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Abstract

We present an information-theoretically secure biometric storage system using graph-based error
correcting codes in a Slepian-Wolf coding framework. Our architecture is motivated by the noisy
nature of personal biometrics and the requirement to provide security without storing the true bio-
metric at the device. The principal difficulty is that real biometric signals, such as fingerprints,
do not obey the i.i.d. or ergodic statistics that are required for the underlying typicality prop-
erties in the Slepian-Wolf coding framework. To meet this challenge, we propose to transform
the biometric data into binary feature vectors that are i.i.d. Bernoulli (0.5), independent across
different users, and related within the same user through a BSC-p channel with small p less-than
0.5. Since this is a standard channel model for LDPC codes, the feature vectors are now suit-
able for LDPC syndrome coding. The syndromes serve as secure biometrics for access control.
Experiments on a fingerprint database demonstrate that the system is information-theoretically
secure, and achieves very low false accept rates and low reject rates.
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Biometric System Using LDPC Codes

Yagiz Sutcu, Shantanu Rane, Jonathan S. Yedidia, Stark &per Anthony Vetro

Abstract— We present an information-theoretically secure bio- From an information theoretic perspective the secure bio-
metric storage system using graph-based error correctingades metric problem is a problem of “common randomness” [1].
in a Slepian-Wolf coding framework. Our architecture is moti- - pitferent parties observe correlated random variable (th
vated by the noisy nature of personal biometrics and the reqine-
ment to provide security without storing the true biometric at the enroliment and the probe) and 'Fhen qttempt to agree on a
device. The principal difficulty is that real biometric signals, such Shared secret (the enrollment biometric). The tool used to
as fingerprints, do not obey the i.i.d. or ergodic statisticthat are  extract the secret is a Slepian-Wolf code [2].
required for the underlying typicality properties in the Slepian- More specifically, error correction coding within the
Wolf coding framework. To meet this challenge, we propose to Slepian-Wolf framework has been proposed to deal with the

transform the biometric data into binary feature vectors that . . - . . .
are i.i.d. Bernoulli(0.5), independent across different sers, and joint problem of providing security against attackers whil

related within the same user through a BSCp channel with small  accounting for the inevitable variability of biometrics.nO

p < 0.5. Since this is a standard channel model for LDPC codes, the one hand, the error correction capability of a channel
the feature vectors are now suitable for LDPC syndrome codig. code can accommodate the slight variation between multiple
The syndromes serve as secure biometrics for access Contmlmeasurements of the same biometric [3], [4]. On the other

Experiments on a fingerprint database demonstrate that the hand. the check bits of th i d ;
system is information-theoretically secure, and achievegery low @Nd, (€ CNECK DILS Ot the error correction code can pertorm

false accept rates and low false Teject rates. much the same function as a cryptographic hash of a password
Index Terms— Biometric security, Slepian-Wolf coding, LDPC  on conventional access control systems. Just as a hackestcan
codes, feature transformation, fingerprint invert the hash and steal the password, he cannot just use the

check bits to recover and steal the biometric. However, & ha
been found that schemes based on this principle [5], [6], [7]
. INTRODUCTION yield high false reject rates. One reason for this is that the

statistical relationship between the enroliment bionecetind

_ Computer-verifiable biometrics, such as fingerprints ang,pe is not accurately captured by the simple noise models
iris scans, provide an attractive alternative to classiealess assumed in the theoretical works [3], [4].

control solutions like passwords and identifying docursent | aferences (8], [9], the shortcomings of the prior alggbr

