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Abstract—Given a wireless network where each link undergoes
small-scale (Rayleigh) fading, we consider the problem of routing
a message from a source node to a target node while minimizing
energy or power expenditure given a fixed time budget, or vice
versa. Given instantaneous channel state information, we develop
tight hyperbolic bounds on the quantities of interest and solve the
related optimizations in closed form or via lightweight computa-
tions. If only average channel state information is available, prob-
abilistical performance measures must be introduced. We there-
fore develop another set of bounds that supports resource-optimal
routing with a guaranteed success probability. Our results rest
on novel formulations and solution methods for hyperbolic convex
programs and, more generally, nonlinear multicriterion combin-
atorial optimization.

Index Terms— stochastic routing, convex combinatorial optim-
ization, wireless channel, Rayleigh fading

I. INTRODUCTION

Wireless ad-hoc networks have emerged in recent years as an
extremely important research area [1], [2]. In contrast to cellu-
lar communications, they avoid infrastructure, instead deploy-
ing a large number of low-cost nodes that forward the informa-
tion. This approach not only decreases cost, but also decreases
sensitivity to failure of a single link, e.g., due to bad propagation
conditions. For these reasons, ad-hoc networks are promising,
among other things, for factory automation and related applic-
ations that require ultra-reliable communications links [3].

Ultra-reliable wireless networks face two contradictory re-
quirements: on one hand, the energy consumption has to be
low, since nodes are battery operated, and exhausting the bat-
tery leads to node failure. On the other hand, the probability for
successful transmission of data should be very high—by which
we mean that a packet of data is transmitted from a source to
a destination within a prescribed delay. We are interested in
choosing a route (i.e., a sequence of nodes that pass the mes-
sage along until it reaches the destination) that fulfills the delay
constraints while using little energy. A simple solution to this
problem uses a physical-layer transmission with fixed packet
size and coding rate, where a packet is transmitted success-
fully, with a fixed time expenditure, if the link is good enough.
Fulfilling the delay constraint is then equivalent to limiting the
number of hops—a problem that has been well explored in the
literature.

However, this simple approach ignores the possibility of
speeding up transmission by investing more energy. For a
single link, the tradeoff between transmission time and energy
is straightforward: according to Shannon’s capacity equation,

the possible data rate increases with the transmit power. How-
ever, for networks with multiple hops, the tradeoff becomes
much more complicated: it involves the question of which route
to choose, as well as how much energy should be expended in
each of the hops. In the current paper, we deal with this joint
routing—energy/delay tradeoff problem for various amounts of
channel knowledge.

To make the problem more precise, consider the follow-
ing formulation: we are dealing with unicast in a network
of N nodes, each of which can transmit with variable power
and—due to adaptive modulation and coding (AMC)—can trade
off transmission power and transmission time; such AMC cap-
ability is widespread in modern wireless systems1. A trans-
mission is only considered successful if the message gets from
the source to the destination with a delay that is smaller than
a bound B (e.g., signals controlling a machine have to arrive
within a very short time). We wish to find the routing and
per-hop energy assignment that minimizes the overall energy
expenditure while at the same time enabling a probability of
successful transmission of q, where q is typically in the range
of q ∈ [90, 99.999]% 2. We assume that only the statistics
of the channel state information (CSI) is available for the rout-
ing: Since wireless channel states can be constantly changing,
a frequent update of the CSI throughout the network would lead
to unacceptable overhead (typical coherence times of wireless
propagation channels, i.e, the required update interval, is on the
order of a few milliseconds [4]). Especially in large networks
the overhead traffic communicating the routing information for
all possible links would decrease spectral efficiency and battery
lifetime. On the other hand, on-demand route discovery is not
feasible because the route discovery process often takes longer
than the admissible delay of the information.

The problem is thus well-defined and practically relevant, but
extremely hard to solve: There are on the order of N ! pos-
sible routes in the network, and for each route, the transmit
energies of the nodes have to be optimized under probabil-
istic constraints. To our knowledge, there is no paper in the
literature tackling this issue. The seminal work of [5] con-
sidered delay constraints but only with respect to scheduling
on a single link; related work like [6], [7] considered the en-
ergy/delay tradeoff, but again only on a single link. A number
of papers (e.g., [8] considered joint routing and power control,

1This is different from a scenario with fixed packet size and coding rate,
where a packet has to be dropped on the link if the attenuation on a link is too
strong.

