
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Incremental Exemplar Learning Schemes
for Classification on Embedded Devices

Ankur Jain, Daniel Nikovski

TR2008-062 September 2008

Abstract

Although memory-based classifiers offer robust classification performance, their widespread us-
age on embedded devices is hindered due to the device’s limited memory resources. Moreover,
embedded devices often operate in an environment where data exhibits evolutionary changes
which entails frequent update of the in-memory training data. A viable option for dealing with
the memory constraint is to use Exemplar Learning (EL) schemes that learn a small memory set
(called the exemplar set) of high functional information that fits in memory. However, traditional
EL schemes have several drawbacks which make them inapplicable for the embedded devices;
(1) they have high memory overheads and are unable to handle incremental updates to the ex-
emplar set, (2) they cannot be customized to obtain exemplar sets of any user-defined size that
fits in the memory and (3) they learn exemplar sets based on local neighborhood structure that
do not offer robust classification performance. In this paper, we propose two novel EL schemes,
EBEL (Entropy-Based Exemplar Learning) and ABEL (AUC-Based Exemplar Learning) that
overcome the aforementioned short-comings of traditional EL algorithms. We show that our
schemes efficiently incorporate new training datasets while maintaining high quality exemplar
sets of any user-defined size. We present a comprehensive experimental analysis showing excel-
lent classification-accuracy versus memory-usage tradeoffs using our proposed methods.

European Conference on Machine Learning and Principles and Practice of Knowledge Discov-
ery in Databases 2008, Antwerp, Belgium

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2008
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Incremental Exemplar Learning Schemes for

Classification on Embedded Devices

Ankur Jain Daniel Nikovski
Mitsubishi Electric Research Laboratory
201 Broadway, Cambridge, MA 02139

{jain,nikovski}@merl.com

June 23, 2008

Abstract

Although memory-based classifiers offer robust classification perfor-
mance, their widespread usage on embedded devices is hindered due to
the device’s limited memory resources. Moreover, embedded devices of-
ten operate in an environment where data exhibits evolutionary changes
which entails frequent update of the in-memory training data. A viable
option for dealing with the memory constraint is to use Exemplar Learn-
ing (EL) schemes that learn a small memory set (called the exemplar set)
of high functional information that fits in memory. However, traditional
EL schemes have several drawbacks which make them inapplicable for
the embedded devices; (1) they have high memory overheads and are un-
able to handle incremental updates to the exemplar set, (2) they cannot
be customized to obtain exemplar sets of any user-defined size that fits in
the memory and (3) they learn exemplar sets based on local neighborhood
structures that do not offer robust classification performance. In this pa-
per, we propose two novel EL schemes, EBEL (Entropy-Based Exemplar
Learning) and ABEL (AUC-Based Exemplar Learning) that overcome the
aforementioned short-comings of traditional EL algorithms. We show that
our schemes efficiently incorporate new training datasets while maintain-
ing high quality exemplar sets of any user-defined size. We present a com-
prehensive experimental analysis showing excellent classification-accuracy
versus memory-usage tradeoffs using our proposed methods.

1 Introduction

Rapid advances in embedded computing [19] now facilitate significant compu-
tational capabilities in low-power embedded devices. Nodes in a sensor network
are now expected to sense as well as analyze the data and make on-site intelligent
decisions as opposed to simply pushing the data to a central server. Examples
of such applications include fault detection in device condition monitoring data
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streams, face detection in video sensor networks, and intrusion detection at net-
work routing hubs. In this paper, we focus on the data classification problem
when the classifier operates on an embedded device. The computational and
memory resources of such devices are not advanced enough to run sophisticated
classifiers such as Support Vector Machines (SVM) or Neural Networks due
to the computationally intensive optimization procedures and model learning
steps involved. Moreover sensor data often exhibits evolutionary characteristics
such as presence of a new kind of anomaly or a new class of network attacks, the
training data for which are available after actual deployment either in batches or
as a data stream. This entails incremental updates to the classifier in operation.
Memory-based classifiers, especially density estimation based classifiers [10] are
an excellent choice for such applications due to the practical benefits of ease of
implementation, incremental nature and model free operation, and theoretical
advantages of implicit smoothing, robustness to noise and automatic relevance
weighting of the data. However, an embedded device is unlikely to be able to
hold a large training data in memory (which could potentially keep increasing in
size as new training data arrives). A viable option then is to employ exemplar
learning (EL) techniques to find a training subset comprising a few carefully
selected exemplars of high functional value that fit in memory and effectively
delineate the class boundaries [1]. Sometimes, it is even acceptable to incur
a small classification accuracy loss to conserve critical device resources. Since
these devices are often expected to have a real-time performance, a small ex-
emplar set also results in improved runtime performance. Effective EL schemes
are thus essential for any memory-based classifier operating under resource con-
straints.

