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Securing Biometric Data

Anthony Vetro, Stark C. Draper, Shantanu Rane, and Jon&haedidia

Abstract— This chapter discusses the application of distributed
source coding techniques to biometric security. A Slepiaiwolf

coding system is used to provide a secure means of storing

biometric data that provides robust biometric authentication

for genuine users and guards against attacks from imposters
A formal quantification of the trade off between security and
robustness is provided as a function of the Slepian-Wolf cadg

rate. Prototype secure biometric designs are presented fdooth

iris and fingerprint modalities. These designs demonstratehat

it is feasible to achieve information-theoretic security vhile not

significantly compromising authentication performance (mea-
sured in terms of false-rejection and false-acceptance ras)
when compared to conventional biometric systems. The metlis

described in this chapter can be applied to various architeires,

including secure biometric authentication for access comol and

biometric-based key generation for encryption.

Index Terms— Biometric, security, Slepian-Wolf coding, syn-
drome, iris, fingerprint, error correcting codes, LDPC codes,
belief propagation decoding, statistical model, feature xraction,
feature transformation, minutiae, helper data, fuzzy vaut, factor
graph, access control, authentication, encryption, crypigraphic
hash, robust hash, false accept rate, false reject rate, eglerror
rate.

|I. INTRODUCTION

A. Motivation and Objectives

The key characteristic differentiating biometrics fronspa
words is measurement noise. Each time a biometric is mea-
sured, the observation differs, at least slightly. For eplam
in the case of fingerprints, the reading might change because
of elastic deformations in the skin when placed on the sensor
surface, dust or oil between finger and sensor, or a cut to the
finger. Biometric systems must be robust to such variations.
Biometric systems deal with such variability by relying on
pattern recognition. To perform recognition in currentrbét-
ric systems, the biometric measured at enrollment is stored
on the device for comparison with the “probe” biometric
collected later for authentication. This creates a sectdte:
an attacker who gains access to the device also gains access
to the biometric. This is a serious problem since, in comtras
to passwords or credit card numbers, an individual cannot
generate new biometrics if their biometrics are comprothise

The issue of secure storage of biometric data is the central
design challenge that is addressed in this chapter. Useful
insight into desirable solution characteristics can beneghi
through consideration of password-based authentication.
order to preserve the privacy of passwords in the face of a
compromised database or personal computer, passwords are
not stored “in-the-clear”. Instead, a cryptographic “Hash
one’s password is stored. The hash is a scrambling function
that is effectively impossible to invert. During autheation

Securing access to physical locations and to data is alser types in their password anew. Access is granted only if
primary concern in many personal, commercial, governnmienthe hash of the new password string matches the stored hash of

and military contexts. Classic solutions include carryeny

the password string entered at enrollment. Because of the no

identifying document or remembering a password. Problenmvertibility of the hash, password privacy is not comprsed

with the former include forgeries while problems with the la even if the attacker learns the stored hash. Unfortunately,
ter include poorly-chosen or forgotten passwords. Computéhe variability inherent to biometric measurement meams th
verifiable biometrics, such as fingerprints and iris scanthis hashing solution cannot be directly applied to biometr
provide an attractive alternative to conventional solutio systems — enrollment and probe hashes would hardly ever
Biometrics have the advantage that, unlike passwords,dbeymatch.

not have to be remembered and, unlike identifying documentsThe aim of the secure biometric systems detailed in this
they are difficult to forge. However, they have charactesst chapter is to develop a hashing technology robust to biametr

that raise new security challenges.
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measurement noise. In particular, we focus on an approach
that uses “syndrome” bits from a Slepian-Wolf code [1] as a
“secure” biometric. The syndrome bits on their own do not
contain sufficient information to deduce the user’s enrefin
biometric (or “template”). However, when combined with a
second reading of the user's biometric, the syndrome bits
enable the recovery and verification of the enroliment biesme
ric. A number of other researchers have attempted to develop
secure biometric systems with similar characteristicsl, ae

will review some of these proposals in Section II.

B. Architectures and System Security

There are two fundamental applications for secure biometri
technology: access control and key management. In the forme
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the system modulates access through inspection of a cdadida 1. RELATED WORK
user’s biometric. In the latter, the system objective isximaet ) ) ) )
a stable encryption key from the user’s biometric. While On€ class of methods for securing biometric systems is
access-control and key-management are different goags, tHansformation-based”. Transformation-based appreads-
syndrome-encoding and recovery techniques we discusyg ap'iﬁntlally_ extract features from an enrqllm_ent .blometrlcngs
to both. In an access-control application, the recoverembt- @ complicated transformation. Authentication is perfodrby
ric is verified by comparison with a stored hash of the origin®attern matching in the transform domain. Security is agsiim
in a manner identical to password-based systems. In a k&-come from the choice of a good transform which masks
management application, the (now recovered) originaleier\}he original biometric data. In some cases the tr_ansfo_rellf its
as a shared secret from which an encryption (decryption) k@yassumed to be kep_t secret and de_5|gn Co_nS|derat|0ns must
can be generated. be made to ensure t_hls secrecy..Part|<.:ullarly_|r.1 the case when
While secure biometric technology addresses one secuffyf transform itself is compromised, it is difficult to prove
threat facing biometric systems, it should be kept in mirat thfigorously the security of such systems. Notable techrique
a variety of threats exist at various points in the biometrif this category include cancelable biometrics [2], [3lorsc
subsystem chain. For instance, individual modules can BEtching-based techniques [4], and threshold-based $tieha
forged or tampered with by attackers. Examples include a fak'9 [5]-
feature extraction module that produces pre-selectedifesat ~ The main focus of this chapter is on an alternative class of
that allow an intruder to gain access, or a fake decisionimgak Mmethods that are based on using some form of “helper data.”
entity that bypasses the authentication subsystem altegén In such schemes, user-specific helper data is computed and
remote authentication settings, where biometric measemésn stored from an enrollment biometric. The helper data itself
are collected at a remote site, not co-located with the dtorand the method for generating this data can be known and is
enrollment data, other weak points exist. Dishonest estitinot required to be secret. To perform authentication of &d@ro
such as servers that impersonate a user or perform datagnirfifpmetric, the stored helper data is used to reconstruct the
to gather information could be the source of successfutksdta enrollment biometric from the probe biometric. Howevee th
Furthermore, in remote settings, the communication cHanhé&!per data by itself should not be sufficient to reconsttiet
could also be compromised and biometric data could g&roliment biometric. A cryptographic hash of the enrolfihe
intercepted and modified. Not all these threats are guardédfa is stored to verify bit-wise exact reconstruction.
against with secure biometric templates. Some can be dealfrchitectural principles underlying helper data—based ap
with using standard cryptographic techniques. But, in gane proaches can be found in the information-theoretic problem
system designers need to be aware of all possible pointsoff‘common randomness” [6]. In this setting, different pest
attack in a particular system. observe dependent random quantities (the enrollment and th
In view of the above threats, a few desirable propertiggobe) and then through finite-rate discussion (perhags-int
regarding biometric system security are listed as follows: cepted by an eavesdropper) attempt to agree on a sharet secre
« Availability: Legitimate users should not be denied accethe enroliment biometric). In this context, error corient
« Integrity: Forging fake identity should be infeasible ~ coding (ECC) has been proposed to deal with the joint prob-
« Confidentiality: Original biometric data should be keptem of providing security against attackers, while account

secret for the inevitable variability between enrollment and prob
« Privacy: Database cross-matching should reveal little iRiometrics. On the one hand, the error correction capgluifit
formation a error-correcting code can accommodate variations betwee
« Revocability: Revocation should be easy multiple measurements of the same biometric. On the other
hand, the check bits of the error correction code performhmuc
C. Chapter Organization the same function as a cryptographic hash of a password on

The rest of this chapter is organized as follows. In Section Fonventional access control systems. Just as a hackertcanno
related work in this area is described to give readers a sefid¢ert the hash and steal the password, he cannot use thie chec
for alternative approaches to the secure biometrics pnoblebits to recover and steal the biometric.