2It is well-known that due to the randomness of wireless channels, costs can
rise to ∞ as the guarantee approaches 100%.
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but under the assumption of instantaneous CSI, and without
delay constraints. Ref. [9] investigates routing with probab-
ilistic delay constraints, but assumes fixed transmit power for
each node.

In the current paper, we develop an near-optimum solution
method that proceeds in several steps, each step drawing on
a number of novel and recently-developed mathematical con-
structions. In a first, preliminary step (Sec. III), we investigate
the optimum energy-delay tradeoff under the assumption of in-
stantaneous CSI. We find the optimum energy allocation on a
given route by bounding the delay with hyperbolic functions of
the transmit energy in the region of interest (Sec. IV). Find-
ing the optimum route can be done by means of a new, effi-
cient mathematical technique that performs combinatorial con-
vex optimization (Sec. V). We then show that the problem of
statistical CSI can be reduced to that of the deterministic CSI

by means of appropriate bounding techniques (Sec. VI). We
stress that these algorithm are not heuristic; they fulfill prov-
able bounds on the suboptimality.

Due to space constraints, all results in this paper are stated
without proof. A longer manuscript with all proofs and a num-
ber of generalizations is available upon request.

II. SYSTEM MODEL

A. Deterministic setting

From the Shannon capacity equation, the transmission time
per nat on a 1Hz bandwidth AWGN channel at full link capacity
is

t = log(1 + pγ)−1 (1)

seconds, where p is the power (normalized by the noise power)
and γ is the channel power gain, or inverse attenuation. Trans-
mission time scales linearly with nats/bandwidth so all formulæ
herein are on a per-nat/Hz basis. The inverse,

p = (exp(1/t) − 1)/γ , (2)

gives the power needed for a desired transmission time, with
energy expenditure

e = pt = t(exp(1/t) − 1)/γ , (3)

of no less than 1/γ (because limt→∞ e = 1/γ). Conversely,
spending e ≥ 1/γ energy units yields a transmission time of

t = (−1/γe − W−1(−1/γe exp−1/γe))−1

� (log γe + log(1 + log γe))−1
(4)

seconds, where W−1(·) is the branch of the multivalued Lam-
bert W function that maps [− exp−1, 0) → [−1,−∞). The
inequality is exact at γe = 1 and a good approximation for
γe > 1. The relationships in Eq. (4) may be new to the literat-
ure.

These functions are convex decreasing on the positive line,
specifying deeply “elbowed” resource trade-offs over the prac-
tical operating range of wireless devices. For example, eqn. 1
has the power-series approximation t ≈ 1/pγ + 1/2. If one oper-
ates strictly in the subranges that lie on either side of the elbow
(typically, high-bandwidth or low-SNR), linear approximations

are useful [10], [11]. Here we seek nonlinear solution for the
entire trade-off curve that are optimal or boundedly suboptimal.

Given a relay or network of wireless channels, each with a
unique channel gain γi and convex decreasing resource trade-
off yi = fi(xi), we pose the following questions:

1) Allocation: Given a series of N links and a total (per-
nat/Hz) budget B on resource x, what allocation minim-
izes total use of resource y?

min
∑

i

fi(xi) such that
∑

i

xi ≤ B (5)

2) Routing: What route through a network G = {V, E} of
M = |E| links affords the optimal allocation?

3) Re-allocation: Given partial or novel information, can
the optimal allocation be revised on-the-fly?

These deterministic optimizations are useful for small paths
and networks where channel state measurements remain valid
long enough to be acted upon.

B. Stochastic setting

In many settings, instantaneous channel state information
may not be measurable or constant over the time scale of in-
terest, so we must work with the probability distribution over
channel states. Instead of optimizing use of one resource sub-
ject to a constraint on another, we minimize use of one resource
subject to a bound on the probability of success in meeting a
constraint on the other, i.e. Eq. (5) is replaced with

min
∑

i

yi s.t.Pr(
∑

i

Xi ≤ B) ≥ q. (6)

Here yi is a resource allocated to the ith link, Xi is a random
variable whose PDF is parameterized by yi, B is a budget, and
q is a minimal acceptable probability of success.

