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Feature Extraction for a Slepian-Wolf
Biometric System Using LDPC Codes

Yagiz Sutcu, Shantanu Rane, Jonathan S. Yedidia, Stark C. Draper, Anthony Vetro

Abstract— We present an information-theoretically secure bio-
metric storage system using graph-based error correcting codes
in a Slepian-Wolf coding framework. Our architecture is moti-
vated by the noisy nature of personal biometrics and the require-
ment to provide security without storing the true biometric at the
device. The principal difficulty is that real biometric signals, such
as fingerprints, do not obey the i.i.d. or ergodic statisticsthat are
required for the underlying typicality properties in the Sl epian-
Wolf coding framework. To meet this challenge, we propose to
transform the biometric data into binary feature vectors that
are i.i.d. Bernoulli(0.5), independent across different users, and
related within the same user through a BSC-p channel with small
p < 0.5. Since this is a standard channel model for LDPC codes,
the feature vectors are now suitable for LDPC syndrome coding.
The syndromes serve as secure biometrics for access control.
Experiments on a fingerprint database demonstrate that the
system is information-theoretically secure, and achievesvery low
false accept rates and low false reject rates.

Index Terms— Biometric security, Slepian-Wolf coding, LDPC
codes, feature transformation, fingerprint

I. I NTRODUCTION

Computer-verifiable biometrics, such as fingerprints and
iris scans, provide an attractive alternative to classicalaccess
control solutions like passwords and identifying documents.
Biometrics have the advantage that, unlike passwords, theydo
not have to be remembered and, unlike identifying documents,
they are difficult to forge. However, they pose new challenges
and create new security holes. A key characteristic is that
each time a biometric is measured, the observation differs
slightly. For example, in the case of fingerprints, the reading
might change because of elastic deformations in the skin
when placed on the sensor surface, dust or oil between finger
and sensor, or a cut to the finger. Biometric authentication
systems must be robust to such variations. Most biometric
authentication systems deal with such variability by relying
on pattern recognition. To perform recognition, the enrollment
biometric is stored on the device for comparison with the probe
biometric. This creates a security hole: An attacker who gains
access to the device also gains access to the biometric. This
is clearly a serious problem, made worse by the fact that an
individual cannot generate new biometrics if the system is
compromised.
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From an information theoretic perspective the secure bio-
metric problem is a problem of “common randomness” [1].
Different parties observe correlated random variables (the
enrollment and the probe) and then attempt to agree on a
shared secret (the enrollment biometric). The tool used to
extract the secret is a Slepian-Wolf code [2].

More specifically, error correction coding within the
Slepian-Wolf framework has been proposed to deal with the
joint problem of providing security against attackers while
accounting for the inevitable variability of biometrics. On
the one hand, the error correction capability of a channel
code can accommodate the slight variation between multiple
measurements of the same biometric [3], [4]. On the other
hand, the check bits of the error correction code can perform
much the same function as a cryptographic hash of a password
on conventional access control systems. Just as a hacker cannot
invert the hash and steal the password, he cannot just use the
check bits to recover and steal the biometric. However, it has
been found that schemes based on this principle [5], [6], [7]
yield high false reject rates. One reason for this is that the
statistical relationship between the enrollment biometric and
probe is not accurately captured by the simple noise models
assumed in the theoretical works [3], [4].

In references [8], [9], the shortcomings of the prior algebraic
coding approaches were addressed by using graphical coding
techniques. Graphical codes, e.g., LDPC codes, can closely
approach the Shannon bound, and can therefore be much more
powerful than algebraic coding techniques. The LDPC code
graph was augmented with a second graph that described the
complex “fingerprint channel” relating the enrollment biomet-
ric to the probe biometric. Syndromes generated via LDPC
coding of the enrollment biometric were used as “secure”
biometrics and stored on the device. During authentication, it-
erative decoding using belief propagation (BP) was performed
acrossbothgraphs. Even though the “fingerprint channel” used
was apparently a reasonable model of the variations between
the enrollment and probe fingerprints, the performance of the
overall decoding system was insufficient to obtain information-
theoretic security. In other words, a standard LDPC code
designed for a binary symmetric channel (BSC) was not an
efficient code for the fingerprint channel model.