1.1 Exemplar learning on embedded devices

Exemplar learning (also known as case-based reasoning [16, 22]) is a combina-
torial optimization problem similar to that of feature selection [13]. Due to the
high complexity of the optimization procedure involved, it is often preferred to
use randomized [15] or greedy methods [18, 3]. Over the years, EL solutions
have been proposed using nearest neighbors [1], genetic algorithms [5], vector
quantization [11] and density estimation based classification techniques [8].

EL research has mostly advanced in the context of nearest neighbors under
the assumptions of Aha’s algorithms [1] and more effective pruning approaches
that operate on intricate neighborhood characteristics have been proposed [4].
Wilson et al. [18] provide a comprehensive survey of popular EL approaches in
their work. They also proposed a suite of EL algorithms (DROP1-DROP5),
which to the best of our knowledge are the most widely accepted approaches.
In the rest of this section, we identify the issues with applying the DROP algo-
rithms in an embedded device setting:

1. Incremental Update: DROP algorithms are computationally intensive,
offline, and are not incremental in nature. They require the original train-
ing dataset in the memory throughout the execution of the exemplar learn-
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ing procedure1. This makes these approaches inapplicable for embedded
devices where memory is limited, and for applications where the training
data is updated regularly.

2. Ordered Removal: Given an appropriate ranking of the training in-
stances, the user can choose high-ranked instances that fit in the available
memory. However, for all DROP schemes, the size of the exemplar set
is determined at runtime and cannot be user defined. To the best of our
knowledge, the ranking heuristic proposed by Xi et al. [20] is the best
known approach that can be used to rank instances in DROP algorithms.
However, as we will show in our experimental analysis, this scheme is
adhoc and does not perform well.

3. Robustness: DROP algorithms learn exemplars based on the local neigh-
borhood structure and make instance removal decisions based on the error
rate performance. This approach is sensitive to noise and class-imbalance
issues. We argue that using global methods such as density estimation and
performance analysis based on ROC (Receiver Operating Characteristic)
curves results in high-quality exemplar sets.

In this paper, we propose two novel incremental EL schemes based on the Parzen
kernel density estimation classifier (PKDE) [10] that address the issues presented
above. Our algorithms are motivated by the greedy selection scheme proposed
by [3], where given a training dataset, we remove one instance at a time that
is least likely to contribute towards the classification decision. Our proposed
methods are as follows:

• EBEL (Entropy Based EL) – This method removes instances from the
training set based on their information content as opposed to the error
rate. Instead of using an adhoc ranking scheme, it removes a training
instance whose removal causes the least amount of drop in the conditional
entropy of the class indicator variable insuring minimum loss of informa-
tion. EBEL is incremental, has low computational overheads and offers
effective ordered removal.

• ABEL (AUC Based EL) – This method prunes data based on AUC (Area
under ROC curve) performance. ABEL uses a validation set and prunes
an instance if its removal offers the least drop in the AUC computed for
this validation set. Though computationally more intensive than EBEL,
we show that using the AUC’s equivalence to the Wilcoxon-Mann Whit-
ney statistic [21] and our proposed incremental method for updating the
validation set scores, the runtime performance of ABEL can be reduced
significantly.

While both the algorithms are incremental and suitable for an embedded
device, ABEL is more demanding on computational resources. This is primarily

1DROP1 can be used in an incremental setting but it is known to have a significantly worse
performance than other DROP algorithms

3



because of the overhead of maintaining the validation set in memory and re-
peated AUC computations. However, unlike EBEL, it offers robustness to class
imbalance in the training data. As we will show in our experimental analy-
sis, the two algorithms outperform traditional EL methods offering excellent
tradeoff between runtime performance and exemplar set quality.