1) Distributions over time and power costs: Stochasticity
arises in real settings because the channel gain γ is random
variable that is exponentially distributed with mean γ. Solv-
ing eqn. 2 for γ reveals that (−1 + exp 1/t)/p is exponentially
distributed with parameter θ = 1/γ, while p/(−1 + exp 1/t) is
inverse-gamma distributed with parameters α = 1, β = 1/γ.
Solving these for the conditional time and power CDFs yields

Pr(t ≤ x|p) = exp
1 − exp 1/x

pγ

Pr(p ≤ x|t) = Γ(1,
−1 + exp 1/t

xγ
) = exp

1 − exp 1/t

xγ

where Γ(a, b) .=
∫ ∞

b
ta−1e−tdt is the incomplete gamma func-

tion. These CDFs give the probability of meeting a time (resp.,
power) constraint given an expenditure of power (resp., time).
Similarly, energy and time have the stochastic trade-off

Pr(t ≤ x|e) = exp{x(1 − exp 1/x)/(eγ)}
Pr(e ≤ x|t) = exp{t(1 − exp 1/t)/(xγ)}

These subexponential distributions have several unfavorable
properties: They are more heavy-tailed than any distribution in
the exponential family. They are not closed under convolution,
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Fig. 1. Trade-off and upper bound curves for typical operating ranges of
wireless devices. Vertical axes are placed where bounds are exact. Tighter
bounds are available on these ranges and on subranges.

so the sum of random variables in eqn. 6 cannot be evaluated.
They have infinite moments, so one cannot reason about expect-
ations. In short, it is difficult if not impossible to analytically
compare combinations of these distributions.

Even the deterministic setting is challenging: the allocation
problem is a convex combination of convex functions, there-
fore in principle it can be solved numerically through various
convex optimization techniques [12]. However the numerical
effort can still be considerable and might require more time and
energy than is being saved. To be useful, solutions should be
computationally lightweight and sufficiently accurate to be re-
liable in resource-starved situations. To that end, we will intro-
duce a family of tight upper bounds on the deterministic trade-
offs, then solve the bounded allocation problems in closed form.
This in turn yields a link characterization that supports near-
optimal routing solutions in O(M log2 M) time for networks
of M links. Finally, we show how the stochastic problem can
be transformed into a deterministic problem and solved.

III. HYPERBOLIC BOUNDS

Our solution begins in the deterministic setting, by upper
bounding the trade-off at each link over some finite practical
range with a hyperbolic curve of the form hi/xn

i + ci for some
global exponent n > 0 and a unique scale factor hi and off-
set ci for each link. Figure 1 shows that as approximations to
the deterministic trade-offs, these are quite good over a large
operating range; with a suitable choice of n the expected ap-
proximation error can always be driven down to a few percent.
Indeed, in many cases we can analytically bound the maximum
and expected error.

Specifically, we upper-bound a convex decreasing curve y =
f(x) with a hyperbolic curve h/xn + c on some interval x ∈
[x0, x1], y ∈ [y1 = f(x1), y0 = f(x0)] using one of four tac-
tics:

(A) Set the two curves to meet at endpoints x0, x1 with

h =
y0 − y1

x−n
0 − x−n

1

, c =
y1x

n
1 − xn

0y0

xn
1 − xn

0

, (7)

choosing n small enough to guarantee an upper bound;
(B) make the curves tangent at some point x = μ ∈ [x0, x1]

with

h = −μn+1f ′(μ)/n (8)

c = f(μ) + μf ′(μ)/n

choosing n large enough to guarantee an upper bound and μ to
minimize the expected or maximum gap;

(C) fit h, c, n to give a good approximation of f(x) and adjust
the offset c to make an upper bound; or

(D) an upper bound on one trade-off can be inverted to yield
a shifted hyperbolic upper bound on the inverse trade-off:

h/xn + c ≥ f(x) ⇐⇒ n
√

h/ n
√

y − c ≥ f−1(y) (9)

As an example, for time t as a function of power p (Eq. (1)),
the hyperbolic bound t ≤ h/pn + c can be fit by making the
curves tangent at some μ > 0 as per Eq. (8):

h =
γμn+1

n(1 + γμ) log(1 + γμ)2
, c =

1
log(1 + γμ)

− h

μn
.

Proposition 1: For all positive p, μ and n ≥ 1, this hyper-
bolic curve is an upper bound, with equality at p = μ.