Section 1l formally quantifies the trade-off between sétyur ~ An important advantage of helper data—based approaches
and robustness for the class of secure biometric systerafative to transformation—based approaches is that theise

that we consider, and introduces the syndrome-codingebasead robustness of helper data—based schemes are generally
approach. In Section IV, we describe a prototype systemldeveasier to quantify and prove. The security of transfornmatio
oped for iris biometrics. In Sections V and VI, two differenbased approaches are difficult to analyze since there is no
approaches for securing fingerprint data are described. Tieaightforward way to quantify security when the transfor
first is based on a statistical modeling of the fingerprinidatmation algorithm itself is compromised. In helper data-edas
The second approach involves transforming the fingerpristhemes, this information is known to an attacker, and the
data to a representation with statistical properties that ssecurity is based on the performance bounds of error cargect
well-suited to off-the-shelf syndrome codes. A summary afodes, which have been deeply studied.

this new application of distributed source coding is given To the best of our knowledge, Davida, Frankel, and Matt
in Section VII, including a discussion on future researclvere the first to consider the use of ECC in designing a secure
opportunities and potential standardization. biometrics system for access control [7]. Their approaemse
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to have been developed without knowledge of the work aralues from a probe biometric could be used to initialize a
common randomness in the information theory communityodeword, which would then be subject to erasure and error
They describe a system for securely storing a biometric addcoding to attempt recovery of the secret data.
focuses on three key aspects: security, privacy, and rnobsst
They achieve security by signing all stored data with a digit One of the main contributions of the fuzzy vault work was
signature scheme and achieve privacy and robustness hy usinrealize that the set overlap noise model described indan]
a systematic algebraic error-correcting code to store #ta. d effectively be transformed into a standard errors and eeasu
A shortcoming of their scheme is that the codes employed areise model. This allowed application of Reed-Solomon spde
only decoded using bounded distance decoding. In additiavhich are powerful codes and analytically tractable enaiegh
the security is hard to assess rigorously and there is abtain some privacy guarantees. The main shortcoming is tha
experimental validation using real biometric data. the set overlap noise model is not realistic for most biomoetr
The work by Juels and Wattenberg [8] extends the systesimce feature points typically vary slightly from one bicmie
of Davida, et al. [7] by introducing a different way of usingmeasurement to the next rather than either matching pbrfect
error-correcting codes. Their approach is referred to @sz§ or not matching at all.
commitment”. In the enrollment stage the initial biometric
is measured and a random codeword of an error correctingNonetheless, several fuzzy vault schemes applied to \&ariou
code is chosen. The hash of this codeword along with thé@metrics have been proposed. Clancy, et al. [11] proposed
difference between an enrollment biometric and the codéwdp use theX — Y location of minutiae points of a fingerprint
are stored. During authentication, a second measurementaéncode the secret polynomial, and describe a random-point
the user’s biometric is obtained, then the difference betwepacking technique to fill in the chaff points. The authors
this probe biometric and the stored difference is obtaiaed, estimate 69 bits of security and demonstrate a false reg¢et r
error correction is then carried out to recover the codeworaf 30%. Yang and Verbauwhede [12] also used the minutiae
Finally, if the hash of the resulting codeword matches thmoint location of fingerprints for their fuzzy vault scheme.
hash of the original codeword, then access is granted. Sirdewever, they convert minutiae points to a polar coordinate
the hash is difficult to invert, the codeword is not revealedystem with respect to an origin that is determined based on
The value of the initial biometric is hidden by subtracting similarity metric of multiple fingerprints. This schemesva
a random codeword from it, so the secure biometric hidesaluated on a very small database of 10 fingers and a false
both codeword and biometric data. This scheme relies heavigject rate of 17% was reported.
on the linearity/ordering of the encoded space to perforen th
difference operations. In reality, however, the featuracep It should also be noted that there do exist variants of the
may not match such linear operations well. fuzzy vault scheme that do not employ ECC. For instance,
A practical implementation of a fuzzy commitment schemihe work of Uludag, et al. [13] employs cyclic redundancy
for iris data is presented in [9]. The authors utilize a&heck (CRC) bits to identify the actual secret from several
concatenated-coding scheme in which Reed-Solomon codasdidates. Nandakumar, et al. [14] further extended this
are used to correct errors at the block level of an iris (e.@¢heme in a number of ways to increase the overall robustness
burst errors due to eyelashes), while Hadamard codes ade uskethis approach. On the FVC2002-DB2 database [15], this
to correct random errors at the binary level (e.g., backgdouscheme achieves 9% false reject rate (FRR) and 0.13% false
errors). They report a false reject rate of 0.47% at a keytfengaccept rate (FAR). The authors also estimate 27-40 bits of
of 140 bits on a small proprietary database including 70 eysscurity depending on the assumed distribution of minutiae
and 10 samples for each eye. As the authors note, howeysrints.
the key length does not directly translate into security tueg
estimate a security of about 44 bits. It is also suggestefl]in [ As evident from the literature, error-correcting code<seiad
that passwords could be added to the scheme to substantiptigvide a powerful mechanism to cope with variations in
increase security. biometric data. While the majority of schemes have been
In [10] Juels and Sudan proposed the fuzzy vault schenmoposed in the context of fingerprint and iris data, these al
This is a cryptographic construct that is designed to wottk wiexist schemes that target face, signature and voice datae So
unordered sets of data. The fuzzy vault scheme essenti@ghemes that make use of multi-biometrics are also beginnin
combines the polynomial reconstruction problem with ECQo emerge. Readers are referred to review articles on biarset
Briefly, a set oft values from the enroliment biometric areand security for further information on work in this area],16
extracted, and a length vector of secret data (i.e., the[17].
encryption key) is encoded using an, (k) ECC. For each
element of the enroliment biometric, measurement-codéwor In the sections that follow, the secure biometrics problsem i
pairs would be stored as part of the vault. Additional randoformulated in the context of distributed source coding. W fi
“chaff” points are also stored with the objective of obsogri give a more formal description of the problem set-up, and the
the secret data. In order to unlock the vault, an attacket beis describe solutions using techniques that draw from infoiona
able to separate the chaff points from the legitimate pdmts theory, probabilistic inference, signal processing antiepa
the vault, which becomes increasingly difficult with a largerecognition. We quantify security and robustness and peovi
number of chaff points. To perform authentication, a set ekperimental results for a variety of different systems.
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IIl. OVERVIEW OF SECURE BIOMETRICS USING The decodepqe.(, -) combines the secure biometsavith
SYNDROMES the probey and either produces an estimate of the enrollment
A. Notation X = gdec(s,y) Or a special symbolkr indicating decoding

We denote random variables using sans-serif and rand(f)arHure' Finally, the storedh is compared tofnasn(X). If they

vectors using bold sans-serik and x, respectively. The match, access is granted. If they do not, access is dénied.
corresponding sample values and vectors are denoted using

serifs z and x, respectively. The length of vectors will beC. Performance Measures: Security and Robustness
apparent from context or, when needed, indicated expliag| The probability of authentication error (false rejectias)
e.g.,x" for the n-length random vectox. Theith element of

a random or sample vector is denotedk@asr z;, respectively. Prr = Prix # gace(y, fee(x))]

Sets are denoted using calligraphic font, e.g., the setmpka where Pyx(y,x) = y\x(}’lX)Px(X)- As discussed later, we
values ofz is denotedX, its n-fold productX™, and |- | will find it natural to use a logarithmic performance measure
applied to a set denotes its cardinality. We iise) to denote to quantify authentication failure. We use the error expne
entropy; its argument can be either a random variable or its 1

distribution; we use both interchangeably. For the spa@aé Err = ——log Prr Q)

of a Bernoullip source we usédz(p) to denote its entropy. "
Along the same lines, we usE-;-) and I(-;-|]-) to denote
mutual and conditional mutual information, respectively.

as this measure.

It must be assumed that an attacker makes many attempts to
guess the desired secret. Therefore, measuring the plippabi
B. Enrollment and Authentication that a single attack succeeds is not particularly meaningfu
Instead, security should be assessed by measuring how many

As depicted in Fig. 1, the secure biometrics problem gttempts an attack algorithm must make to have a reasonable

Irezatl;]ze(: :In the contegt of ab Slte;plan-V:/olf cod|ngt_frame\;vo’r_:£robabi“ty of success. We formalize this notion by defining
1 ‘ne foflowing, we describe the system operation in ter attack as the creation of a list of candidate biometrics.

of an access-control application. During enroliment, & use If the true biometric is on the list, the attack is successful

selectgd anq thew raw biometrig is determined by NatUre. +q jist size required to produce a successful attack wigh hi
The biometric is a random vector drawn according to so?)