2 Incremental Exemplar Learning

We represent the original training set by T s.t. |T | = N . An exemplar set with
n instances is denoted as Sn s.t. Sn ⊆ T where SN = T . Given an exemplar
set SN , our objective is to be able to incrementally compute smaller exemplar
subsets (Sn|(1 ≤ n < N) ∧ (Sn ⊆ Sn+1)), by removing one instance at a time,
such that the drop in classification accuracy in transitioning to Sn from Sn+1 is
as small as possible. Furthermore, unlike the DROP algorithms, this transition
step should use information available from exemplar set Sn+1 only and not
from the original training set T . This methodology naturally incorporates any
new batch (or stream) of training data. When the system is in operation with
exemplar set Sk of size k and a new training subset Tnew (with possibly new
target classes) arrives, we proceed with pruning the {Sk ∪ Tnew} dataset, until
a new exemplar subset S ′k of operational size k is obtained. We present the
details of using effective data structures that help us efficiently obtain Sn from
Sn+1 in Section 2.2.

2.1 The Parzen Kernel Density Estimation Classifier

PKDE is a well-known and one of the most widely accepted non-parametric
density estimation technique. Given s samples {X1, X2, · · ·Xs} drawn from a
density function f(x) ∈ <1, the Parzen density estimate is given by:

f̂(x) =
1
sλ

s∑

i=1

κ

(
x−Xi

λ

)
, (1)

where κ(.) and λ are called the kernel function and the kernel bandwidth re-
spectively. The kernel bandwidth is interpreted as a smoothing parameter and
the kernel function as the relevance weighting function. A popular choice for
the kernel function is the Gaussian kernel, κ(x) = 1√

2π
e−

1
2 ||x||2 . If the kernel

bandwidth is chosen as a function of the sample size s.t. λ = λ(s), then the
density estimates obtained using Eq. 1 are asymptotically unbiased when the
following conditions hold true:

lim
s→∞

λ(s) = 0, and
∫ ∞

−∞
κ(x)dx = 1. (2)

A detailed analysis on the properties of the PKDE can be found in [14]. We
now present our notations and their usage in PKDE based classification. For a
given class c and training subset Sn, we define set the Zc

n as follows:
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Zc
n = {z|(z ∈ Sn) ∧ (class(z) = c)}. (3)

Given a subset Sn, the density estimate of an instance x belonging to class c is
given by:

fn
c (x) =

1
|Zc

n|λ
∑

y∈Zc
n

κ

(
x− y

λ

)
. (4)

If the total number of classes is denoted by C, then the prior πn
c of each class

is:

πn
c =

|Zc
n|

n
. (5)

For an arbitrary instance x, we can now compute its posterior probability of
belonging to a particular class c given the training dataset Sn as follows:

p(c|x)Sn =
πn

c fc(x)∑C
j=1 πn

j fj(x)
,

=

∑
y∈Zc

n
κ

(
x−y

λ

)
∑

y∈Sn
κ

(
x−y

λ

) . (6)

For a binary classification problem, if the two classes are denoted by c+ and c−,
then the merit-score2 γn(x) of an unknown instance x given the training set Sn

can be obtained as follows:

γn(x) = p(c+|x)Sn − p(c−|x)Sn . (7)

The merit-score values can then be used for classification accuracy analysis using
ROC curves, AUC computations or classifier threshold selection [7].

2.2 EBEL: Entropy-Based Exemplar Learning

EBEL is a greedy algorithm motivated by the leave-one-out cross validation
(LOOCV) scheme. For each instance x ∈ Sn, EBEL computes the conditional
entropy of the class output variable using Sn \{x} as the training set and x as a

2In the rest of this paper, it is assumed that a high merit-score is associated with a greater
chance of an instance belonging to the positive class c+.
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testing instance. It then chooses to discard the instance whose removal results
in the least conditional entropy loss. If C denotes the class output variable, p(x)
the prior on a training instance x and H(C|x) the entropy of the class variable
conditioned on the presence of instance x then EBEL prunes instances according
to the following rule:

Sn−1 = Sn \ {argmin
x∈Sn

[H(C|x)]} where, (8)

H(C|x) = −p(x)
C∑

c=1

p(c|x)Sn\{x} log(p(c|x)Sn\{x}).