Biometrics have the advantage that, _unl!ke pgs_swords,dbeycoding approaches were addressed by using graphical coding
not have to be remembered and, unlike identifying documen{schniques. Graphical codes, e.g., LDPC codes, can closely
they are difficult to forge. However, they pose new challengg o4 ch the Shannon bound, and can therefore be much more
and create new security holes. A key characteristic is thaly erfyl than algebraic coding techniques. The LDPC code
each time a biometric is measured, the observation diffess, 1, \vas augmented with a second graph that described the
sh_ghtly. For example, in the case of fmgerprl_nts, the regdi complex “fingerprint channel” relating the enroliment biemn
might change because of elastic deformaﬂqns in the _Siﬂ@ to the probe biometric. Syndromes generated via LDPC
when placed on the sensor surface, dust or oil between finggling of the enrollment biometric were used as “secure”
and sensor, or a cut to the finger. Biometric authenticatigfi,,etrics and stored on the device. During authenticatten
systems must be robust to su_ch variations. Most b'om?t@?ative decoding using belief propagation (BP) was peréatm
authentication systems deal with such variability by mlyi ;. osqy0thgraphs. Even though the “fingerprint channel” used
on pattgrn recognition. To perform recognm_on, the_z emelht was apparently a reasonable model of the variations between
biometric is stored on the device for comparison with thebero 1o enroliment and probe fingerprints, the performance ef th
biometric. This creates a security hole: An attacker whagai overall decoding system was insufficient to obtain inforiorat

access to the device also gains access to the biometric. Tfiigy etic security. In other words, a standard LDPC code

?S 9"?3”3’ a serious problem, made_ WOrse bY the fact that agsigned for a binary symmetric channel (BSC) was not an
individual cannot generate new biometrics if the system [sicient code for the fingerprint channel model

compromised. We propose here a different approach that still aims for a

o . o Slepian-Wolf system using LDPC codes. Rather than trying
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Fig. 1. Robust feature extraction is combined with syndrammeing to build a secure fingerprint biometrics system.

patible with code designs, syndrome encoding and syndroime a triplet (x, y,0) representing its spatial location in two
decoding procedures that already exist. For a particular s#émensions and the angular orientation. In the minutiae map
of features with predetermined statistical properties,ave M of a fingerprint, M(z,y) = 6 if there is a minutia
then able to utilize a LDPC code for a Binary Symmetripoint at (x,y) and M(x,y) = 0 (empty set) otherwise. A
Channel (BSC) that matches the designed feature set. Thimutiae map may be considered as a joint quantization and
construction of LDPC codes for the BSC and their associatéshture extraction function which operates on the fingetpri
syndrome encoding and decoding procedures are already wigllage. Different fingerprints normally have different nuend
understood and deeply explored topics. When the code is thaisninutiae points.
matched to the feature set, the resulting system can be shown
to be information-theoretically secure.

This paper is organized as follows. In Section I, we descrilB. Enrollment and Authentication Procedure
a secure biometrics scheme which transforms fingerprint bio
metrics into feature vectors that are appropriate for LDRG s
drome coding. This section lists the desirable statisticap-
erties of these feature vectors and provides an informati
theoretic justification for the security of a syndrome coger® . 7 .
ating on these feature vectors. In Section 1ll, the actuatgss IS a_reqhzatlon of a random arraM with some unknoyvn
of feature extraction is described. In Section IV, we e>¢tra9'5tf'b“?'°”- The feature vectar, obtained .from this map is a
feature vectors from a fingerprint database, evaluate them feahzatlon of a binary random vecte of fixed preset length

security and robustness and investigate the performanttmofN , drawn accojr\gilng(;p _Zon}ebQ|strl?utlm(;ag on th de S nite

overall distributed biometric coding scheme. se_tA = {0,1}". Individual bits of A are denoted by,
with i € T = {1,2,..., N}. Next, a functionfsed-) maps the

binary feature vector into a secure biometsic= fseda). In

) ] ) _the proposed schemés.q-) is a syndrome encoding using a
The proposed scheme for secure fingerprint biometrics dFaph of an LDPC cod&. The access control system stores

shown in Fig. 1. The central idea is to generate binary featubr, C and a cryptographic hash of the binary feature vector

v_ectors which are i._i.d. Bernoulli(0.5), independent a&sro frasi{@). It does not storen or a or the image of the original
different users but different measurements of the same uﬁﬁberprint.