Remark 1: The approximation can be tightened by choosing
0 < n < 1, however the resulting hyperbolic may be an upper
bound only in some finite interval around μ.
One may choose the point of tangency μ to minimize the
expected approximation error with respect to some distri-
bution on power costs. For example, consider the expected
additive error,

∫
h/pn + c − 1/ log(1 + γp) dPr(p), where

h, c are defined as above and Pr(p) is an exponential density
with mean λ. The integral does not converge, but its de-
rivative w.r.t. μ has a single zero on 0 < μ < ∞ at μ =
λ n

√
(e−p0/λ − e−p1/λ)/(Γ(1 − n, p0/λ) − Γ(1 − n, p1/λ))

(assuming some finite operating range p ∈ [p0, p1]). In a
typical operating regime (γp ∈ [4, 100] SNR, distributed expo-
nentially with mean λ = 10), the additive error is minimized
at μ ≈ 0.95λ at n = 1 and μ ≈ 0.99λ at n = 3/4. Bounds
on maximal and expected error follow algebraically. Less
formally, by simply setting μ = λ and numerically calculating
the expected multiplicative error, we find that the hyperbolic
bound overestimates power costs by < 2.4% on average at
n = 1 and < 1.0% at n = 3/4.

Similar results for all trade-offs are available in the extended
manuscript.

IV. OPTIMAL DETERMINISTIC ALLOCATION

With hyperbolic upper bounds hi/xn
i + ci ≥ fi(xi), the al-

location problem takes the form

min
∑

i

hi/xn
i + ci s.t.

∑
i

xi ≤ B, ∀ixi > 0 (10)

W.l.o.g., we drop the fixed cost
∑

i ci and upgrade the simplex
constraint to equality at

∑
i xi = B. This we can solve in

closed form:
Theorem 1—Hyperbolic Programs: The problem

min
∑

i

hi/xn
i s.t.

∑
i

xm
i = B, ∀ixi > 0 (11)
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for n > 0,m ≥ 1, hi > 0, xi ≥ 0 has unique solution

xi = m

√
B·hm/(m+n)

i /
∑

k h
m/(m+n)
k (12)

with value B−n/m‖h1, h2, · · · ‖m/(m+n) where ‖ · ‖p is the Lp

quasi-norm.
Corollary 1: For the full allocation problem (Eq. (10)) the

cost is upper bounded by

B−n/m‖h1, h2, · · · ‖m/(m+n) + ‖c1, c2, · · · ‖1 (13)
For the remainder of this paper, we will assume m = 1.
A simple example: The optimal n = 1 allocation assigns to

the ith link xi = B
√

hi/
∑

j

√
hj of the budgeted resource and

yi ≤ √
hi

∑
j

√
hj/B + ci of the minimized resource. It can

be shown that for n = 1 hyperbolic bounds on the deterministic
trade-offs, the scale factor varies with the channel attenuation:
hi ≈ z/γi for some constant z. Thus, for example, to min-
imize power use (say, to minimize RF interference with other
wireless devices) and guarantee a delivery deadline, power and
time should be approportioned according to the square root of
the channel attenuation. The allocation inherits suboptimality
bounds from the hyperbolic bounds, so in this case the expec-
ted suboptimality would be < 2.4%.

Before moving on to re-allocation, we point out a closed-
form allocation for horizontally shifted hyperbolics:

Corollary 2: min
∑

i hi/(xi + vi)n + ci s.t.
∑

i xm
i = B is

solved at xi = ((B +
∑

k vk)h
m/(m+n)

i /
∑

k h
m/(m+n)

k − vi)
1/m.

The shift (vi) allows more flexible fits to convex trade-off
curves, but unshifted hyperbolics will prove much more versat-
ile in the routing sequel.

A. On-the-fly and distributed allocation

After computing an allocation and transmitting along the
path, one might reach the ith link and discover its channel
gain has drifted. Revising the optimal resource allocation on-
the-fly is a matter of simple algebra. To do so, it is useful
to propagate and update the partial sum Si

.=
∑

j≥i h
1/(1+n)
j

and the remaining time-to-deadline Bi. Then if the hyperbolic
scale factor for link i changes from hi to h′

i, for n = 1 the
minimal allocation at link i changes from

√
hiS1/B1 + ci to

(h′
i +

√
h′

iSi+1)/Bi + ci.
This immediately suggests a range of distributed algorithms

where we do not determine each hi from instantaneous meas-
urements but instead assume a value for each hi on the basis of
some historical statistic, then update allocations on-the-fly as
above. This idea is developed more precisely in the stochastic
setting in section VI-C.