Assuming that the training data is independent and identically distributed
(i.i.d.), the prior p(x) on an instant x is a constant and can be ignored while
making the conditional entropy computations.

The intuition behind EBEL’s pruning rule comes from Fano’s inequality [17]
which shows that the classification error of a classifier G is lower bounded by
the conditional entropy as follows:

P (G(x) 6= C) ≥ H(C|x)− log(2)
log(C − 1)

. (9)

Hence, choosing the subset with least conditional entropy is least likely to reduce
the classification accuracy.

We are now faced with the challenge of finding the most suitable candidate
for pruning in an incremental and a computationally efficient manner. We show
that by storing only the sum of the pairwise kernel values of the training data
(instead of the complete N × N pairwise kernel-value matrix), each outgoing
instance can be found in time linear to the size of the exemplar subset. Given
set Sn, we store the sum of the kernel values of each instance xj ∈ Sn with all
other instances of its own class as follows:

νn[c, j] =
∑

x∈Zc
n∧x6=xj

κ

(
x− xj

λ

)
. (10)

The conditional entropy of the class output variable with each instance xj ∈ Sn

can then be obtained as:

H(C|xj) = −
C∑

c=1

νn[c, j] log(νn[c, j]). (11)

If instance y is chosen for removal using the pruning rule of Eq. 8, then the
ν-matrix can be updated as follows:
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νn−1[class(y), j] = νn[class(y), j]− κ

(
xj − y

λ

)
. (12)

As we have already shown in Eq. 6, the contents of the ν-matrix are sufficient to
compute the conditional probabilities and hence the conditional entropy values
in Eq. 8.

So far, we have ignored the effect of sample size (i.e., exemplar set size)
on kernel bandwidth. Given the original training set T , the kernel band-
width can be obtained using popular bandwidth optimization schemes, such
as LOOCV [10] that minimizes mean square error (MSE). However, as we have
shown in Eq. 2, the kernel bandwidth is not independent of the sample size,
which in our case is continuously changing. Since, performing the LOOCV after
each pruning step is computationally infeasible, we need to further investigate
the relationship of the kernel bandwidth to the sample size.

If the sample’s true density f̂(x) is continuous in the rth order and does not
change with the sample size, then the optimal bandwidth λ(n), that minimizes
the MSE is related to the sample size n as follows [14]:

λ(n) =
f̂(x)

∫ ∞

−∞
κ2(y)dy

(2nrkrfr(x))
1

2r+1
, (13)

where kr is called the characteristic component of the kernel function κ(.). For-
tunately, most of the terms in the above equation are independent of the sample
size, and for a typical case of r = 2, we can obtain the optimal bandwidth for a
sample of size n as:

λ(n) = λ(N)
(

N

n

)0.2

, (14)

where λ(N) is the bandwidth obtained using the training dataset of size N ,
that minimized the MSE. Although this prevents a significant computational
effort of repeated bandwidth optimization with changing sample size, a band-
width update still entails the recomputation of the ν-matrix in Eq. 12. Since,
the bandwidth varies slowly with the sample size as n−0.2, we update the ν-
matrix periodically when Nlast/n >

√
Nlast

α , where Nlast was the size of the
sample when the last bandwidth update occurred and α is user-specified sensi-
tivity parameter. This formulation insures that the runtime complexity of the
incremental steps in EBEL is always linear in the size of the training set being
pruned. Thus, ignoring the initial bandwidth optimization and ν-matrix com-
putation costs, the runtime complexity of EBEL for obtaining an exemplar set
of size k from a training set of size N is O((N − k)α2N).

Algorithm 1 outlines the details of the EBEL procedure. When the system
is already using set Told for memory-based classification and is updated with
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Algorithm 1 EBEL
Inputs: Existing Training dataset: Told, New Training dataset: Tnew, Desired
size of training subset: k, Number of classes: C, Kernel function: κ, bandwidth
optimized for Told: λ̂, Bandwidth update sensitivity parameter: α
Outputs: Desired Training subset: S s.t. |S| = k

1: S ← Told ∪ Tnew, N ← |Told|+ |Tnew|, λ← λ̂
(
|Told|

N

)0.2

2: Initialize ν-matrix s.t., ν[c, q]←
∑

(x∈S)∧(class(x)=c)∧(x 6=xq)