We propose here a different approach that still aims for a
Slepian-Wolf system using LDPC codes. Rather than trying
to incorporate the fingerprint channel into a factor graph
modeling the entire system, we propose to transform the
enrollment and probe biometrics into feature vectors that are
related by a simpler channel model that is more suitable for
LDPC coding. We explicitly design the feature set to be com-
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Fig. 1. Robust feature extraction is combined with syndromecoding to build a secure fingerprint biometrics system.

patible with code designs, syndrome encoding and syndrome
decoding procedures that already exist. For a particular set
of features with predetermined statistical properties, weare
then able to utilize a LDPC code for a Binary Symmetric
Channel (BSC) that matches the designed feature set. The
construction of LDPC codes for the BSC and their associated
syndrome encoding and decoding procedures are already well-
understood and deeply explored topics. When the code is thus
matched to the feature set, the resulting system can be shown
to be information-theoretically secure.

This paper is organized as follows. In Section II, we describe
a secure biometrics scheme which transforms fingerprint bio-
metrics into feature vectors that are appropriate for LDPC syn-
drome coding. This section lists the desirable statisticalprop-
erties of these feature vectors and provides an information-
theoretic justification for the security of a syndrome code oper-
ating on these feature vectors. In Section III, the actual process
of feature extraction is described. In Section IV, we extract
feature vectors from a fingerprint database, evaluate them for
security and robustness and investigate the performance ofthe
overall distributed biometric coding scheme.

II. SECUREFINGERPRINTBIOMETRICS SCHEME

The proposed scheme for secure fingerprint biometrics is
shown in Fig. 1. The central idea is to generate binary feature
vectors which are i.i.d. Bernoulli(0.5), independent across
different users but different measurements of the same user
are related by a binary symmetric channel with crossover
probabilityp (BSC-p) wherep is much smaller than 0.5. This
is one of the standard channel models for LDPC codes and
therefore standard LDPC codes can be used for Slepian-Wolf
coding of the feature vectors. We emphasize that the feature
transformation is made public and isnot assumed to provide
any security. Security is provided by the syndromes generated
by the Slepian-Wolf coder.

A. Minutiae-Based Fingerprint Representation

A popular method for working with fingerprint data is
to extract a set of “minutiae points” and to perform all
subsequent operations on them. Minutiae points have been
observed to be stable over many years. Each minutiae is a
discontinuity in the ridge map of a fingerprint, characterized

by a triplet (x, y, θ) representing its spatial location in two
dimensions and the angular orientation. In the minutiae map
M of a fingerprint, M(x, y) = θ if there is a minutia
point at (x, y) and M(x, y) = ∅ (empty set) otherwise. A
minutiae map may be considered as a joint quantization and
feature extraction function which operates on the fingerprint
image. Different fingerprints normally have different numbers
of minutiae points.

B. Enrollment and Authentication Procedure

During enrollment, the user provides a fingerprint from
which the system first determines a minutiae mapm. Next, a
feature transformation functionffeat(·) maps the minutiae array
into a binary feature vectora = ffeat(m). We consider thatm
is a realization of a random arrayM with some unknown
distribution. The feature vectora, obtained from this map is a
realization of a binary random vectorA of fixed preset length
N , drawn according to some distributionPA(a) on the finite
set A = {0, 1}N . Individual bits of A are denoted byAi

with i ∈ I = {1, 2, ..., N}. Next, a functionfsec(·) maps the
binary feature vector into a secure biometrics = fsec(a). In
the proposed scheme,fsec(·) is a syndrome encoding using a
graph of an LDPC codeC. The access control system stores
s, C and a cryptographic hash of the binary feature vector
fhash(a). It does not storem or a or the image of the original
fingerprint.

During authentication, a user or attacker requests access
by providing a probe fingerprint from which the authenticator
obtains a minutiae mapn. Next, it transformsn into a probe
feature vectorb = ffeat(n). Now, the LDPC decoder assumes
that the probe feature vectorb is an error prone version of the
enrollment feature vectora. It combines the secure biometric
s (syndrome) and the probe feature vectorb and performs
belief propagation decoding. The result of belief propagation
is either an estimatêa of enrollment feature vectora, or a
special symbol∅ indicating decoder failure. Now, it is possible
that â 6= a, yet â satisfies the syndromes. To protect against
this possibility, and more importantly to protect against an
attacker using a stolen set of syndromes to construct his own
estimateâ which satisfies the syndromes but is not the true
biometric, access is granted if and only iffhash(â) = fhash(a).
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C. Desirable Statistical Properties of Feature Vectors

Based on the requirements mentioned at the beginning of
this section, it is desirable that the feature vectors possess the
following properties:

1) A bit in a feature vector representation is equally likely
to be a 0 or a 1. Thus,Pr{Ai = 0} = Pr{Ai = 1} =
1/2 andH(Ai) = 1 bit for all i ∈ I.