V. NEAR-OPTIMAL ROUTING

It is possible to compute near-optimal routes with respect to
hyperbolic bounds. To do so, we first introduce the idea of
a linear multicriterion combinatorial optimization, where the
objective is a weighted average of multiple criteria. Typically
one wants to reason about the optimum before the weighting is
known; to do so one considers the entire set of possible solu-
tions, indexed by the weighting parameters. Here we will con-
sider a bicriterion path cost C(P, λ) .=

∑
k∈edges(P) wk(λ)

where P is a path and λ is a weighting parameter that balances
two criteria to determine each edge length:

wk(λ) = h
m/m+n

k λ + B
n/mck .

This defines a Bicriterion Shortest Path (BSP) problem that
maps each source-target path Pi in the network to a line
in the positive quadrant (λ ≥ 0) with slope ai =∑

k∈edges(Pi)
h

m/m+n

k , intercept bi = Bn/m
∑n/m

k∈edges(Pi)
ck.

The key property is that on each line aiλ+ bi, there is a point at
λ = a

n/m

i that indexes the nonlinear cost of the corresponding
path under the optimal allocation, i.e.,

aiλ + bi ∝ B−n/m‖h1, h2, · · · ‖m/(m+n) +
∑

k

ci. (14)

Fig. 2. BSP bundle with costs.

We use this geometry as a
scaffolding to find the min-
imal hyperbolic-cost route.
Figure 2 depicts the bundle
of lines corresponding to all
source-target paths, each or-
namented with its cost point
as per Eq. (14). The in-
fimum of this bundle of
lines is a piecewise linear
concave curve we call the
bundle boundary. The lines
forming the infimum are the
BSP solution set; each rep-
resents a shortest path on
some λ-interval, and can
be queried in O(M log M )
time by Dijkstra’s shortest
path algorithm on scalar
edge weights wi(λ) gener-
ated by an appropriate value
of λ. Our solution revolves
around a curve formed by rolling a line aλ + b around the top
of the boundary, pivoting on its vertices, and tracing the evolu-
tion of the point at λ = an/m.

Theorem 2: For positive m,n, this curve is convex, piece-
wise smooth, and a lower envelope on all possible optimal cost
points for any network having the same BSP boundary.

Figure 3 illustrates that this envelope connects the cost points
of the boundary paths. Therefore one of these paths is either op-
timal or near-optimal with the following suboptimality bounds:

Theorem 3—Hyperbolic Min-Cost Routing: Let Pi,Pj be
two paths whose lines intersect on the bundle boundary at
λij = bj−bi

ai−aj
with aj < ai. The boundary has one such pair that

contains either the optimal route or a near-optimal route with
additive suboptimality upper-bounded by minij(ai− 1

2λij)2 for

n = m = 1 and minij ai(a
n/m

i − λij) + n
m (mλij

m+n )m+n/n for

general m,n. A looser bound ((a
n/m

i − a
n/m

j )/2)m+n/n yields

an n = m = 1 suboptimality ratio of a2
i +bi

(3ai−aj)(ai+aj)/4+bi
.

Remark 2: Note that the population of boundary lines
grows at least polynomially with the number of edges, with
lim|E|→∞ ai − aj = 0; thus suboptimality vanishes asymp-
totically with graph size.
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Fig. 3. Construction of the nonlinear cost envelope, quadratic case. Each
index is associated with a line of the form �i(λ)

.
= aiλ + bi in the positive

quadrant. The figure shows the subset of lines that form the piecewise linear
bundle boundary infi �i(λ) for all λ ≥ 0. Each path’s cost is a point on its
line at coordinate λ = ai, �i(ai) = a2

i + bi. The cost envelope is a piecewise
parabolic curve formed by pivoting a line on each intersection point on the
boundary, and tracing the locus of points satisfying λ = a2/a = a as the slope
a of the line varies between those two envelope lines meeting at the pivot point.
The cost envelope and boundary cost points give a lower and upper bound on
the mininum possible cost mini a2

i + bi attainable by any path in the graph.