κ

(
xq − x

λ

)

3: while |S| > k do

4: I ← argmin
xi∈S

−1 ∗
C∑

c=1

ν[c, i]∑C
c=1 ν[c, i]

log

(
ν[c, i]∑C

c=1 ν[c, i]

)
{xI ’s removal offers

least entropy drop}
5: for i← (j|xj ∈ S) do
6: ν[class(xI), i]← ν[class(xI), i]− κ

(
xi−xI

λ

) {Update ν-matrix}
7: end for
8: S ← S \ {xI} {Remove xI from S}
9: if N

|S| >
√

N
α then

10: λ← λ̂
(

N
|S|

)0.2

, N ← |S| {Update bandwidth}
11: goto Step 2 {Recompute ν-matrix}
12: end if
13: end while

a new batch of training data Tnew, Algorithm 1 finds an exemplar set S s.t.,
|S| = k. The size k of the desired exemplar set is provided as an input param-
eter. The bandwidth value λ corresponding to Told is assumed to have been
optimally obtained offline. Note that the same algorithm can be used to ob-
tain the exemplar set of size k from the original training dataset T by setting
Tnew = ∅ and Told = T . The algorithm first combines training samples from
both the new and the old training data and then updates the corresponding ker-
nel bandwidth accordingly (Step 1). After computing the ν-matrix, it prunes
set S until its size reaches the desired value of k. The instances are pruned one
at a time (Steps 4-8) and the ν-matrix is updated if the sample size becomes
smaller than that allowed by the user parameter α (Steps 9-12). The resulting
exemplar set S, replaces the older training set Told and is used for classifying
the future unlabeled instances.

2.3 ABEL: AUC-Based Exemplar Learning

Although EBEL is an efficient EL scheme, it has certain disadvantages that it
shares with the traditional EL methods: (1) it ignores the class population
ratios while making the instance removal decisions. This problem is critical to
incremental exemplar learning where removal of each instance or addition of new
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training datasets continuously skews the class populations; (2) an instance plays
the dual role of a training instance (as long as it is not pruned) as well as that of
a testing instance (while computing conditional probabilities in Eq.8). Hence,
at different stages of the pruning, the performance is validated (i.e., the entropy
is computed) against datasets differing in composition and size, reducing the
statistical significance of the results.

In this section, we propose the ABEL algorithm, that addresses the aforemen-
tioned issues. ABEL ignores the dependencies within the training data samples
and operates by monitoring the AUC (Area under ROC curve) performance of
the unpruned training data computed over a consistent validation set. The val-
idation set is extracted from the training data at the beginning of the pruning
procedure, and the instances are then removed such that the AUC performance
drop as a result of the removal is minimized. Given a training set Sn, and a
validation set V such that {V ∩ Sn} = ∅, ABEL prunes an instance x according
to the following rule:

Sn−1 = Sn \ {argmax
x∈Sn

[AG(V,Sn \ {x})]}. (15)

where, AG(X, Y ) denotes the AUC value using testing dataset X, training
dataset Y when classifier G is used to score the testing instances. ABEL provides
a simple yet effective EL framework that generalizes to any classifier. However,
given Sn each pruning step comes at the increased computational cost of n AUC
computations and the memory overhead for holding the validation set. In the
rest of this section, we first discuss how the complexity of any AUC computation
can be reduced using the Wilcoxon-Mann-Whitney statistic [21] followed by a
discussion on how the update scheme presented in Section 2.2 can be used to
enhance the runtime performance of ABEL when used with a PKDE classifier.

Although the ROC is considered to be a continuous curve, in practice it turns
out to be a step function [7]. Hence, given the merit scores of the instances in the
validation set, the AUC can be computed directly (without actually generating
the ROC curve) in O(|V|2) time. However, for a finite set of instances, it can
be shown that the AUC (denoted by A) is equal to the normalized Wilcoxon-
Mann-Whitney (WMW) statistic [9]:

A =

∑n
i=1

∑p
j=1 1(γ+

i >γ−j )

np
, (16)

where Γ+ = {γ+
1 , γ+

2 , · · · , γ+
p } are the merit-scores of the positive class instances

and Γ− = {γ−1 , γ−2 , · · · , γ−n } are the merit-scores of the negative class instances
in V. (|V| = n + p).