N - . - Yobability translates into our measure of security.
distribution p,(b). A joint sensing, feature extraction, an y y

tization functionf h bi i int Let £ = Ag... (-) be alist of2"f=«c guesses fox produced
quantization func 'Onfmat('.) maps the raw blometric into by the attack algorithm4 () that is parametrized by the rate
the lengthn enrollment biometricx = fr.ai(b). Next, a

function f..(-) maps the enrollment biometrig into the R of the attack and takes as iNpUts:) pyjx(:|), fec("),

secure biometris = f...(x) as well as into a cryptographicfh“h(')’ Gaee(, ), s, andh. The attack algorithm does not have
— Jsec t b ted f th Il di
hash of the enrolilmenh = f..,(x). The structure of the access to a probe generated from the enrolimeatcording

) : : . _ to -|-) because it does not have a measurement of the
encoding functionfs..(-) reveals information abow without Pyix(:])

leaking h | trast. th ¢ hah h original biometric. From the quantities it does know, a good
€aking 100 much secrecy. In contrast, the cryptograp Aittack is to generate a ligt of candidate biometrics that match
function fhash(-) has no usable structure and is assumed

leak no information about. The access control boint Stores e secure biometrig (candidate biometrics that do not match
dh Il as the f t" q F')I'h s can be eliminated out of hand). That is, for each candidate
ggntré)lag(\)l;/:’t dat)ses iol:r;f()lrc;n)(é)f;(.) and fuean ). The access Xcand € L, fsec(Xcana) = s. While the cryptographic hash

s L(-) is assumed to be non-invertible, we conservatively
In the authentication phase, a user requests access @ume

. . Lo : that the secure biometric encodiag(-) is known
/
provu_jes a _second.readlng of their b'o’.“e.“’c We mode| to the attacker, and furthermore assume that the attacker ca
the biometrics of different users as statistically indegent.

Therefore, if the user is not the legitimate uggrs (b', b) — invert the encoding, and hence the lidtcan be generated.

. . Once the listL is created, a natural attack is to test each
pr(b)pp(b). On the other hand, i’ comes from the legit- . _
imate userpy u(b',b) = pup(b'[b)pp(b), Where py () Xcand € L in turn to check whethefyash (Xcand) = h. If the

. . . . hashes match, the attack has succeeded. The system is secure
models the measurement noise between biometric readi

. . ainst attacks if and only if the list of all possible caradé
The I)c?atulrnessteggtrg](c:te%rll‘(r_(r)]m tht'; secci)r)dbreadén%rﬁie biometrics matching the secure biometric is so enormous tha
t{;ea:/\(/orl)<' with ( W) 'Il'hge V\;Iea]t?llj/rg( e;(trfz\,ct;ﬁn function € attacker will only have computational resources to aatenp
) inducesp);ﬁexc’j?’st.ributio (x,y) from (b',b) the hashes of a negligible fraction of candidate biometrics
J;f;‘";t the  precedin discussic?;;’y i>f(7 }t’he use]rob/i; et Security thus results from dimensionality reduction: ahhig
(%,y) E (%) 9 (y[%) and,if the user is ille itir%ate Eei'mensionalx is mapped to a low-dimensionalby fs..(-).
ﬁ’]‘gnx’y . f"_x py"‘) Y X)’ g ' The size of the total number of candidate biometrics that map
Pxy(X,y) = px(x)px(y)- onto the secure biometricis exponential in the difference in
e comment that Fig. 1 can be thought of as somewhat speciiisimgle  dimensionality.
observation. If one had multiple observations of the uryitegl biometric, one
could symmetrize the joint distribution by assuming thathe@bservation 2|n a data encryption application an encryption key is geedréromx and
of the underlying biometric (including the enroliment) wiésough a noisy the matching decryption key frok A cryptographic hash functioff, ,sn (+)

channel. The current setting simplifies the model and is Geiffi for our is not required — if the reconstruction is not exact, thengéeerated key will
purposes. not match the one used to encrypt and decryption will fail.
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Enrollment h
biometric +
b Feature %
| —»|extraction | X o fsee(x) S ,|Stores S | Decoder )
ffeat (b) fhash (X) h and h gdec(sv y) match fhash(x)
A
!
L | Measurement b - zitarlgé:rt(iaon y
noise Probe Freas (b')
biometric cat

Fig. 1. Block diagram of Slepian-Wolf system for secure bébrics.

e . lOu e L -
The prob.a_blhty that a raté?... attack is suc_:cgssful equals e 0 00 e (O =0T me 110} =0.008
the probability that the enrollment biometric is on the at- px(1) =0.005, p,, (0]1) =0.2, p,y, (1]0) =0.001

tacker’s list, Psa (Rsec) = 107k

Pr [XE'ARsec (px(')apy\x('|')7fsec(')afhash(')agdec('v')7h7s)}'

The system is said to bes-secure” to rateR,.. attacks if
PSA(Rsec) <e€.

Equivalently, we refer to a scheme withsa (Rsec) = €
as havingn - R, bits of security with confidencé — e.
With probability 1 — e an attacker must search a key space 2 0ol
of n - Rse bits to crack the system security. In other Wordsg
the attacker must makg” == guesses. The parametB.. g ol
is a logarithmic measure of security, quantifying the rate o
the increase in security as a function of block lengthFor = : : : : : N
instance, _128-bit s_ecur_ity require_sRSCC_ = 128. It is because 0 0.005 Soéoclurity:(ﬁi (bitg-%?er Sy?#ggl) 003 0035
we quantify security with a logarithmic measure that we also
use the logarithmic measure of error-exponents to quantiyy. 2. Example security-robustness regions. The horiaatis represents
robustness in (1). the maximum security rateRsec such that Psa(Rsec) < €, while the

Our objective s o construct an encoder and decoder pYfich 24 IPreserts rousiness, The secuty obasteon of e

that obtains the best combination of robustness (as meahsufat of the dashed curve.

by Prr) and security (as measured bfsa(Rsc)) as a

function of R,... In general, improvement in one necessitates

a decrease in the other. For examplePifs (0.5) = ¢ and failure exponent (via the sphere-packing bound for Slepian

Prr = 2710 at one operating point, increasing the security t8/olf coding). Since our prime purpose in this section is to

0.75n might yield another operating point & (0.75) = ¢ provide a solid framework for our approach, we don't further

and Prr, = 278. With this sense of the fundamental trade offg¢evelop outer bounds here.

involved, we now define the security-robustness region. We use a ratdsw random “binning” function (a Slepian-
Definition 1: For anye > 0 and anypy y(x,y) the security- Wolf code [1]) to encodex into the secured biometris.

robustness regiok. is defined as the set of paifs,v) for Specifically, we independently assign each possible seguen

[
o

!
A
T

ss—(1/n) log Prr
[
o

which an encoder-decoder pdifsec(-), gaec(-, -)) exists that x € X™ an integer selected uniformly frof, 2, ..., 2nfsw},
achieves rate-security with an authentication failure exponenthe secure biometric is this index= f..(x). Each possible
of ~: index s € {1,2,...,2"%sw} indexes a set or “bin” of
1 enrollment biometrics{x € X™|fw«c(X) = s}. The secure

R. = {(T,v) Psp(r) < e,y > ——log PFR} . biometric can be thought of either as a scalar inderr as

" its binary expansion, a uniformly distributed bit sequesoé

lengthn Rgwy .
o ) During authentication, a user provides a probe biometric
D. Quantifying security y and claims to be a particular user. The decoggr(y, s)

In this section, we quantify an achievable subset of trsearches for the most likely vectere X™ giveny according
security-robustness regidR.. This specifies the trade off be-to the joint distributionp,, such thatx is in bin s, i.e.,
tween Prr and Psa (+) in an idealized setting. Our derivationfsec(X) = s. If a uniquex is found, then the decoder outputs
assumes that andy are jointly ergodic and take values inthis result. Otherwise, an authentication failure is dexdaand
finite setsx € X™,y € Y™. One can derive an outer bound tdhe decoder returng.
the security-robustness region by using upper bounds on thé\ccording to the Slepian-Wolf Theorem [1], [18], the
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decoder will succeed with probability approaching 1 +as Bernoulli sequence witlp, (1) = 0.05. The true biometric is
increases provided thaRsw > (1/n)H(x]y). Thus, Prr  observed through the asymmetric binary channel with deieti
approaches zero for long block lengths. The theory of gsrobability p,,(0]1) and insertion probability,,(1/0). We
ror exponents for Slepian-Wolf coding [19] tells us thaplot the resulting security-robustness regions for twoich®