2) Different bits in a given feature vector are independent
of each other, so that a given bit provides no infor-
mation about any other bit. Thus, the pairwise entropy
H(Ai, Aj) = H(Ai) + H(Aj) = 2 bits for all i 6= j
wherei, j ∈ I.

3) Feature vectorsA and B from different fingers are
independent of each other, so that one person’s feature
vector provides no information about another person’s
feature vector. Thus, the pairwise entropyH(Ai, Bj) =
H(Ai) + H(Bj) = 2 bits for all i, j ∈ I.

4) Feature vectorsA andA
′ obtained from different read-

ings of the same finger are statistically related by a BSC-
p. If p is small, it means that the feature vectors are
robust to repeated noisy measurements with the same
finger. Thus,H(A′

i|Ai) = H(p) for all i ∈ I.

D. Syndrome Coding of Feature Vectors

The feature extraction functionffeat(·) induces a distribution
on the enrollment feature vectorA and probe feature vector
B. Assume thatA and B are jointly ergodic and, as noted
earlier, they take values from a finite setA = {0, 1}N .

A Slepian-Wolf code [2] is a rate-RSW random “binning”
function that encodes a particular enrollment vectorA = a

into the secured biometrics. Specifically, we assign each to
possible sequencea ∈ A an integers selected uniformly from
{1, 2, ..., 2NRSW }. This index serves as the secure biometric
s = fsec(ffeat(m)) derived from the given minutiae mapm.
Each possible indexs ∈ {1, 2, ..., 2NRSW } indexes a set or
“bin” of enrollment feature vectors,{a|fsec(a) = s}. The
secure biometric can be thought of as a scalar indexs or
its binary expansions, which is a uniformly distributed bit
sequence of lengthNRSW.

During authentication, the Slepian-Wolf decoder is provided
with a particular probe feature vectorb, generated from a
minutiae mapn which claims to be from a particular enrolled
user a, for example. The decodergdec(b, s) searches for a
vector â ∈ A such that isâ is jointly typical with b under
the joint distributionpa,n and is in bin s, i.e., fsec(â) =
s. If a unique â is found, then the decoder outputs this
result. Otherwise, an authentication failure is declared and the
decoder returns∅. According to the Slepian-Wolf Theorem [2],
syndrome decoding will succeed with probability approaching
1 asN increases, provided thatRSW > 1

N
H(A|B).

Now, consider the probability that an attacker can estimate
a feature vectorA given the syndromeS. By the asymptotic
equipartition property (AEP) [10], under the mild technical
condition of ergodicity, it can be shown that, conditioned on
S = fsec(A), A is uniformly distributed over the typical set
of size2H(A|S). Therefore, with high probability, the number

of guesses required to identifya is 2H(A|S). But,

H(A|S) = H(A,S) − H(S) = H(A) − H(S)

= H(A) − NRSW = N (H(Ai) − RSW) (1)

= N(1 − RSW) = NRLDPC > 0

where the last two equalities follow from properties 1 and
2 in Section II-C, andRLDPC is the rate of the LDPC code
used. Thus, the higher the LDPC code rate, the smaller is the
probability of successful attack conditioned on an observation
of S. Moreover,H(A|S) > 0 and henceNRSW < H(A)
implies that the system has positive information-theoretic
security for any LDPC code rate. This motivates the design
of feature vectors with the aforementioned properties. To find
the upper bound on the LDPC code rate, note that

NRLDPC = N(1 − RSW) < N − H(A|B)

= H(A) − H(A|B) = I(A;B) (2)

which is the capacity of the channel between the enrollment
and probe feature vectors.

In a syndrome-independent attack, the attacker guesses can-
didate vectorsB from the typical set (ofB’s) independently
of A. For this attack to be successful, syndrome decoding
should succeed withB, i.e., B must be jointly typical with
A. Using the AEP for jointly typical sequences, this requires
approximately2I(A;B) guesses. From (1) and (2),I(A;B) >
H(A|S). Thus, a syndrome-independent attack is even more
difficult than an attack in which the choice ofB is conditioned
on the syndromeS.