Statistic A is the estimator of P (Γ+ > Γ−) (i.e., the probability that all pos-
itive class instances get a higher merit-score than the negative class instances)
and if all the merit scores are sorted in nondecreasing order s.t. δi is the rank
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Algorithm 2 ABEL
Inputs: Existing Training dataset: Told, New Training dataset: Tnew, Desired
size of training subset: k, Classifier to use: G, Validation-set’s fractional size: η
Outputs: Desired Training subset: S s.t. |S| = k

1: S ← Told ∪ Tnew

2: Initialize V s.t. (V ⊆ S) ∧ (|V| = η ∗ |S|) {Extract the validation set}
3: S ← S \ V {Ensure S ∩ V = ∅}
4: while |S| > k do
5: S ← S \argmaxxi∈S AG(V,S \{xi}) {Remove instance of least AUC loss}
6: end while

of γ+
i , then A can be further simplified to [21]:

A =
1
np

(
p∑

i=1

δi − p(p + 1)
2

)
. (17)

Eq. 17 shows that given the merit-scores of the validation set instances, the
AUC value can be computed in O(|V| log(|V|)) time. However, obtaining the
merit-scores necessitates classification of all the instances in the validation set.
If O(G) denotes the time taken by a classifier G to classify a testing instance,
then the runtime complexity of removing one instance using ABEL is O(|V| ∗
(log(|V|) + G)).

In Algorithm 2, we have outlined the ABEL procedure which is similar to
Algorithm 1 in terms of input and output parameters. However, it prunes in-
stances using a more robust methodology than EBEL and requires an additional
parameter η that determines the size of the validation set. The algorithm first
extracts the validation set from the training data, given its fractional size η (Step
2) and then uses only the remaining instances as the training samples (Step 3).
The optimal value of η depends on the memory constraints and the complexity
of the classification problem. While a large value of η results in a high memory
overhead, a small value reduces statistical significance of the AUC-scores of the
validation set elements resulting in worse instance removal decisions. In our
experimental analysis, we found that setting η = 0.1 offered a reasonably good
tradeoff between the two extremes for a wide variety of problems.

Though ABEL provides an effective EL framework that generalizes to any
classifier it suffers from high computational complexity. Its runtime perfor-
mance can be significantly improved when used with the PKDE classifier. As
we have already shown in Section 2.2, the PKDE merit-scores of the validation
set elements can be incrementally updated in O(α2|V|) time. Since each AUC
computation takes O(|V| log(|V|)) time, by setting |V| = ηN , the runtime com-
plexity of ABEL for obtaining an exemplar set of size k from a training set of
size N is O(N(N − k)(η log(ηN) + α2)).
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3 Experimental Evaluation

We compare the performance of our proposed schemes against the popular
DROP1 and DROP2 algorithms proposed by Wilson et al., [18] coupled with
the ranking scheme proposed by Xi et al., [20]. While DROP1 is incremental in
nature and can be used in the embedded device setting that we are interested
in, DROP2 (including its other variants DROP3-DROP5) requires access to the
entire training data during its EL stages and is inapplicable in an incremental
setting. We include it in our experimental evaluation to have a comprehensive
analysis and to benchmark our proposed schemes against the state of the art.

We conducted several experiments on a variety of machine learning datasets
from the UCI [2] and UCR [12] machine learning repositories. In this paper, we
report critical results on the following datasets:

1. Magic Gamma [2]– This dataset was generated by the registration of high
energy gamma particles in a ground-based atmospheric Cherenkov gamma
telescope using the imaging technique. The dataset has 10 attributes and
5, 000 instances. The classification task was to distinguish images caused
by primary gamma rays from those caused by other cosmic rays.

2. Vehicle Silhouette [2] – This dataset consists of vehicle silhouettes (repre-
sented using 18 features) of four types of vehicles (Opel, Sara, Bus or Van).
In our experimental setup, the classification task was to distinguish the
“Bus” class from the other vehicle classes. The dataset has 846 instances.

3. Face(all) [12] – This dataset contains 1, 690 instances from 14 classes that
correspond to human faces (from both genders) as a 131 point time series.
In our experimental setup, the classification task was to distinguish the
“Face 1” class from the other face classes.