Corollary 3: If n = 1 and ∀ij ci = cj , the routing problem
reduces to min-cost path on a graph with edge weights wi =√

hi.
The BSP solution set can be explicitly enumerated and

scanned for the best path, with polynomial smoothed time com-
plexity. However, since the envelope can be characterized para-
metrically and differentiated, we can perform a bisection search
on the slopes of the boundary lines to find the boundary path
having lowest nonlinear cost, using envelope derivatives to de-
cide the correct bisection interval.

Theorem 4: A path whose boundary line has slope ai within
ε of optimal can be found in O(M log2 M log 1/ε) time.

VI. STOCHASTIC METHODS

As argued above, the subexponential nature of the distri-
butions of the optimization variables precludes analytic ap-
proaches. We advocate lower-bounding the probability of suc-
cess with a more tractable family of linearly additive phase-
type distributions. There are several possibilities; in this pa-
per we will use gamma distributions with a common spread
parameter β and varied location parameters αi; e.g., if X1 ∼
Gamma(α1, β) and X2 ∼ Gamma(α2, β), then X1 + X2 ∼
Gamma(α1 + α2, β).

For each link, we assume a finite operating range
and choose a parameterized bounding distribution that is
dominated by the true distribution on that interval, e.g.,
∀tmin≤t≤tmax Prbounding(Xi ≤ t|yi, αi) ≤ Prtrue(Xi ≤
t|yi). Any reasoning done with the bounding distributions then
underestimates the true probability of success. For example,
minimizing power subject to time constraints, we may con-
servatively choose tmax to be the full time budget and tmin to
be the shortest single-link transmission time attainable at max
power. That makes the set of successful events a subset of the
set of events for which the bound is valid.

Because the true distribution is subexponential, there is some
crossing point tc > 0 below which the true distribution domin-
ates. 3. Setting the two CDFs equal at tc = tmax guarantees the

3In principle, the bounding distribution can also dominate in a very small,

validity of the bound over the operating range while determin-
ing a functional relationship αi = gi(yi) between resource use
yi and the parameter αi of the bounding CDF. Generally, in-
creasing resource use yi decreases parameter αi, which in turn
increases the probability Pr(Xi ≤ t). Trivially, given any fixed
resource allocation y1, y2, y3, · · · over the whole network and
linearly additive bounding distributions, the min-cost path on
edge costs αi = gi(yi) maximizes the lower bound on probab-
ility of success.

A. Resource allocation on a fixed route

Now consider the allocation problem on a path with
stochastic resource trade-offs. The linkwise bounding distribu-
tions have been constructed so that for any path of links, there
is a distribution Gβ(A,B) .= PrX∼Gamma(A,β)(X ≤ B),
which, for A ≥ ∑

i αi, lower-bounds the true probability of
success on that path, i.e., Prtrue(

∑
i Xi ≤ B) ≥ Gβ(A,B) for

B ≤ tmax (at least). To obtain a specific probability of success
q, we set Gβ(

∑
i αi, B) = q and invert Gβ on its first para-

meter to obtain a new constraint
∑

i αi ≤ A = G−1
β (q,B).

Since resource use can also be expressed in terms of αi as
yi = g−1

i (αi), our goal (Eq. (6)) can be rewritten

min
∑

i

g−1
i (αi) (15)

s.t.
∑

i

αi ≤ G−1
β (q,B) .

We may now employ the same hyperbolic bounding schemes
and optimization methods developed in the deterministic setting
to solve for the optimal αi, and then calculate resource alloca-
tions yi = gi(αi). We illustrate by working out the case of
minimal power use, subject to a time constraint. To guarantee
the lower bound on the probability of success, at each link we
set the gamma and time CDFs equal at t = tmax and solve for
the needed power pi, yielding

pi = g−1
i (αi) =

1 − exp 1/tmax

γi log(Γ(αi, tmaxβ)/Γ(αi))
.

A power series expansion about αi = 0 reveals the hyperbolic
approximation

pi = g−1
i (αi) ≤ hi

αi
+ ciforhi = γ−1

i

1 − exp 1/tmax

Γ(0, tmaxβ)
(16)

which becomes an upper bound with suitable choice of ci. With
this Eq. (12) can be applied directly to Eq.( 15) to compute the
optimal αi w.r.t. the hyperbolic bounds, which in turn gives the
optimal allocation yi w.r.t. the hyperbolic and gamma bounds
jointly.