III. SCHEME FOROBTAINING FEATURE VECTORS

To extract N bits from a minutiae map, it suffices to
ask N “questions,” each with a binary answer. A general
framework to accomplish this is shown in Fig. 2.N operations
are performed on the biometric to yield a non-binary feature
representation which can then be converted to binary by
thresholding. As an example, one can project the minutiae
map ontoN orthogonal basis vectors and quantize the positive
projections to 1’s and negative projections to 0’s.

We define the operation as counting the number of minutiae
points that fall in a randomly chosen cuboid inX − Y − Θ
space, as shown in Fig. 2. To chose a cuboid, an origin is
selected uniformly at random inX − Y − Θ space, and the
dimensions along the three axes are also chosen at random.

Next, we define the threshold as the median of the number
of minutiae points in the chosen cuboid, measured across
the complete training set, a method used for face recognition
in [11]. The threshold value may differ for each cuboid based
on its position and volume. If the number of minutiae points
in a randomly generated cuboid exceeds the threshold, then
a 1-bit is appended to the feature vector, otherwise a 0-
bit is appended. We consider the combined operation of (a)
generating a cuboid and (b) thresholding as equivalent to
posing a question with a binary answer.N such questions
result in anN -bit feature vector.

The simplest way to generate feature vectors is to use the
same questions for all users. In the sequel, we consider a more
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Fig. 2. N questions can be asked by performingN operations on the
biometric followed by thresholding. In our scheme, the operation involves
counting the minutiae points in a randomly generated cuboid.

advanced approach in which the questions are user-specific.
The rationale behind using user-specific questions is that some
questions are more robust (reliable) than others. In particular,
a question is robust if the number of minutiae points in a
cuboid is far removed from the median calculated over the
entire dataset. Thus, even if there is spurious insertion or
deletion of minutiae points when a noisy measurement of the
same fingerprint is provided at a later time, the answer to the
question (0 or 1) is less likely to change. On the other hand, if
the number of minutiae points is close to the median, the 0 or
1 answer to that question is less reliable. Thus, more reliable
questions result in a BSC-p intra-user channel with lowp.
Different users have a different set of robust questions, and
we propose to use these while constructing the feature vector.
We emphasize that for the purposes of security analysis, theset
of questions used in the system is assumed public. An attacker
who steals a set of syndromes and poses falsely as a user will
be given the set of questions appropriate to that user. Our
security analysis is not based in any way on the obscurity of
the questions, but rather on the information-theoretic difficulty
of recovering the biometric given only the stolen syndromes.

For a given useri, the average number of minutiae
points m̄i,j in a given cuboidCj is calculated over repeated
noisy measurements of the same fingerprint. Letmj and
σj be the median and standard deviation of the number of
minutiae points inCj over the dataset of all users. Then, let
∆i,j = (m̄i,j − mj)/σj . The magnitude,|∆i,j | is directly
proportional to the robustness of the question posed by cuboid
Cj for useri. The sign of∆i,j determines whether the cuboid
Cj should be placed intoL0,i, a list of questions with a 0
answer for useri, or into L1,i, a list of questions with a 1
answer for useri. Both these lists are sorted in the decreasing
order of |∆i,j |. Now, a fair coin is flipped to choose between
L0,i andL1,i and the question at the top of the chosen list is
stored on the device. AfterN coin flips, approximatelyN/2
of the most robust questions from each list will be stored on
the device. This process is repeated for each enrolled useri.

IV. EXPERIMENTAL RESULTS

A. Data Set and Experimental Setup

In our experiments, we use a proprietary Mitsubishi fin-
gerprint database which contains minutiae maps of 1035
fingers with 15 fingerprint samples taken from each finger.
The average number of minutiae points in a single map is
approximately 32. All fingerprints are pre-aligned.

B. Statistical Analysis

To measure the extent to which the desired target statistical
properties in Section II-C are achieved, we examine the feature
vectors obtained from the minutiae maps according to the
method described in Section III. TheN most robust questions
were selected to generate the feature vectors, withN ranging
from 50 to 350. Fig. 3 shows the statistical properties of
the feature vectors forN=150. As shown in Fig. 3(a), the
histogram of the average number of 1-bits in the feature
vectors is clustered aroundN/2 = 75. Fig. 3(b) shows that the
pair-wise entropy measured between bits of different usersis
very close to 2 bits, indicating that the bits are nearly pairwise
independent.