4. Statlog [2] – The dataset consists of the multi-spectral values of pixels in a
satellite image of a landscape. The classification task is to use the spectral
values to predict the soil type in the landscape image. The dataset has six
different classes with 6, 435 instances and 36 features. In our experiments,
the objective was to distinguish the “Grey damp soil” class from the other
classes.

Having multiclass datasets help us robustly evaluate the performance of the
proposed EL schemes in an incremental setting, where data belonging to a par-
ticular class may cease to exist in the exemplar set as a result of pruning, or new
classes appear as a result of training data updates. We compared classification
accuracy on the ROC curve using the AUC metric [6]. For all our experiments,
the initial kernel bandwidth for PKDE and the neighborhood size for the DROP
algorithms were obtained offline using LOOCV technique. Throughout our ex-
periments, we have used α = 2 and η = 0.1 unless stated otherwise. The
validation set for ABEL was always randomly selected from the initial training
set. In the rest of this section, we denote the initial training dataset by SN
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(e.g., for the Vehicle dataset N = 846) and the exemplar sets learned from this
set as Sn.

Figure 1 shows the classification performance using our proposed schemes
as we vary the desired exemplar-set size for different datasets. The results
were aggregated over a 5-fold cross validation scheme. The x-axis shows the
exemplar-set size (|Sn|) as the percentage of the original training dataset (|SN |)
and the y-axis represents the AUC-value obtained using Sn as the training data
for the classifier. The size of the validation set was kept fixed at |V| = η ∗ |SN |
for all the datasets. As seen in the figure, reducing the value of |Sn| results
in classification accuracy drop. Although the individual classification perfor-
mance on different datasets is different, for high values of |Sn|, the change in
the classification accuracy for all EL methods is insignificant. However, the
classification accuracy drops rapidly when the required exemplar-set size is sig-
nificantly small (i.e., less than 10%). As seen in Figures 1(c)-1(d), both ABEL
and EBEL perform significantly better than the incremental DROP1 algorithm.
The non-incremental DROP2 scheme shows a better performance with small
exemplar set sizes on Magic Gamma (Figure 1(a)) and the Vehicle datasets
(Figure 1(b)). Since DROP2 uses the entire training dataset for making an
instance removal decision as opposed to using only the exemplar set data, the
effect of an instance removal is validated against a significantly larger dataset
resulting in better performance. However, the performance of DROP2 is always
worse than that of ABEL even though it used only a small percentage (η = 0.1)
of the training data for validation. The performance of DROP algorithms is
especially worse on the Face(all) data with DROP1 becoming unstable at low
memory conditions dropping to AUC values of as low as 50 (Figure 1(c)).

In order to verify that the performance enhancements obtained using our
methods were primarily due to a better EL scheme that generalizes well to
other classifiers, we evaluated the classification performance with the resulting
exemplar sets using other classifiers as well. In Figure 2, we show the results
obtained using the popular SVM classification algorithm. We present the entire
ROC curves obtained using exemplar sets with 90% instances removed from
the original dataset (|Sn| = 0.1|SN |). The exemplar sets were obtained under
the experimental conditions used in Figure 1. For each fold of the cross valida-
tion step, we first applied the four EL schemes to remove 90% of the training
instances. The data in the resulting exemplar set was then used to train the
SVM with the Radial Basis Function (RBF) kernel. The final ROC curve was
obtained after vertical averaging [7] of the individual ROC curves from each
fold. While the individual performance on different datasets using different EL
methods is of less importance, Figure 2 should be used to compare the rela-
tive performance of the EL methods. For example, the ROC curve of EBEL for
the Face(all) dataset (Figure 2(c)) shows a better classification accuracy than
that of ABEL, a trend also observed earlier in Figure 1(c). This trend in the
relative performance for all datasets is similar to that seen in Figure 1, with
ABEL and EBEL outperforming the DROP algorithms. The results shown in
Figures 2(a)-2(d) indicate that our EL schemes provide high quality exemplar
sets that generalize to other classifiers equally well.
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Figure 1: AUC performance against exemplar set size.