are related by a binary symmetric channel with crossover
probability p (BSC-p) wherep is much smaller than 0.5. ThisIO
is one of the standard channel models for LDPC codes a

therefore standard LDPC codes can be used for Slepian- ]

coding of the feature vectors. We emphasize that the featlt'ﬁ%t the probe feature vectbris an error prone version of the

transformqtlon IS m_adg pUb“.C and it assumed to provide enrollment feature vectai. It combines the secure biometric
any security. Security is provided by the syndromes geedratS (syndrome) and the probe feature vectsrand performs
by the Slepian-Wolf coder. belief propagation decoding. The result of belief propegat
is either an estimat& of enrollment feature vectoa, or a
special symbof) indicating decoder failure. Now, it is possible

A popular method for working with fingerprint data isthata # a, yeta satisfies the syndrome To protect against
to extract a set of “minutiae points” and to perform althis possibility, and more importantly to protect against a
subsequent operations on them. Minutiae points have bestacker using a stolen set of syndromes to construct his own
observed to be stable over many years. Each minutiae iestimatea which satisfies the syndromes but is not the true

discontinuity in the ridge map of a fingerprint, charactedz biometric, access is granted if and onlyfifas{@) = fhasi@).

During enrollment, the user provides a fingerprint from
which the system first determines a minutiae nmapNext, a
0fﬁ‘ature transformation functiofiea(-) maps the minutiae array
into a binary feature vectat = freq(m). We consider thain

Il. SECUREFINGERPRINTBIOMETRICS SCHEME

During authentication, a user or attacker requests access
providing a probe fingerprint from which the authenticato
ains a minutiae map. Next, it transforman into a probe

ture vectob = fiean). Now, the LDPC decoder assumes

A. Minutiae-Based Fingerprint Representation



C. Desirable Statistical Properties of Feature Vectors of guesses required to identifyis 27(AIS) But,

Based on the requirements mentioned at the beginning of [ (A|S) = H(A,S) — H(S) = H(A) — H(S)
this section, it is desirable that the feature vectors Esstee — H(A) — NRsw= N (H(A;) — Rsw) (1)

following properties:
. o ) = N(1— Rsw) = NRippc >0
1) A bitin a feature vector representation is equally likely

tobe a0 oral ThusPr{A; =0} = Pr{A; =1} = where the last two equalities follow from properties 1 and
1/2 and H(A;) =1 bit for all 7 € 7. 2 in Section 1I-C, andR_ppc is the rate of the LDPC code
2) Different bits in a given feature vector are independensed. Thus, the higher the LDPC code rate, the smaller is the
of each other, so that a given bit provides no inforprobability of successful attack conditioned on an obséuma
mation about any other bit. Thus, the pairwise entropgf S. Moreover, H(A|S) > 0 and henceNRsw < H(A)
H(A;,Aj) = H(A;) + H(A;) = 2 bits for all i # j implies that the system has positive information-theoreti
wherei, j € 7. security for any LDPC code rate. This motivates the design
3) Feature vectorsA and B from different fingers are of feature vectors with the aforementioned properties. fid fi
independent of each other, so that one person’s featdire upper bound on the LDPC code rate, note that
vector provides no information about another person’s
feature vector. Thus, the pairwise entrofi(4;, B;) = NHiope = N(1 = fisw) < N — H(A|B)
H(A;) + H(B;) = 2 bits for all i, j € Z. =H(A) - H(AB) = I(A;B) )
4) Feature vectora. and A’ obtained from different read- \hich is the capacity of the channel between the enroliment
ings of the same finger are statistically related by a BSGy, g probe feature vectors.
p. If p is small, it means that the feature vectors are |, 3 syndrome-independent attack, the attacker guesses can
robust to repeated noisy measurements with the sagifate vectorsB from the typical set (ofB’s) independently
finger. Thus,H (A;|A:) = H(p) for all i € T. of A. For this attack to be successful, syndrome decoding
should succeed witB, i.e., B must be jointly typical with
A. Using the AEP for jointly typical sequences, this requires
approximately2’(4B) guesses. From (1) and (2)(A; B) >
The feature extraction functiofiea(-) induces a distribution H(A|S). Thus, a syndrome-independent attack is even more

on the enroliment feature vectet and probe feature vector difficult than an attack in which the choice Bfis conditioned
B. Assume thatA and B are jointly ergodic and, as notedon the syndromes.

earlier, they take values from a finite sdt= {0, 1}*.