—(1/n)log Prr > Esw(Rsw), where Esw (Rsw) = of insertion and deletion probabilities.
14p We now contrasPs, (-), the measure of security considered
1 1 in Theorem 1 and defined in Definition 1, with the probability
orél,?gl plsw n log Xy:py(y) [Xx: Pty (X[y) ] " of breaking into the system using the classic attack usedlio c

) culate the FAR. In the FAR attacl,is chosen independently

If Rsw < (1/n)H(xly) then Esw(Rsw) = 0. For Rsw > of x, i.e.,p¥7x(.y., X) :px(y)pxgx). This attack fails un_less the
(1/n)H (x|y) the error exponenEsw (Rsw) increases mono- Y chosen is jointly typ|c§1I withx, |.e.,_unless the paiy _and
tonically in Rsw. Note that (2) holds for any joint distribu- (th€ unobservedx look likely according topy x(-,-). Given
tion, not just independent identically distributed (i.j.dnes. that ay is selected that is jointly typical with the enroliment

However, if the source and channel are memoryless, the jofntthe decoder will then successfully decodextavith high
distribution is i.i.d., andpey(x,y) = [T, Pry(7i, y:). As probability, the hash will match, and access will be granted

a result, the second term of (2) simplifies considerably f§!d such ay when picking according to the margina)(y)
FRECY takes approximatelg!(y») = 2H()—H{ly) gyesses. We must
—log_, py(y) [Zm Pxly (2]y) 1*”}__ : _ setRsw > (1/n)H(x|y), else as discussed above, (2) tells us
Next, we consider the probability of successful attack, i.&nhat Py goes to one. This constraint means that (cf. eqn.(3))
how well an attacker can estimata@iven the secure biometric r7(xjs) < F(x) — H(x|y). Thus, while a FAR-type attack

s. According to the asymptotic equipartition property [20]’-equired2H(x)—H(x\y) guesses, the smarter attack considered
under the fairly mild technical condition of ergodicity,dan i the theorem required@?®-nRsw and thus an FAR-type
be shown that conditioned an= f...(x), x is approximately attack will almost always take many more guesses than an
uniformly distributed over the typical set of siz2”?*I). _u- 1 that makes its guesses conditioneds.on
Therefore, with high probability, it will take approximéfe  \ye again emphasize that an attack that identifies a biometric
this many guesses to identify We computeH (x|s) as x such thatf...(X) = s is not necessarily a successful attack.

B (a) () Indeed, our security analysis assumes that an attacker can
H(x|s) = H(x,s) — H(s) = H(x)~ H(s) = H(x)—nngS easily findx that satisfiesfs..(x) = s. However, ifx # x,

B . . -2 then frash(X) # fuasn(x) = h and access will not be granted.

where(a) follows because = fuec(x), i.€.,5 IS a deterministic Thus, in the bounds on security provided by Theorem 1, it is

function of x, gnd (b)_foll_ows from t.he methqd (.)f generating ;oo\ med that the attacker is limited to guessesthat satisfy
the secure biometric, i.es is uniformly distributed over Faoo(X) = s
sec - .

lengthn Rsw binary sequences (in other worslgs a length-
nRgw 1.i.d. Bernoulli(0.5) sequence).
Using (2) and (3) we bound the security-robustness regién Implementation using syndrome coding
in the following: _ In our work, the enrollment biometrig is binary and we
Theorem 1:For anye > 0 asn — oo, an inner bound t0 ,se 3 linear code for the encoding function,
the security-robustness regidd. defined in Definition 1 is
found by taking a union over all possible feature extraction s = fec(x) = Hx, (4)

functions ft..: () and secure biometric encoding ratg . . . .
freat () ¢ Sw where H is a k£ x n binary matrix and addition is mod-2,

R. S U {Tﬁ‘r < lH(x) — Rew.~y < Esw(st)} i.e., a 691? = XQR(a,b). ‘l‘Jsing the Language of algebra, the
frons OB n secure b|omet_r|s is the~ syndror_ne of.the set of sequences
x € {0,1}™ satisfyingHx = s. This set is also referred to as
where Esw (Rsw) is given by (2) for thepsy (-, -) induced by the “coset” or “equivalence class” of sequences. Note that a
the chosenfieat (). cosets are of equal cardinalfity
Proof: The theorem is proved by the random-binning en- An attacker should limit his set of guessgk; .. to be
coding and maximum-likelihood decoding construction speg subset of the coset corresponding to the stared all x
ified above. The same approach holds for any jointly ergodiequences were equally likely (which is the case since soset
sources. The uniform distribution of the true biometriccessr are of equa| size and ¥ is an ||dBernou|||(05) Sequence),
the conditionally typical set of size”’*I*) provides security, then the attacker would need to check through nearly thesenti
cf. (3). As long as the rate of the attack< +H(x) — Rsw, st to find the true biometric with high probability. For thi
then Psa(r) < e for any e > 0 as long asn is suffi- case and from (3), we calculate the logarithm of the list ize
ciently large. Robustness is quantified by the error-expbneye H (x)— H(s) = n—k, wheren andk are the dimensions of
of Slepian-Wolf decoding given by (2). [ |
Fig. 2 plots an example of the security-robustness regiorfit can be shown that ang in the s’ coset can be written & = x @ z

for a memoryless insertion and deletion channel that shaf@ssomex in thes coset and where is fixed. Thus,Hx = H(x © z) =
Hz = s'. Thes’ coset corresponds to all elements of sheoset (defined

- . . . s+
sgme C(.)mmon_a“t'es with the flngerprllnt Ch.a_nnel Fhat Wﬁ/ its syndromes) shifted byz, and thus the cardinalities of the two cosets
discuss in Section V. The enrollment biometkids an i.i.d. are equal.
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thex ands vectors, respectively, and are also the dimensionsAf Enrollment and Authentication

the H matrix in (4). This follows from the model(x) =n At enroliment the system performs the following steps.

sincex is |..|.d. Bernoulli(0.5) andH (s) = k since cosets are Starting with an image of a user's eye, the location of the
of equal size ang(x) = 27" for all x. iris is first detected, and the torus is then unwrapped into a
~If the enrollment biometrix is not a uniformly-distributed yectangular region. Next, a bank of Gabor filters are apyitied
I.i.d. sequence — which is going to be the case generally — B@ract a bit sequence. The Matlab implementation from [22]
attacker need not check through the entire coset corresmNttoy1d be used to perform these steps. Finally, the extracted
to s. Instead the attacker should intersect the coset with theyiure vectorx is produced by discarding bits at certain
set of sequences IA™ that look like biometrics. These arefiyeq positions that were determined to be unreliblEhe

the “typical” sequences [20] determined by the probabilifgyitingx = f;.(b) consists of the most reliable bits; in
measurep,(-). This intersection is taken into account in (3). oyr implementationi806 bits are extracted. Finally, the bit

If the rows of the H matrix in (4) are generated in angyingx is mapped into the secure biometsidy computing
independent and identically distributed manner, then §¢p the syndrome ok with respect to a LDPC code. Specifically,

in (3) simplifies as follows: a random parity check matrid is selected from a good low
K rate degree distribution obtained via density evolutid3] gnd
H(x|s) = H(x)—H(s) = H(x)= S H(s;) = H(x)—kH(s). S=H~xiscomputed.
(xls) () ®) () ; (5:) ) (s) To perform authentication, the decodge.(-, -) repeats the

(5) detection, unwrapping, filtering, and least-reliable bimping

In an actual implementation, we generally do not genergteocesses. The resulting observatois used as the input to a
the rows ofH in an i.i.d. manner, but rather use a structureidelief propagation decoder that attempts to find a sequgnce
code such as a low-density parity-check (LDPC) code. In sughtisfyingH s = s. If the belief propagation decoder succeeds,
situations, (3) is dower bound on the security of the systenthen the outpus = gq..(s,y). Otherwise, an authentication
since H(s) < Zle H(s;) using the chain rule for entropy failure (or false rejection) is declared and the output of
and the fact that conditioning reduces entropy, and thel thig,..(s, y) is .
equality still holds as long as the rows bf are identically ~ Sample iris measurements from two different users are
distributed (even if not independent). Furthermore, @sit(5) shown in Fig. 3. The bit correlation between different sazapl
with (3). In the latter,H (s) = nRsw because of the randomof the same user and differences between samples of differen
binning procedure. The assumptions of this procedure peers are easily seen. It has also been observed that the bit
longer hold when using linear codes to implement binning.sequences extracted from the irises contain significaet-int