The same construction is used to minimize time given an
power constraint, except with

ti = g−1
i (αi) = log(1 − γipmax log(1 − Γ(αi, pmaxβ)/Γ(αi)))−1

≤ hi

αi
+ ciforhi = γ−1

i

1
pmaxΓ(0, pmaxβ)

low-probability interval between 0 and tc′ ≈ 0. Typically tc′ � tmin, so our
bounds remain valid. In the case of gamma bounds, tc′ can be driven toward 0
by increasing β.
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For energy given time, g−1(α) and hi are the same as those
of power given time, except multiplied by tmax. For time given
energy, let νi

.= −γiemax log(1 − Γ(αi, emaxβ)/Γ(αi)). Then

ei = g−1
i (αi) = {−1/νi − W−1(−1/νi exp−1/νi)}−1

≤ {log νi + log(1 + log νi)}−1

≤ hi

αi
+ ciforhi ∝ γ−1

i (17)

however here the precise value of hi must be determined using
the methods in section III.

There is a pleasing symmetry with hi ∝ γ−1
i in all cases un-

der n = 1 hyperbolic bounds, therefore the optimal setting of
the gamma location parameters is αi ∝ γ

−1/2
i . However, in im-

plementation, there is an asymmetry: When minimizing power,
one simply transmits at the allocated power; when minimizing
time, the transmitter and receiver must handshake to learn the
current channel gain, then one transmits using whatever power
is necessary to make the allocated time.

If the requested probability of success is too high, the optimal
allocation will put one or more links outside of their operating
range. Resource use at these links can be clamped to their max-
imums and the allocation problem re-solved at the remaining
links. If this fails to yield a viable allocation we report that
the desired probability of success is infeasible w.r.t. the chosen
bounds.

B. Routing

The routing machinery of section V can be used to find near-
optimal paths w.r.t. the gamma and hyperbolic bounds.

C. On-the-fly reallocation

Uncertainty is reduced as a multi-hop relay progresses: The
probability distribution narrows and only Bi of the budgeted
resource remains once we have reached link i. Re-solving Eq.
(15) at link i gives a revised n = m = 1 upper bound of√

hi

∑
j≥i

√
hj/G−1(Bi, q).

If link i’s probability distribution is collapsed prior to trans-
mission (e.g., by measuring its instantaneous channel gain), we
learn the deterministic trade-off yi = fi(xi). Conditioning the
probability of success on this information yields a modification
of the optimization problem in Eq. (15):

min fi(xi) +
∑
j>i

g−1
j (αj) (18)

s.t.
∑
j>i

αj ≤ G−1(Bi − xi, q)

The nonlinear dependence of the probability of success on
xi presents a difficulty. To solve with n = 1 bounds, we
lower-bound the probability of success with an affine function
b − axi ≤ G−1(Bi − xi, q), upper-bound the stochastic link
costs g−1

j (αj) as above, and upper-bound the deterministic cost
fi(xi) with h′

i/xi + c′i as in section IV-A, then solve the hyper-
bolic program

min h′
i/xi + c′i +

∑
j>i

hj/αj + cj (19)

s.t. αi +
∑
j>i

αj ≤ b, αi = axi

to obtain the minimal safe expenditure at link i of yi =
fi(ab

√
h′

i/(
√

h′
i +

∑
j>i

√
hj)). The reader may recog-

nize this as a variation on the on-the-fly allocation algorithms
sketched in section IV-A.

VII. SUMMARY AND CONCLUSIONS

In the wireless setting, power/energy can be traded-off with
transmission time, due to channel capacity constraints, and it
is desirable to optimize one resource while guaranteeing qual-
ity of service w.r.t. another. In this paper, we have developed a
framework for optimizing such tradeoffs. More generally, the
results are applicable to convex decreasing trade-offs in com-
binatorial settings such as finding the min-cost path w.r.t. a re-
source trade-off that is budget-constrained. Our main results
are: tight hyperbolic bounds and a closed form resource alloc-
ation with less than 3% expected suboptimality; on-the-fly re-
allocations; a low-complexity combinatorial solution for find-
ing a path with a near-optimal trade-off; bounds on its subop-
timality; and the extension of all these methods to the stochastic
setting where the trade-off curves are known only probabilist-
ically. Suitably generalized, these methods may prove useful in
any setting where there is a combinatorial optimization subject
to stochastic resource trade-offs and budgetary constraints.
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