A Slepian-Wolf code [2] is a ratésw random “binning”
function that encodes a particular enroliment vecfor= a
into the secured biometris. Specifically, we assign each to To extract N bits from a minutiae map, it suffices to
possible sequencec A an integers selected uniformly from ask N “questions,” each with a binary answer. A general
{1,2,...,2NRsw} This index serves as the secure biometritamework to accomplish this is shown in Fig.¥.operations
s = fsed frea(m)) derived from the given minutiae mam. are performed on the biometric to yield a non-binary feature
Each possible index € {1,2,...,2Vfsw} indexes a set or representation which can then be converted to binary by
“bin” of enroliment feature vectors{alfseda) = s}. The thresholding. As an example, one can project the minutiae
secure biometric can be thought of as a scalar indexr map ontoN orthogonal basis vectors and quantize the positive
its binary expansiors, which is a uniformly distributed bit projections to 1's and negative projections to 0's.
sequence of lengttV Rsw. We define the operation as counting the number of minutiae

During authentication, the Slepian-Wolf decoder is predd points that fall in a randomly chosen cuboid \i—Y — ©
with a particular probe feature vectdr, generated from a space, as shown in Fig. 2. To chose a cuboid, an origin is
minutiae map which claims to be from a particular enrolledselected uniformly at random iX — Y — © space, and the
user a, for example. The decodegjsedb,s) searches for a dimensions along the three axes are also chosen at random.
vectora € A such that isa is jointly typical with b under Next, we define the threshold as the median of the number
the joint distributionp, » and is in bins, i.e., fsed@) = of minutiae points in the chosen cuboid, measured across
s. If a uniquea is found, then the decoder outputs thithe complete training set, a method used for face recognitio
result. Otherwise, an authentication failure is declaned the in [11]. The threshold value may differ for each cuboid based
decoder return@. According to the Slepian-Wolf Theorem [2],0n its position and volume. If the number of minutiae points
syndrome decoding will succeed with probability approaghi in a randomly generated cuboid exceeds the threshold, then
1 asN increases, provided thdtsw > + H(A|B). a 1-bit is appended to the feature vector, otherwise a O-

Now, consider the probability that an attacker can estimaltit is appended. We consider the combined operation of (a)
a feature vectoA given the syndrom@. By the asymptotic generating a cuboid and (b) thresholding as equivalent to
equipartition property (AEP) [10], under the mild techdicaposing a question with a binary answeY. such questions
condition of ergodicity, it can be shown that, conditionad oresult in anN-bit feature vector.

S = fsedA), A is uniformly distributed over the typical set The simplest way to generate feature vectors is to use the
of size2(AIS) Therefore, with high probability, the numbersame questions for all users. In the sequel, we consider @ mor

D. Syndrome Coding of Feature Vectors

Ill. SCHEME FOROBTAINING FEATURE VECTORS



> =ry vl e B. Statistical Analysis
§ N o 0.0 0 To measure the extent to which the desired target stafistica
: : raton2 — < — 0 — > . . . . .
E ] | properties in Section |I-C are achieved, we examine theufeat
§ ; ° L : : vectors obtained from the minutiae maps according to the
i S / - method described in Section IIl. THé most robust questions
. a| [ ] 0 were selected to generate the feature vectors, Wittanging
_—»_OperatlonN — 0 . A .
N S from 50 to 350. Fig. 3 shows the statistical properties of

. . . . the feature vectors fo’N=150. As shown in Fig. 3(a), the
Fig. 2. N questions can be asked by performifg operations on the | . L
biometric followed by thresholding. In our scheme, the agien involves hIStOger of the average number _Of 1-bits in the feature
counting the minutiae points in a randomly generated cuboid vectors is clustered aroumd/2 = 75. Fig. 3(b) shows that the
pair-wise entropy measured between bits of different ugers

advanced approach in which the questions are user-spech@ly close to 2 bits, indicating that the bits are nearly pie
The rationale behind using user-specific questions is tiraes independent.