It is informative to consider estimating (5). The secondter bit correlation. Specifically, lep; ; be the probability of an
kH(s) is easy to estimate since it involves only the entropyis bit taking the value: followed by another bit with the
of a marginal distribution. An estimation procedure woukd bvalue j. If the bits extracted from an iris were independent
to encode many biometrics using different codes, construmtd identically distributed, one would expegt; = 1/4 for
a marginal distribution fors, and calculate the entropy ofall (i,j) € {0,1}2. Instead, the following probabilities have
the marginal. Particularly, if the code alphabet is smadly(s been measured from the complete data set:
binary) little data is required for a good estimate. The first
term H (x) is harder to estimate. Generally, we would need toP0.0 = 0-319, po,1 = 0.166, p10 = 0.166, p1,1 = 0.349.

collect a very large number of biometrics {ifis large) to have |5ring the inter-bit memory would result in degraded perf

sufficient data to make a reliable estimate of the entropy fiance. Therefore, the belief propagation decoder is dedign
then-dimensional joint distribution. Thus, the absolute level exploit this source memory. Further details can be found
security is difficult to evaluate. However, the analysisvides [24].

a firm basis on which to evaluate the comparative security

between two systems. Thg(x) term is common to both and

cancels out in a calculation of relative security — the défeee B. Experimental Results

between the individual securities, whichfigf (s) — k'H(s’). The system is evaluated using the CASIA iris database [21].
The iris segmentation algorithm that was implemented was
only able to correctly detect the iris in 624 out of 756
images [22, Chapter 2.4]. Since our emphasis is on the secure

This second describes a prototype implementation of bipmetrics problem and not on iris segmentation, expertsien
secure biometrics system for iris recognition based on syfere performed with the 624 iris that were segmented suc-
drome coding techniques. Experimental results on the CA@SSfully. Furthermore, half of the iris images were used fo
SIA (Chinese Academy of Sciences Institute of Automatiof§aining.
database [21] are presented.

IV. IRIS SYSTEM

SUnreliable positions are those positions at which the bitiag (0 or 1)
are more likely to flip due to the noise contributed by eyebdsl eyelashes,

4We note that calculating the intersection may be difficutinpatationally. and due to a slight misalignment in the radial orientationhef photographed
However, the security level quantified by Theorem 1 is corsdere in the images. The bit positions corresponding to the outer periptof the iris
sense that it assumes that the attacker can calculate thesection and tend to be less reliable than those in the interior. Thes@dsttions can be
produce the resulting list effortlessly. determined from the training data.
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Fig. 4 reports performance results for the 312 image test set %
from the CASIA iris database. The horizontal axis represent
security while the vertical axis represents the probabibit
false rejection for a legitimate user. Better systems cpoad
to points in the lower right, but as Theorem 1 shows theoreti-
cally and the figure demonstrates, there is a trade-off tatwe
security and robustness. Specifically, if a r&&DPC code is
used, thers containsn(1 — R) bits. Under the idealized model
where the iris data consists of i.i.d. Bernowll) bits, our
approach yields approximatelg06 - R bits of security with : : :
confidence approaching 1. IncreasiRgields higher security, : : :
but lower robustness, so the security-robustness regiotea 1 : : |
estimated by varying this parameter. 0 20 40

Note that if the biometric is stored in the clear, there is a Security [No. of bits]
prqbaplhty of false rejection e.ql.'lal @0012 (I e, the Igftmost ig. 4.  Performance result of 312 iris images from CASIA Hate.
pomt in the graph): Thus, 't_ is shown that’_ relatlve_to a_-norizontal axis represents security, while vertical axistp robustness in
insecure scheme, with essentially no change in the pratyabiterms of the probability of false rejection. The originahgth of the bit

of authentication failure the syndrome-based scheme aehieseduence extracted from an irisis= 1806, while the length of the syndrome
is 1806 —t bits, wheret is plotted along the horizontal axis above. In fact, the

almost50 bits of security. actual number of bits of security is slightly smaller tharsince the syndrome
ngher |eve|s Of Secu”ty can be ach|eved |f |arger authenﬁlts ‘are not Bernoulli(O.S). A detailed explanation appeﬁ!rthe end of this
. . . . section.

cation error rates are allowed. As discussed in Sectionhd,

true level of security is more difficult to evaluate. Speéilig,

the original length of the bit sequence extracted from af, 4t said, we are not aware of any computationally feasible
iris in the system is1806 and the length of the syndromemeihods of improving upon random guessing and believe that

produced by our encoder 1806 — ¢ wheret is a point on the e estimated security provided here is still reasonable.
horizontal axis of Fig. 4. If the original biometric is an.dli

sequence of Bernoulli(5) random bits, then the probability of
guessing the true biometric from the syndrome would be about
2-% (i.e., security oft bits). However, as discussed earlier In the previous section we remarked on the difficulties
in this section, there is significant inter-bit memory insiri caused by the correlations between bits in an iris biometric
biometrics. In particular, according to the statistics fgr; These problems were dealt with by explicitly including the
that we measured, the entropy of 806 bit measurement correlations in a belief propagation decoder. For fingetpri

is only about90% of 1806. Consequently, if the syndromedata, such problems are more severe. Models for fingerprint
vector was a truly random hash of the input biometric, hiometrics do not obviously map onto blocks of i.i.d. bits as
would containl 806 —t bits of information about the biometric. would be ideal for a Slepian-Wolf LDPC code. We present
Since 1806 — ¢ > 90% for all reasonable values aPrr, two solutions to this problem. In this section, a “modeling”
this suggests that an attacker with unbounded computétiosalution is discussed, in which the relationship betwean th
resources might be able to determine the true syndrome mereoliment biometric and the probe biometric is modeled as a
guickly than by randomly searching a key space of size noisy channel. The rest of this section describes a somewhat

9, Prr]
N
()]

‘ ‘
Perforimance with
no security |
| |

e

Robustness [— lo

V. FINGERPRINTSYSTEM: MODELING APPROACH
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Y minutiae w An enrollment minutia’s B
feature 1 1 1 | location may jitter
W extraction |1 1 | B locally
1] [1] [1]1)1 ‘ ——
1 1 w
1] [1]1 |
11 al1[af [4
A 13aja) A 1)
An enrollment minutia
Fig. 5. Fingerprint and extracted feature vector. may not appear in probe
B (deletion)
complex statistical factor graph model for fingerprint dateal
corresponding graph-based inference decoding techniques
In section VI, a second “transformation” approach is in-
troduced, in which the fingerprint biometric is transformed
as well as possible, into a block of i.i.d. bits, and then A minutia may appear
standard LDPC code and decoder are used. Although these twag in probe but wasn’t
approaches are described in detail for fingerprint biorgtri there at enroliment H
. . . .. . . (insertion)
other biometrics will have a similar dichotomy of possible
approaches. For fingerprints, we have found that the transfo, EEE——
mation approach gives better results and makes it easier

quantify the security of the system, but both approaches are

worth understanding. Fig. 6. Statistical model of fingerprints corresponding doal movement,
deletion and insertion.

