resolution in time domain. UWB signals arand 16 non-zero codes, and has the much desired property of
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Fig. 2. Using the multipath distance target object is locaiadan ellipse
for each sensor pair. Target object is positioned at thesattion of all these

ellipses.

perfect periodic autocorrelation. In other words, the datees

at the periodic correlation output become zero; and what is
observed at the receiver between two consecutive cowoglati
peaks is only the power delay profile of the channel. Thus,
the channel profile estimation does not get deterioratechigy a
side-lobe.

TABLE |
THE BASIS PREAMBLE SYMBOL SET

Index Symbol

S1 -1000010-1011101-10001-111100-110-100
Sa 0101-10101000-1110-11-1-1-10010011000
S3 -11011000-11-11100110100-10000-1010-1
Sy 00001-100-100-1111101-1100010-10110-1
S5 -101-100111-11000-1101110-1010000-00

Se 1100100-1-1-11-1011-10001010-11010000
S 100001-101010010001011-1-1-10-1100-11
Ss 0100-10-10110000-1-1100-11011-1110100

Assume thaw is the transmitted UWB pulse waveform with
unit energy,7,,, denotes the symbol duratioiN,,,, is the
number of symbol repetition within the preamblg,,; is the
pulse repetition intervallV, is the total number of pulses per
symbol andE; denotes the symbol energy. Then, using any
basis symbolS;, the preamble symbol waveformn;(t) and
the preamble waveforn®;(¢) can be written as

\f ) @

sym

Z N[nJw; (t — nTym ) )
n=0
whereN = [11...1]1xn,,,, -
A coherent receiver correlates the received waveform
Yi(t) = Pi(t) @ h(t) with a template matched to;(¢). Then,
assuming an AWGN channel the correlator out@utk) is

(k+1)T
cw=Y [ mosnn @
k=0 " KTs

wheren(t) is the AWGN noise. Differences i; between
two observations are indicative of changes in channel profil

As seen in Figure 1-a, the multipath profile is recorded
when two sensor nodes are communicating with each other
in the absence of any external object. When an object arrives,
multipath profile alters due to receiving reflections frone th
object (see Figure 1-b). By estimating the time differente o
arrival (TDOA), At, between the direct path and reflecting
path, the multipath distancé, can be computed at the sensor
node Sy as:

d:|Sl—SQ|+CXAt

where c is the speed of light ari and S, are the locations
of the sensors. Sincé gives the sum of the distances from
two sensor nodes whose locations are fixg¢dcan locate the
object on an ellipse (Figure 1-b). We need at least threeosens
pairs since the intersection of three or more ellipses weijqu
identify the object location as it can be see in Figure 2.



Mean square error (MSE) is used to determine the com-
pliance between the predicted output and computed network
output. The exit criterion for the supervised learning is@e

S = the value of MSE (e.g. when MSE is below 0.001).

§ ‘8 After successful termination of the learning process, the

5 > classification performance is determined by applying tesh d

§ 2 to the neural network. If the performance values meet the

3 desired criteria at the end of the test, the structure of ueai
network is completed and it is ready to classify any external
data.
Input Layer Hidden Layer Ouput Layer Output

V. SINGLE OBJECTDETECTION

Fig. 3. Feed forward back propagation neural network achire Using time difference of arrival (TDOA) between the direct

path and a reflecting path, the distance traversed by the

multipath can be estimated. The multipath distance and the

th Note that we dg not _nee(;j t(.) tra;smﬂ spzqal s??hals bs:twqgﬂations of the 2 sensors constitute an ellipse. We need at
ese sensor node pairs auring the recording of the muitipg o three sensor pairs to figure out the location of thestarg

profile, the preamble can _simply bg used for this pur.poseaNh bject at the intersection of these ellipses. Assume tragth
these nodes are communicating with each other. This wag th FgN nodes and a single object in the sensor network, and let

is no need fo_r a secondary chan_nel to transmit the recor 0. 4.s) denote the mid point between thieh sensor pair,
multipath profile to a data processing center, the same mietw:

. en
can be used for this purpose.
(e —wa)?  y=ya)® _ |
1. SIMULATION SETUP a? b? B
In all simulations1 x 1 unit grid is considered. Sensors (€ —ze2)” | (Y—we2)” _
are placed on a circle uniformly. For the sake of simplicity a3 b2
the shape of the objects and sensors are ignored and modeled
as a point on the grid. Location of the objects are randomly (oo mn) (g gon)? :
generated. =1

In this study, we only consider high SNR regimes where ay; b%

estimation errors can be modeled as white Gaussian [}hereq; andb, are the major and minor axes of the ellipse.
[2]. White Gaussian assumption holds when the errors &fare are different techniques to solve this set of noraline
assumed to be due to thermal noise only. However, in realfyyations. Least squares estimator is one approach. In this

there are other _sources_of errors, such. as clock_ d”ft”’tﬁaper we propose to use artificial neural networks.
processor latencies, and interferences which may viot#e t \yiu assume that the locations of the sensors are known

Whit? Gaussian assumption. We ignore all those types 0|cs"arr%priori. In the training phase, a set of random points on tite g
in this paper. are generated. Total distance from a transmitter sensa twod
the target object and from the target object to a receiveenod
is computed as:

Neural networks (NN) are a non-algorithmic methods,
which use parallel computing technique. They imitate fun€s = V(= — i1)? + (y — yi)?)+V/ (& — 2i2)? + (y — yi2)?)+e
tioning of the brain. Even though inter-neuron communaati . . . , .
speed is quite slow for the brain, parallel processing ailo%\’:here d; is the multipath distance between theh pair,

IV. NEURAL NETWORK MODEL

it to analyze very complicated data in a short period of tim z,y) i the location of the Objecm““.yik)’ _k - 1.’2’ is
Neural networks learn directly from current examples rath € coorgmgte of th$'th sensor node in thé-th pair, and
than programming [10]. € N(0,0 ).|s the yvhlte Gaussian error. .
Feed forward neural networks with multiple hidden layer; The multipath d|_stances compu_ted as above are then fed into
have been widely used and showed to operate successftﬁly& NN. The locations of the objects, ix,y), are used as

Figure 3). Multi Layer Perceptron (MLP) learning algoritfisn e output to be matched by the NN as it is trained. During the

-O\ﬁerification phase, another set of random points are used in a

algorithm and it computes the error at the output of th%milar fashion to evaluate the performance of the network.

network and sets weights of neurons iteratively. This dipana .

is spread out on all layers and the error in the output @ Smulation Results

reduced. Deviations between the real and the predicte@valu Figure 4 shows the performance of the NN with increasing
are computed to evaluate the learning success of the netwarkmber of sensors when the error variance is fixed, namely
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‘ ‘ ‘ 2) Least squares estimator: In [3], a two-step least squares

0 0.005 oot o015 002 0025 estimator is proposed. First, using the multipath distance
piece-wise distances between the sensors and the object are

estimated via least squares technique. Then using these es-

Fig. 4. CDF of error with increasing number of sensors timates, the target object is located via triangulationeyrh
showed that the variance of this technique is:
o? = 0.01. The error between the actual locatigw, y) and olg = ﬁ
the estimated locatior{iz, j) of the object is defined as 3N?
_ _ 3) Comparison: Figure 5 compares the MSE of the NN
e=V(z— @)+ (y—9)? estimator with the Cramer-Rao bound and the least squares

Cumulative distribution function (CDF) shifts to the rightestimator as described above when the number of sensor
and hence mean squared error (MSE) gets smaller, as figgworks are 3,4,5, and 6. The NN performance is comparable
number of sensors are increased. Note that the transmitrpowéh the least squares estimator. As more sensor nodesege us
of each sensor is limited, which is regulated by Federtile performance approaches to the Cramer-Rao bound.
Communications Commission (FCC) in the US. However, the
total power transmitted by the sensor network is not limited ] i ] ]
Therefore, one can benefit using more sensors to increase the'acking multiple objects in a sensor network becomes
accuracy of the estimates. Also the more sensors are thgffiicult since for each sensor pair it is hard to distinguish
in the network, the more robust the network will become b hich multipath distance belongs to which object. In order