CPU Usage
EL Method Memory Overhead Face(all) Vehicle Magic Gamma Statlog

x=180µsec x=59µsec x=2, 600µsec x=2, 200µsec

DROP1 O(n) x x 2.2x x
DROP2 O(N + n) 1.6x 1.8x 4.1x 1.8x
EBEL O(n) 5.6x 6.1x x x
ABEL O(ηN) 252x 141x 126x 125x

Table 1: Computational resource demand for different EL schemes.

We now analyze our proposed EL methods in terms of their computational
resource demand. While DROP1 and EBEL methods do not store any data in
the memory other than the exemplar set being used for classification (or in the
process of being pruned), the DROP2 algorithm incurs the overhead of main-
taining the entire training data (SN ) and ABEL the overhead of maintaining the
validation set (V). While EBEL and ABEL will incur the overhead of maintain-
ing the ν-matrix in memory for their efficient execution, the DROP algorithm
maintains a kd-tree structure for efficient neighborhood lookups. In Table 1, we
have summarized the overall memory overhead (other than holding the exem-
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(a) Magic Gamma, |Sn| = 397
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(b) Vehicle, |Sn| = 68
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(c) Face(all), |Sn| = 138
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Figure 2: Classification performance using the SVM classifier after 90% instance
removal.

plar set Sn) and the mean CPU time taken to prune one training instance from
the training dataset. The results were obtained for the experiments shown in
Figure 13. We show the memory overheads in terms of the original training data
size (|SN |) and the exemplar-set sizes (|Sn|). We compare the CPU efficiency
of different algorithms on a relative scale where ‘x’ represents the most efficient
algorithm. The individual values of ‘x’ are shown in Table 1. The CPU usage
shown does not include offline overheads of parameter learning, initial kd-tree
construction and ν-matrix computations, however data structure update costs
are accounted for. We observe that DROP1 and DROP2 are more efficient for
small problems (both Face(all) and Vehicle datasets have less than 1, 700 in-
stances). However, for larger problems (Magic Gamma and Statlog) EBEL is
the most efficient algorithm. Due to the overhead of the AUC computations,
ABEL is significantly more CPU intensive than the other methods, and is thus
well suited in an offline EL framework. However, EBEL is incremental, more
efficient than DROP algorithms and offer robust pruning results thus making it
an excellent choice for realtime systems.

3All algorithms were implemented in C and the experiments were conducted on an Intel
Core Duo, with 1.66 GHz processor and 2 Gigabytes of memory.
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Figure 3: AUC performance in online setting.

We compare the performance of DROP1 and EBEL in an online setting
in Figure 3. For each fold of the cross-validation step, we split the training
data such that one half of it is first used to obtain an EL set of |Sn| = 250
samples, and then the other half is used as a training data stream. The training
stream updates the EL set with new training instances and the EL algorithm
is used again to compute a new exemplar set of 250 samples. We created a
training stream of 100 such updates and the AUC performance is calculated
after each such update. Figures 3(a)-3(d) show the mean AUC performance
against time on the x-axis (each time unit corresponds to one training stream
update). As seen in the figures, EBEL consistently outperforms the DROP1
algorithm. Note that new classes may appear in the training stream (for example
the Face(all) and the Statlog datasets have 31 and 7 classes respectively) varying
the individual performances however it does not affect relative AUC performance
enhancements obtained using EBEL. The classification performance of EBEL on
the Face(all) dataset (Figure 3(c)) is observed to be consistently near 100%
accuracy.

4 Summary and Future Work
In this paper, we have presented two novel exemplar learning schemes EBEL and
ABEL. EBEL learns exemplars from an information-theoretic perspective while
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ABEL uses a validation set and prunes instances based on the AUC performance.
ABEL is computationally more intensive than EBEL and hence more suitable in
an offline EL framework like the popular DROP2 scheme. However, ABEL
returns high quality exemplar sets as compared to DROP2 with a significantly
lower memory overhead. Using a comprehensive experimental analysis we have
shown that our proposed methods consistently outperform the popular DROP
algorithms and the exemplar sets obtained using our methods generalize well to
other classifiers such as SVM. In the future, we plan to extend our work in the
following directions:

1. Investigate on approximate AUC computation methods to reduce its run-
time complexity further.

2. Avoid recomputation of the ν-matrix by developing efficient update schemes.
This would also remove the user parameter α from the system and improve
the quality of pruning results.

3. Develop efficient methods to incorporate class imbalance awareness in
EBEL.
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