A. Minutiae Representation of Fingerprints

A popular method for working with fingerprint data is topjometric is described. There are three main effects that ar
extract a set of “minutiae points” and to perform all subsBdU captured by this model: (1) movement of enroliment minutiae
operations on them [25]. Minutiae points have been obsgrv\g,d_ en observed the second time in the probe, (2) deletians, i.
to be stable over many years. Each minutiae is a discontinyiinutiae observed at enroliment, but not during probe, 8jd (
in the ridge map of a fingerprint, characterized by a triplggsertions, i.e.,“spurious” minutiae observed in probet, ot
(z,y,6) representing its spatial location in two dimensionguring enrollment.
and the angular orientation. In the minutiae mp of @  Fig 6 depicts these three mechanisms in turn. First, minu-
fingerprint, M(z, y) = 6 if there is a minutia point atz,y) tjae observed at enrollment are allowed to jitter slightly
andM(z, y) = () (empty set) otherwise. A minutiae map may,yoynd their locations in the enrollment vector when regésd
be considered as a joint quantization and feature extractie second time in the probe. This movement is modeled
function which operates on the fingerprint image, i.€., ithin a local neighborhood, where up to three pixels in
output of thefrea(-) box in Fig. 1. In Fig. 5, the minutiae mapeither the horizontal or vertical direction (or both) could
is visualized using a matrix as depicted in the right-hamd, pl 5ccounted for. The size of the local neighborhood depends
where a ‘1’ simply indicates the presence of a minutiae at€agp the resolution of the minutiae map and how coarsely it
quantized coordinate. In this figure, as well as in the modgl quantized. Second, a minutia point may be registered in
described throughout the rest of this section, dheoordinate ihe enroliment reading, but not in the probe. Or, a minutia

of the minutiae is ignored. | . . point may be displaced beyond the local neighborhood defined
It is noted that different fingerprints usually have diffiere by the movement model. Both count as “deletions”. Finally,

numbers of minutiae. Furthermore, the number and locatigflnytia points that are not observed at enrollment, but may
of minutiae could vary depending on the particular extatti |, in the probe vector are termed insertions.
algorithm that is used. For some applications, it could be the statistical model is formalized using a factor grapH [26

important to account for such factors in addition to typicalg shown in Fig. 7. The presence of a minutiae point at pesitio
differences between fingerprint measurements, which weill b € {1,2,...,n} in the enrollment grid is represented by

discussed further in the next subsgction. In the work dbedri_ the binary random variable, that takes on the valug — 1
here, the enrollment feature vectors modeled as a Bernoulli

- only if a minutiae is present during enrollménEor simplic-
i.i.d.random vector.

ity, the figure shows one-dimensional movement model. All

B. Modeling the movement of fingerprint minutiae 6Note thatt indexes a position in the two-dimensional field of possible

. . . . minutiae locations. The particular indexing used (e.gsterascan) is imma-
In the followmg, a model for the statistical relatlOnSh”:ieriaI. The product of the number of rows and the nhumber afirools equals

pyx(y|x) between the enrollment biometric and the probe
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0.4

experimental results use a two-dimensional movement mode
The decoder observes two vectors: the probe biometric 03
for i € {1,2,...,n} ands; for j € {1,2,...,k}. The
decoder’s objective is to estimate the hiddenenroliment
variables. 01
The factor graph breaks down into three pieces. At the
bottom of Fig. 7 is the code graph representing Ehenatrix d=2 d=3 Db
(cf. (4)) that mapsx into s. At the top of Fig. 7 is the priors
observatiory. In betweernx andy is our model of movement, Fi . -
. . . . . . ig. 8. Empirical movement statistics.
deletion, and insertion. Each circle in the figure represant
variable node either observesl §ndy) or unobservedx; h,
and z) that need to be estimated. The vectolis a vector
of binary variables each indicating the current belief (at @inutia moved a distance of one pixel in either the vertical
given point in the decoding process) whether an enrollme®it horizontal directions or both (i.e., theax- or co-norm).
minutiae at positiort is deleted. If a probe minutia is observed hese parameters are used to set parameter values in tbie fact
at positiont (i.e., y; = 1), thenz, indicates the current beliefs graph.
of what enrollment locations the minutiae might have come A summary test results are given in Table |. Results are
from andzy ) = {z|i € N(t)} are the set of these variablesategorized by the number of minutiae in the enrollment
in the neighborhood of enrollment position print. To first order, this is a measure of the randomness
The constraints between the variables and the priors tigdtthe enrollment biometric. As an estimate &f(x), we
define the joint probability function of all system variablesay that if a fingerprint has, e.g33 minutiae its entropy is
are represented by the polygon factor nodes. The constraif@00 x Hp(33/7000) = 7000 x 0.0432 = 302. Each row in

enforced by each are as follows. The priongiis po(z:). The the table tabulates results for enroliment biometrics il
prior on deletion ispm(h;). The prior on insertion ipv (2;). number of minutiae indicated in the first column. The second

The constraint that each enrollment minutia is paired wittyo column indicates how many users had that number of minutiae
a single probe minutia is enforced by the function nade in their enroliment biometric.

In other word,A says that an enrolliment minutiae can move In the security-robustness trade-off developed in Sedtlen

to at most one position in the probe, or it can be delete@, it was found that holding all other parameters constant
Finally, in the reverse directior) constrains probe minutiae (in particular the rate of the error-correcting code) sigur
either to be paired with only a single enroliment minutiae ghould increase and robustness decrease as the biometric
to be explained as an insertion. For a more detailed dismussentropy increases. To test this, we use LDPC codes of rate
of the statistical model see [27], [28]. The complete stiatis Rrppc = 0.94 and length7000 for all syndrome calculations.

Il mean
[ Istnd dev

0.2

probability

model of the enrollment and probe biometrics is The second and third groups of columns, labelled “False Neg-
atives” and “False Positives” bear out the theoretic ariglys
Pry(%,¥) = px(X)py1x(y]x) As the number of enroliment minutiae in a given fingerprint
- Z ZHpm(xt)p.(ht)pv(zt)A(xt,ht,zN(ti)Q(zt,yt). increase, the FRR goes up while the FAR drops. All non-
{hi} {z:} t enrollment probes of the given user are used to calculate FRR

The above statistical model of the biometrics is combinesaummlng the *# tested” column under FRR gidad1, which

with the code graph. This yields the complete model us%idrothly equal to the sum of the number of uséfj times

X . _ e number of probes per user (roughl§). To calculate the
;(;E:e;;)?:in d%(l:) ;:[)/éS)S(ﬁ’h);tS)'ﬂh; ﬁ;‘(;’(gfcz’ ys)ul;rlij G;Cf_sjézzi' sze;_e FRR we test the enroliment biometric uniformly against othe
VR J )

connected to syndromg by the edges of the LDPC Codeusers biometrics. Note that for all results it is assumeat th

. : . ttie fingerprints in the database are pre-alighed.
is constrained to equal zero. A number of computationa The final  col i1 Table | is labelled “S ity
optimizations must be made for inference to be tractable jn € final group of columns Iin Table 11S labetle ecunty.

this graph. See [27], [28] for details. Here, we quantify the mformatlo_n theoretic security foe th
prototype. From (5) and recalling that the length of the

) ) ) biometric isn = 7000, the number of bits of security is
C. Experimental Evaluation of Security and Robustness

We use a proprietary Mitsubishi Electric (MELCO) database 1 (x[s) = H(x) — kH(s)
to evaluate our techniques. The database consists of a set of = 7000H (x) — 7000(1 — Rrppc)H(s).  (6)
fingerprint measurements with roughly 15 measurements per
finger. One measurement is selected as the enrollment, whiléwe align fingerprints using a simple greedy minutiae-maighapproach
decoding is attempted with the remaining 14 serving as mobgver a number of vertical and horizontal shifts (there wasatational offset
The | . f th . . . ized "~ in the dataset). More generally, alignment would have to beedblindly
] e locations O_ the mm_u“a_e points were quantized to EEs'gnor to syndrome decoding. This is not as difficult as it magra at first.
in a 70 x 100 grid, resulting in a block-length = 7000. For instance, many fingers have a “core point” and orientaititheir pattern

The mean and standard deviation of movement. deletidfgt can be used to define an inertial coordinate system ichaai define
! minutiae locations. Doing this independently at enrolltnamd at verification

(pD)- and insertionSp(I) for the MELCO data_‘ _Set are pIOttEd inWould yield approximate pre-alignment. The movement pdrthe factor
Fig. V-C. The labeld = 1 labels the probability an enrolimentgraph model is be able to compensate for small residual ratigm errors.
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Fig. 7. Factor graph of minutiae movement model.

Enroliment False Negatives False Positives Security

# minutiae | # users|| FRR [ #tested|| FAR [ #tested|| H(x) [ H(s) [ # bits
31 195 0.11 2736 0.0098 | 110000 || 0.0410| 0.682 0.5
32 139 0.13 1944 0.0032| 78000 || 0.0421| 0.693| 3.6
33 107 0.15 1506 0.0024 | 60000 0.0432 | 0.701 8.2
34 79 0.20 1101 0.0011| 44000 || 0.0443| 0.711| 11.6
35 59 0.32 824 0.0003 | 33000 || 0.0454 | 0.716 | 17.2

TABLE |

TEST PARAMETERS FRRAND FAR RESULTS FOR FULL MODEL DECODING WORKING ONMELCO DATA AT ENCODING RATE Rrppc = 0.94.