VI. MULTIPLE OBJECTDETECTION

tolerating individual sensor failures. o locate _objects, one of _the multipath distances from each
] ) sensor pairs are grouped into a set. Dedenote the number
B. Evaluating the performance of NN algorithm of sensors in the network and denote the number of objects

N(N—1)

In this section we will compare the performance of our NN . otected. Then each set will cont ig _
: - 2

based algorithm with Cramer-Rao bound and a least squares
based algorithm introduced in [3], [1]. Cramer-Rao boundiements and therefore there will B = L™+ different
gives a lower bound on the standard deviation of the estimaticombination of sets to choose from.

error, which can be used as a benchmark. Furthermore, these sets can be grouped such that all mul-
1) Cramer-Rao Bound: In [3], Cramer-Rao bound on thetipath distance measurements are used. Each such group uses
position estimation from multipaths is shown to be a distinct measurement from each of thé%—) sensor pairs
o2 and hence each group contains exadtlgets since there are
Viz) =V(y) ~ L objects. Therefore there are
where V(z) and V(y) are the bounds on the estimations J Rt =

N(N—1)
77— "1

of x and y coordinates, respectively an is the number 7 =

of trgrjscelvers, which are gapable of bOth_ transmitting ar:]s%ch groups. Only one of these groups corresponds to thie righ
receiving. Then the total variance becomes:

group of sets.
Vi) + V(y) ~ QLQ As it can be seen in Figure 6, the overall detection algorithm
N2 is composed of two steps. In the first step, a set of multipath
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dyr_| oc A. An example: Detecting two objects
UM In this section, as an example for multiple target detegtion
we will consider the case when there are two objects in a
Fig. 6. Two phase detector sensor network with three nodes, i&.= 3, L = 2. At the

end of this section we will discuss the simulation results.
All possible input combination sets are:

measurements are fed as the input and a possible target loca- S = {di1,da,ds}
tion is estimated with a cost associated with it. Apriori ¥umo Sy = {di1,d2,ds2}
sensor locations are internally used in the cost computatio Ss = {di1,d22,d31}

In the second step, the cost metrics for each set in the group Sy = {d11,do2,dsa}
are added together to form the group metric and the group with S5 = {di2,do1,ds1}
the lowest cost is selected. Se = {di2,d21,ds2}

The block used in the first step (see Figure 7) uses the Sy = {di2,daa,ds1}
NNBA that is trained for estimating the single object looati Ss = {di2,ds2,d32}

given multipath distances from each sensor pairs as desbrigvhere d;; is the j-th multipath distance measured by the

in Section V. The estimation?; = (;,7;), in conjunction ; w, sensor pair. Then the groups with complimentary sets
with the apriori known sensor locations are used to estimal& .o mes:

the multipath distances: G1 = {51,Ss}
s ~ ~ Gy = {S2,57}
di,0, = |Sk1 — Bi| + | P — Sk2] Gy = {S3,86)
whered, o, is the estimated multipath distance afig} is the Gy = {555}

location of thej-th sensor nodej = 1,2, of the k-th sensor Finally, the group with the minimum cost is selected.

pair. Hereay, € (1,2, ..., L) indicates one of thé. multipath The CDF of the error between each the actual and the

distance measurements for this sensor pair. estimated location of the objects is plotted in Figure 8. As
Then, the difference between the estimated and measuitechn be seen from CDF in the same figure 1 target detection

multipath distances are squared and added to compute the stightly performs better than 2 detection system as expecte

metric, C;. This is mainly due to false selection of the final group, e t
N . 2 group with minimum cost differs from the actual one. In the
Ci = Z (d’f@f» - dkm) simulations this error was around 3.9%. Note that even when
=1 the wrong group was chosen, the estimated locations ate stil
Group metric is then computed by adding the cost of individualose to the actual targets, therefore the estimation ésror
sets in that group not adversely affected and hence is still comparable tdesing
I target case.
GCj =Y C,,,, wherej=1,2,... LN VIl. RELATED WORK
k=1 [1], [2], [3] study the Cramer-Rao bounds of passive local-

whereg; . is the k-th cost index that belongs to the groip izations in an UWB sensor network for the asymptotic case



1 object
2 objects

0.9

0.7

errors will reduce since the location estimates are smdothe
For instance, a Kalman-Bucy filter similar to the one proplose
in [11] can be used to filter out high variations in successive
estimations.