guestions are more robust (reliable) than others. In pdeic

a question is robust if the number of minutiae points in g Security and Robustness

cuboid is far removed from the median calculated over the o S
entire dataset. Thus, even if there is spurious insertion orln order to measure the similarity or dissimilarity of two

deletion of minutiae points when a noisy measurement of thature vectors, Normalized Hamming Distance (NHD) is
same fingerprint is provided at a later time, the answer to thged. The NHD between two feature vectarand b, each
question (0 or 1) is less likely to change. On the other handnaving lengthV, is calculated as follows:

the number of minutiae points is close to the median, the O or N

1 answer to that guesnon is less reliable. Thus, more reliab NHD(a, b) = i Z(ai @ b;)

questions result in a BS@-intra-user channel with lowp.

Different users have a different set of robust questions, athereEB is summation modulo 2. The plot in Fig. 3(c) contains

we propose to use these while constructing the feature Nec}ﬂree histograms: (1) The intra-user variation is the itigtion

we emp_hasae thaf[ for the purposes of security ar_1a|y5|$dheEf the average NHD measured pairwise over 15 samples of the
of questions used in the system is assumed public. An attacke . ; N o
sape finger, (2) The inter-user variation is the distributad

who steals a set of syndromes and poses falsely as a user wi | . . .
be given the set of questions appropriate to that user Ur NHD avergged over all p_ossmle pairs of users, e:?\ch W'.th
: Is own specific set of questions (3) The attacker variatson i

tshegutzszgﬁgséigsra?ﬁ;rbgﬁ?ﬁel?n?;rﬁgggn?&ég?e?%gmy file NHD for the case in which an attacker attempts to identify
9 ’ Y himself as a given user, while using a different fingerprint

of recovering the blometrlc given only the stolen sy_ndr(_)me§ # 14, but while using the 150 robust questions of usérhere
For a given useri, the average number of minutiae

oints . .+ in & aiven cuboid’ is calculated over re eatedis a clean separation between the intra-user and inter-user
poInts ;. ; 9 J . . P NHD distributions, and a small overlap between the intrarus
noisy measurements of the same fingerprint. ket and

be the median and standard deviation of the number agd attacker distributions. In Fig. 3(c), the attacker ation
95 B% edie viatl u Sécomes relevant if the attacker gains access to the victim’
minutiae points inC; over the dataS(_et of all USETS. _Then, le uestions. The inter-user variation is relevant if the ckital
Rij = (mij —m;)/o;. The magnitude|A; ;| is directly oo oo hroken into the system, but is merely trying to pose

proportiongl to the_robustness of the_ question posed byidu_b%S the victim without knowing the victim’s specific queston
C; for useri. The sign ofA; ; determines whether the cuboid; ", practical biometric system, the questions would not be

C; should be placed intdCo;, a list of questions with a 0 publicized. So, most attackers will not have access to them

answer for usep, or into Elvi.’ a list of ques_tlons with a 1 and therefore, the inter-user variation will be relevarstéad
answer for usef. Both these lists are sorted in the decreasm(% . o
the more conservative attacker variation.

order of|A; ;|. Now, a fair conis flipped to choose betw_eer_w To ascertain the effectiveness of the feature vectors, ot pl
Lo; and Ly ; and the question at the top of the chosen list i . . . N
X ; : o . the inter-user NHD against the intra-user NHD in Fig. 3(d)
stored on the device. AfteN coin flips, approximatelyV/2 . : o
: . . both for the case in which every user employs specific ques-
of the most robust questions from each list will be stored gn : . )
. . ) . ions and for the case in which an attacker uses the questions
the device. This process is repeated for each enrollediuser

stolen from the user being impersonated. One metric forueval
ating plots such as Fig. 3(d) is the “Equal Error Rate (EER)”,
IV. EXPERIMENTAL RESULTS which is the point where the inter-user NHD and intra-user
NHD are equal. A lower EER indicates a superior tradeoff.
Fig. 3(e) plots the EER for various values &f. Observe
In our experiments, we use a proprietary Mitsubishi finthat user-specific questions provide a significantly lowERE
gerprint database which contains minutiae maps of 108%an using the same questions for all users irrespectivhef t
fingers with 15 fingerprint samples taken from each fingaobustness of the questions. Even if the attacker is pravide
The average number of minutiae points in a single map vgith the user-specific questions, the resulting EER is lower
approximately 32. All fingerprints are pre-aligned. than the case in which everybody has the same questions.