Equation (6) follows from our model that the underlyingagnd non-standard. In addition, higher levels of security ar
source is i.i.d. soH(x) = 7T000H (x) and because we usedesired. For these reasons, we take a different approach in
syndrome codes via (4) the number of syndronies= the next section that aims to redesign the feature extractio
7000(1 — Rippc). Using Rippc = 0.94 and substituting the algorithm to yield biometric features that are well-maithe
values forH (x) and H(s) from the different rows of Table | a standard problem of syndrome decoding.

into (6) gives the bits of security for this system, which are

tabulated in the last column of the table. VI. FINGERPRINT SYSTEM: TRANSFORMATION
APPROACH
D. Remarks on Modeling Approach In this section we aim to revamp the feature extraction

This section describes a secure fingerprint biometriaggorithm to produce biometric features with statisticdlwe
scheme in which an LDPC code graph was augmented withreatched to codes designed for the BSC. Since the constnuctio
second graph that described the “fingerprint channel”iredat of LDPC codes for the BSC is a deeply-explored and well-
the enrollment to the probe biometric. A number of improvainderstood topic, we are immediately able to apply that body
ments are possible. For example, we implement an LDPC caafeknowledge to the secure biometrics problem. We believe
designed for a binary symmetric channel (BSC). This desighis is a more promising approach, in part because the design
is not tuned to the fingerprint channel model. One possihiesights we develop can be applied to building transfornms fo
improvement is to refine the design of the LDPC to match thather biometric modalities. In contrast, the biometric rohel
channel. In general however, while the “fingerprint chahneiodel developed in Section V-B is specific to fingerprints
is a reasonable model of the variations between the enrotimand minutiae points. In addition, the system we describe
and probe fingerprints, the techniques developed are spexififor fingerprints in this section achieves a higher level of
the feature set and the resulting inference problem is cexnpinformation-theoretic security.
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The transformation-based secure fingerprint biometrigghere the last two equalities follow from properties 1 and 2,
scheme is depicted in Fig. 9. In Section 5, the functigm(-) andR . ppc is the rate of the LDPC code used. Thus, the higher
extracted minutiae maps from the enrollment and probe fithe LDPC code rate, the smaller is the probability of sudoéss
gerprints. Here, in addition to minutiae extraction, tfg«(-) attack conditioned on an observatiorsoMoreover,H (x|s) >
box also encompasses a feature transformation algoritaim th and hence:Rsw < H(x) implies that, if properties 1-4 are
converts the 2-D minutiae maps to 1-D binary feature vectosatisfied, the system has positive information-theoreticigty
The central idea is to generate binary feature vectors tliat any LDPC code rate.
are i.i.d. Bernoulli(0.5), independent across differeseng but
such that different measurements of the same user aredeldte Feature Transformation Algorithm
by a binary symmetric channel with crossover probability To extractn bits from a minutiae map, it suffices to ask
(BSC), wherep is much smaller than 0.5. This is one of théquestions,” each with a binary answer. A general framework
standard channel models for LDPC codes and therefore stan-accomplish this is shown in Fig. 10. First, operations
dard LDPC codes can be used for Slepian-Wolf coding of tlge performed on the biometric to yield a non-binary feature
feature vectors. We emphasize that the feature transfamatrepresentation that is then converted to binary by threthg)
we now present is made public andnist assumed to provide As an example, one can project the minutiae map onto
any security — in contrast to some of transformation-baseethogonal basis vectors and quantize the positive priojest

techniques discussed in Section Il to 1s and negative projections @s.
In the implementation we now describe, theoperations
A. Desired Statistical Properties of Feature Vectors count the number of minutiae points that fall in randomly

ﬁ.l’bosen cuboids il — Y — © space £-position, y-position,
f-minutia-orientation), as shown in Fig. 10-(b). To choose a
cuboid, an origin is selected uniformly at randomin-Y —©
gpace, and the dimensions along the three axes are alsaschose
at random.
allic 7= {1,2 ! Next, define the threshold as the median of the number
2) Difflerent_bits’ irj]”a"TEV.en feature vector are indepe of minutiae points in the chosen cuboid, measured across
9 . . 1CePeN e complete training set. A similar method is used for face
dent of each other, so that a given bit provides ng e .
information about anv other bit. Thus. the airwiséecogmtlon in [30]. The threshold value may differ for each
entropy H(xi, x;) = Hy( )+ H( '_) B 2'bits f(?r all cuboid based on its position and volume. If the number of
. p}:/vhe)rge’ ) gZ flizhis roxjert_ alona with the minutiae points in a randomly generated cuboid exceeds the
L7 J &I ) Property, 9 threshold, then a 1-bit is appended to the feature vector,
first property, ensures that the feature vector can n(())ttherwise a 0-bit is appended. We consider the combined
be cpmpressed .further, le., it presents the max'mugéeration of (a) generating a cuboid and (b) thresholding as
possible uncertainty for an attacker who has to guess . - : : . :
: : .~ “efuivalent to posing a question with a binary answer. With
a portion of a feature vector given some other port|ons.uch questions we get anbit feature vector
3) _Feature vectorsc and y from difierent fmgers, are  The simplest way to generate feature vectors is to use the
independent of each other, so that one person’s feat%

vector provides no. information about another berson S%?me questions for all users. In the sequel, we consider @ mor
foat rep ector. Thus. the pairwise entroBix: p ~~ 7 advanced approach in which the questions are user-specific.
H( u) —|—\;I( )' 2ubi,ts forpalll W cT xi, ;) = The rationale behind using user-specific questions is thraes
X Vi) = bl ) uestions are more robust (reliable) than others. In paati
4) Feature vectors andx’ obtained from different readingsq ( ) : Fa

of the same finger are statistically related by a BSC question is robust if the number of minutiae points in a cdboi
9 y y a B5 is much greater than or much less than the median calculated

l‘;prés :;Zg’ 2oieanmseg]satrghnf;ﬁgur?”\: iﬁt:r:a?;ee r?rt:ug'\t/er the entire dataset. Thus, even if there is spurioustiose
P ISy u Wi NY&T- deletion of minutiae points when a noisy measurement of

o )
Thus, H (xj|x;) = H(p) for all i € T. the same fingerprint is provided at a later time, the answer to

The last property ensures that a Slepian-Wolf code with g guestion (0 or 1) is less likely to change. On the othedhan
appropriately chosen rate then makes it possible to estithat it ihe number of minutiae points is close to the median, the 0 o
enroliment biometric when provided with feature vectoir | 4nswer to that question is less reliable. Thus, more feliab

the enrollee. At the same time, the chosen coding rate mal®S.stions result in a BS@-intra-user channel with lowp.
it extremely difficult (practically impossible) to estineathe pitterent users have a different set of robust questions, an
enrollment biometric when provided with feature vectomstir \ye propose to use these while constructing the feature vecto
an attac_ker or from. a.dlﬁerent user. To s_how that the rewyiltiyy emphasize that for the purposes of security analysisghe
biometrics system is information theoretically secur@ceed ot questions used in the system is assumed public. An attacke
just like in (3) to obtain who steals a set of syndromes and poses falsely as a user will
H(x|s) = H(x,s) — H(s) = H(x) — H(s) be giyen theI s_et_of qtugstior;s_ appropriate toththatbuser:t Oufr
security analysis is not based in any way on the obscurity o
= Hx) = nBRsw=n(H(x) = Rsw) (1) 4 que)z/stions)f but rather on the infor);nati())/n-theoretiﬁxrdjﬁy !

= n(1 — Rsw) = nRippc > 0 of recovering the biometric given only the stolen syndromes

We aim to have a feature vector that possesses the follow
properties:
1) A bitin a feature vector representation is equally likel
to be a 0 or a 1. Thus,
Pr{x; =0} =Pr{x; =1} =1/2 andH(x;) = 1 bit for
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Fig. 9. Robust feature extraction is combined with syndraoeéing to build a secure fingerprint biometrics system.
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Fig. 10. (a)n questions can be asked by performingperations on the biometric followed by thresholding. Im scheme, the operation involves counting
the minutiae points in a randomly generated cuboid. (b) Tmioba binary feature vector, the number of minutiae pointsicuboid is thresholded with
respect to the median number of minutiae points in that clbalculated over the entire dataset. Overlapping cubaid pall result in correlated bit pairs.
For details about eliminating bit pairs with very high cdat®n, the reader is referred to [29].