We only considered the high SNR regime. We would like to
create models for low SNR cases and evaluate the performance
of our neural network based algorithms with this model.
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(7]
with increasing number of sensors. They consider the cases
where both the locations of the sensor networks are knowpj
apriori and unknown. They propose a semi-linear algorithntfl
that uses least squares estimator for single target dmﬁect[ilo
and compared the performance of their algorithm to Cramer-
Rao bounds. For multiple target detection they propose a
heuristic centralized algorithm since they claim exhaasti [11
search require¢L!)VM—1 jterations, wherel, is the number
of objects, N and M are the number of transmitters and
receivers, respectively. However we show that there arg onl
LNWN=1)/2 different combinations to choose from, which is
much smaller than the above figure wh&h—= N. No error
performance for the multiple target detection algorithm is
provided and therefore we could not compare our algorithm
with this research.

[4], [5] experimentally compare the performance of active
and passive detection algorithms and discuss the pros arsd co
of both techniques. Pulse positions are estimated by mefans o
a high-resolution maximum likelihood estimator.

VIII. CONCLUSION AND FUTURE WORK

We discussed a framework to detect external object in an
UWB sensor network and showed that neural networks can be
used to detect single objects in such a network. We compared
the performance of our algorithm with Cramer-Rao bound
and least squares estimator. Then we proposed a two step
algorithm to detect multiple objects. We simulated the case
for two objects in a 3-node sensor network and showed that
the performance is as good as detecting a single object in the
same network.

In addition, we will consider mobility of the objects in
our future work. Note that adding the mobility in the system
models provides extra information and therefore estimatio

REFERENCES

Chang, C. and Sahai, A., “Object tracking in a 2D UWB senset-
work,” in Conference Record of the Thirty-Eighth Asilomar Conference
on Sgnals, Systems and Computers, 2004.

Chang, C. and Sahai, A., “Cramer-Rao-Type Bounds for lipagon,”
in EURASIP Journal on Applied Sgnal Processing, vol 2006, pages
1-13, 2006.

Chang, “Localization and Object Tracking in an UWB Senisetwork,”
Master Thesis

R. Zefk, J. Sachs, P.Peyerl “UWB Radar: Distance and Positioning-M
surements,” International Conference on Electromagnatidsdivanced
Applications, Torino, Italy, Sept 2003

R. Zetik, J. Sachs, R. Thoma “UWB Localization - Active anasBive
Approach,” Implementation and Measurement Technology Centar
(IMTC), ltaly, May 2004.

A. Catovic, Z. Sahinoglu, “The Cramer—Rao Bounds of Hglbri
TOA/RSS and TDOA/RSS Location Estimation Schemes,” IEEE COM-
MUNICATIONS LETTERS, VOL. 8, NO. 10, Oct 2004

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. ldoh, H.
V. Poor, and Z. Sahinoglu, “Localization via Ultra-WidelbbRadios,”
IEEE Signal Processing Magazine, July 2005

The Cricket Indoor Location System, http://cricketitsait.edu

G. Opshaug, P. Enge, “GPS and UWB for Indoor NavigationPS5
Conference, Salt Lake City, USA, Sep 2001

N. Hardalac, N. Ercan, F. Hardalac, S. Ergut, “Clasatfan of Ed-
ucational Backgrounds of Students Using Musical Inteficee and
Perception with the Help of Artificial Neural Networks,” Frigers in
Education Conference, 36th Annual, Oct. 2006

] S. Gezici, H. Kobayashi, H. V. Poor, “A New Approach to bie

Position Tracking,” IEEE Sarnoff Symposium, Princeton, Ngrif2004



	Title Page
	Title Page
	page 2


	Localization via TDOA in a UWB Sensor Network Using Neural Networks
	page 2
	page 3
	page 4
	page 5
	page 6