=1

A. Data Set and Experimental Setup
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Fig. 3. (@) Histogram of the number of ones in the featurearsctor N=150 is clustered around//2 = 75. (b) The pairwise entropy measured across all
pairs and all users is very close to 2 bits. (¢) The Normaligednming distance between feature vectors shows cleara@pamithin and across users. (d)
The tradeoff between intra-user and inter-user separasigniotted by sweeping a threshold NHD in Fig. 3(c). PFé=150, equal error rate (EER) is 0.027.
(e) User-specific questions result in lower EER than commaestions, even if the user-specific questions are giveneattacker. (f) Syndrome coding with
an appropriate LDPC code provides an information-theca#lyi secure biometrics system with low FRR and extremely FAR.

Based on the separation of intra-user and inter-user distoiometric coding is information-theoretically secure. \&fe-
butions, we expect that a syndrome code designed for a BS&ct the benefits of syndrome-compatible feature vectors to
p, with appropriatep < 0.5 would authenticate almost all extend to richer modalities such as ridge information in the
genuine users while rejecting almost all impostors. Théetalcase of fingerprint biometrics. This is the focus of our catre
in Fig. 3(f) shows the False Reject Rate (FRR) and the Falserk.
Accept Rate (FAR)for syndrome coding with different values
of N andp. These FAR and FRR values are measures of the

security-robustness tradeoff of the distributed bioneatdding [ R. Ahiswede and I. Csiszar, “Common Randomness in Inétion
t The LDPC code rate is chosen so as to provide about Theory and Cryptography I: Secret SharingiZEE Trans. Information
system. p Theory vol. 39, no. 4, pp. 1121-1132, July 1993.

30 bits of security. This restriction on the LDPC code rate in2] D. Slepian and J. K. Wolf, “Noiseless Coding of Correthieformation

turn places a restriction on how largecan be, especially for Sources,"IEEE Trans. Information Theorypp. 471-480, July 1973.
[3] G. Davida, Y. Frankel, and B. Matt, “On Enabling Securephigations

small N. Due to this restriction, the _FRR is relatively Iarge through Off-line Biometric Identification,” INEEE Symp. on Security
for N = 100. The lowest FRR is achieved fav = 150. As and Privacy 1998, pp. 148-157.

N increases, less robust questions need to be employed, [§bA. Juels and M. Sudan, “A Fuzzy Vault Scheme,”IBEE Intl. Symp.
on Information Theory2002.

the st:_;ltlsucall properties of the featu_re vectors dlvgngrenf [5] T. C. Clancy, N. Kiyavash, and D. J. Lin, “Secure Smardehased
those in Section II-C. Thus, the FRR increases again w¥ien Fingerprint Authentication,” inACM SIGMM workshop on biometrics
becomes too Iarge. methods and application2003.
[6] S.Yang and I. Verbauwhede, “Automatic Secure Fingetpvierification
System based on Fuzzy Vault Scheme,JREE Intl. Conf. on Acoustics,
V. CONCLUSIONS Speech, and Signal ProcessigP05, pp. 609-612.
. . . . . I7] U. Uludag and A. Jain, “Fuzzy Fingerprint Vault,” iVorkshop on
Fingerprint minutiae maps have beep transformed mto_ bi Biometrics: Challenges Arising from Theory to Practickug. 2004,
nary feature vectors which are appropriate for LDPC coding. pp. 13-16.
These feature vectors account for the location and oriemtat [8] S. Draper, A. Khisti, E. Martinian, A. Vetro, and J. Yeid "Secure

L . P . Storage of Fingerprint Biometrics using Slepian-Wolf Cedén Infor-
of the minutiae points and are robust to the variation in mation Theory and Applications Workshop in San Diego, BR07.
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