C. Security and Robustness

In order to measure the similarity or dissimilarity of two
feature vectors, Normalized Hamming Distance (NHD) is
used. The NHD between two feature vectorsa and b, each
having lengthN , is calculated as follows:

NHD(a,b) =
1

N

N∑

i=1

(ai ⊕ bi)

where⊕ is summation modulo 2. The plot in Fig. 3(c) contains
three histograms: (1) The intra-user variation is the distribution
of the average NHD measured pairwise over 15 samples of the
same finger, (2) The inter-user variation is the distribution of
the NHD averaged over all possible pairs of users, each with
his own specific set of questions (3) The attacker variation is
the NHD for the case in which an attacker attempts to identify
himself as a given useri, while using a different fingerprint
j 6= i, but while using the 150 robust questions of useri. There
is a clean separation between the intra-user and inter-user
NHD distributions, and a small overlap between the intra-user
and attacker distributions. In Fig. 3(c), the attacker variation
becomes relevant if the attacker gains access to the victim’s
questions. The inter-user variation is relevant if the attacker
has not broken into the system, but is merely trying to pose
as the victim without knowing the victim’s specific questions.
In a practical biometric system, the questions would not be
publicized. So, most attackers will not have access to them
and therefore, the inter-user variation will be relevant instead
of the more conservative attacker variation.

To ascertain the effectiveness of the feature vectors, we plot
the inter-user NHD against the intra-user NHD in Fig. 3(d)
both for the case in which every user employs specific ques-
tions and for the case in which an attacker uses the questions
stolen from the user being impersonated. One metric for evalu-
ating plots such as Fig. 3(d) is the “Equal Error Rate (EER)”,
which is the point where the inter-user NHD and intra-user
NHD are equal. A lower EER indicates a superior tradeoff.
Fig. 3(e) plots the EER for various values ofN . Observe
that user-specific questions provide a significantly lower EER
than using the same questions for all users irrespective of the
robustness of the questions. Even if the attacker is provided
with the user-specific questions, the resulting EER is lower
than the case in which everybody has the same questions.
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Fig. 3. (a) Histogram of the number of ones in the feature vectors for N=150 is clustered aroundN/2 = 75. (b) The pairwise entropy measured across all
pairs and all users is very close to 2 bits. (c) The NormalizedHamming distance between feature vectors shows clear separation within and across users. (d)
The tradeoff between intra-user and inter-user separationis plotted by sweeping a threshold NHD in Fig. 3(c). ForN=150, equal error rate (EER) is 0.027.
(e) User-specific questions result in lower EER than common questions, even if the user-specific questions are given to the attacker. (f) Syndrome coding with
an appropriate LDPC code provides an information-theoretically secure biometrics system with low FRR and extremely low FAR.

Based on the separation of intra-user and inter-user distri-
butions, we expect that a syndrome code designed for a BSC-
p, with appropriatep < 0.5 would authenticate almost all
genuine users while rejecting almost all impostors. The table
in Fig. 3(f) shows the False Reject Rate (FRR) and the False
Accept Rate (FAR)1 for syndrome coding with different values
of N andp. These FAR and FRR values are measures of the
security-robustness tradeoff of the distributed biometric coding
system. The LDPC code rate is chosen so as to provide about
30 bits of security. This restriction on the LDPC code rate in
turn places a restriction on how largep can be, especially for
small N . Due to this restriction, the FRR is relatively large
for N = 100. The lowest FRR is achieved forN = 150. As
N increases, less robust questions need to be employed, so
the statistical properties of the feature vectors diverge from
those in Section II-C. Thus, the FRR increases again whenN
becomes too large.

V. CONCLUSIONS

Fingerprint minutiae maps have been transformed into bi-
nary feature vectors which are appropriate for LDPC coding.
These feature vectors account for the location and orientation
of the minutiae points and are robust to the variation in
minutiae maps derived from repeated noisy measurements
from the same finger. Syndromes obtained via LDPC coding
of these feature vectors serve as secure biometrics. In addition
to providing very low false accept rates and low false reject
rates, the design of the feature vectors ensures that distributed

1While determining the FAR, if an input feature vectorba satisfies the
syndrome, then we count it as a false accept case. This is a conservative FAR
estimate because anyba for which fhash(ba) 6= fhash(a) is denied acceptance.

biometric coding is information-theoretically secure. Weex-
pect the benefits of syndrome-compatible feature vectors to
extend to richer modalities such as ridge information in the
case of fingerprint biometrics. This is the focus of our current
work.
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