For a given useri, the average number of minutiae 32. As before, all fingerprints are pre-aligned. To measure
pointsm; ; in a given cuboidC; is calculated over repeatedthe extent to which the desired target statistical progeriti
noisy measurements of the same fingerprint. ket and Section VI-A are achieved, we examine the feature vectors
o; be the median and standard deviation of the number alftained from the minutiae maps according to the method
minutiae points inC; over the dataset of all users. Then, letlescribed in Section VI-B. The most robust questions were
A, ; = (mi; —mj)/o;. The magnitude|A, ;| is directly selected to generate the feature vectors, wittanging from
proportional to the robustness of the question posed byidub80 to 350. Fig. 11 shows the statistical properties of thaufea
C; for useri. The sign ofA; ; determines whether the cuboidvectors forn=150. As shown in Fig. 11(a), the histogram of
C; should be placed intd ;, a list of questions with a 0 the average number of 1-bits in the feature vectors is aledte
answer for uset, or into £, ;, a list of questions with a 1 aroundn/2 = 75. Fig. 11(b) shows that the pair-wise entropy
answer for usei. Both these lists are sorted in the decreasingeasured between bits of different users is very close to 2
order of |A, ;|. Now, a fair coin is flipped to choose betweerbits. Thus, bits are nearly pairwise independent and nearly
Lo, and L, ; and the question at the top of the chosen list isniformly distributed, approximating property 1.
stored on the device. After coin flips, approximately:/2 of In order to measure the similarity or dissimilarity of two
the most robust questions from each list will be stored on tifieature vectors, the normalized Hamming distance (NHD) is
device. This process is repeated for each enrolled iuser  used. The NHD between two feature vectarsindy, each

having lengthn, is calculated as follows:

C. Experimental Evaluation of Security and Robustness 1
In the following experiments, we use the same Mitsubishi NHD(x,y) = - > (zi @ wi)
Electric fingerprint database as described in the previous =1

section, which contains minutiae maps of 1035 fingers withhere & is summation modulo 2. The plot of Fig. 12(a)
15 fingerprint samples taken from each finger. The averagentains three histograms: (1) The intra-user variatiothés
number of minutiae points in a single map is approximatedistribution of the average NHD measured pairwise over 15
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(a) The Normalized Hamming Distance (NHD) betweeatdre vectors shows clear separation within and across.u$¢ The tradeoff between

intra-user NHD and inter-user NHD is plotted by sweepingraghold NHD across the histograms in Fig. 12(a). 850, equal error rate is 0.027 when
the attacker has access to the victim’'s questions and idyresno when the attacker is impersonating a victim withonbwing his specific questions.

samples of the same finger, (2) The inter-user variation is
the distribution of the NHD averaged over all possible pairs
of users, each with his own specific set of questions (3)_
The attacker variation is the NHD for the case in which an<
attacker attempts to identify himself as a given ugewhile
using a different fingerprin§ # ¢, but while using the 150
robust questions of user As seen in the figure, there is a
clean separation between the intra-user and inter-user NH
distributions, and a small overlap between the intra-user a
attacker distributions. One way to ascertain the effentes

of the feature vectors is to choose different threshold NHDs
in Fig. 12(a) and plot the intra-user NHD against the inter-
user NHD. This tradeoff between intra-user NHD and inter-
user NHD is shown in Fig. 12(b) both for the case in which
every user employs specific questions and for the case in
which an attacker uses the questions stolen from the useg béj
impersonated. A metric for evaluating plots such as Figb)12(
is the “equal error rate (EER)”, which is defined as the point
where intra-user NHD equals inter-user NHD. A lower EE

qual Error R

B

indicates a superior tradeoff. Fig. 13 plots the EER foroasi
values ofn. Observe that user-specific questions providet
significantly lower EER than using the same questions for a
users irrespective of the robustness of the questions. Even

0.07
\\
0.06 “v_| Al users have identical questions
T =%
0.05 Dl SR R S
0.04[ Attacker stealg and applies user-specific questions
0.03 X
0.02
0.01 Everyone uses their own user-specific questions
. | |
|
0 0 50 100 150 200 250 300 350 400

length of the binary feature vector, n

(@

ig. 13. User-specific questions result in lower EER thanroom questions,
ven if the user-specific questions are given to the attacker

. %e attacker is provided with the user-specific questioms, t
resulting EER is lower than the case in which everybody has
e same questions.

Based on the separation of intra-user and inter-user -distri

butions, we expect that a syndrome code designed for a BSC-



VETRO ET AL.: SECURING BIOMETRIC DATA

n BSC crossover| R\ ppc FRR after FAR after No. of Bits
probability, p syndrome coding| syndrome coding| of security
100 0.1 0.3 0.23 0.0001 30
150 0.13 0.2 0.11 0.0001 30
200 0.2 0.15 0.14 0.0014 30
250 0.2 0.125 0.15 0.0035 31.25
TABLE 1l

SYNDROME CODING WITH AN APPROPRIATELDP C CODE GIVES AN INFORMATION-THEORETICALLY SECURE BIOMETRICS SYSTEM WITH LOWFRRAND
EXTREMELY LOW FAR.

p, with appropriatep < 0.5 would authenticate almost all matrix representation of minutiae locations and develgpin
genuine users while rejecting almost all impostors. Table & model of minutiae movement that can be combined with
shows the FRR and FARfor overall syndrome coding with a graphical representation of a linear code. Although this
different values ofn andp. These FAR and FRR values areapproach does not yet yield satisfactory performance imger
measures of the security-robustness tradeoff of the ligerd of security and robustness, it does reveal various factors
biometric coding system. The LDPC code rate is chosen 8wt affect performance and provides valuable insight that
as to provide about 30 bits of security. This restriction lba t motivates the transform-based approach of Section VI.
LDPC code rate in turn places a restriction on how las@an  |n the latter approach, a transform is designed to con-
be, especially for smalk. Due to this restriction, the FRR isvert the fingerprint feature set into a binary vector with
relatively large forn = 100. The lowest FRR is achieved fordesirable statistical properties, in the sense of being-wel
n = 150. As n increases, less robust questions need to keatched to well-understood channel coding problems. The
employed, so the statistical properties of the featureorsct resultant design yields very low false-acceptance and:als
diverge from those in Section VI-A. Thus, the FRR increasegjection rates. Further, it ensures operation well inte th
again whem becomes too large. information-theoretically secure region. We believe titisbe
Compare the FRR, FAR and number of bits of security powerful concept that will allow extension of this framewo
reported in Table Il with those reported in Section V. Weo other biometric data. It may also prove useful in resavin
observe that the FRR and FAR are comparable, but tperformance issues with other Slepian-Wolf inspired syste
transformation approach described in this section pravélle pgegides further improving security and robustness, there
higher number of bits of security compared to the modelbasgre a number of additional open research issues. As one
approach of Section V (see final column of Table I). Thgyample, the designs presented in this chapter assumeti¢hat
reason for this improved security-robustness tradeofh& t piometric data is pre-aligned. In practice, this is not thsec
the statistical properties of the transformed featurearscire 5nq piometric data must be aligned blindly, i.e., withoutess
intentionally matched to the standard LDPC code for a binagy ther reference data. One research trajectory is thgrmlesi
symmetric channel. such algorithms. An alternative to blind alignment is theige
of a translation- and rotation-invariant feature set. Aoset
VII. SUMMARY aspect of the secure biometrics that has not received much
This chapter demonstrates that the principles of distibutattention concern multi-biometric systems. In these syste
source coding can be successfully applied to the problenultiple biometrics are collected at enroliment and vestiion
of secure storage of biometrics. A Slepian-Wolf framework such as both iris and fingerprint. The measurements ard fuse
is used to store a secure version of the biometric templdge improve overall robustness and security. This particula
data collected at enrollment and to recover the enrolimeg@mbination and some encouraging results are presented by
template at authentication. The trade-off between sgcarit  Nandakumar in [31]. However, the topic has yet to be studied
robustness in this framework is formally defined and disedss in the context of a Slepian-Wolf coding system.
and sample implementations based on iris and fingerpriat dat As the use of biometrics become more widespread, the
validate the theory. incentive to attack biometric systems will grow. Assumihg t
While iris data tends to be relatively well behaved antkchnology for securing biometric data is sufficiently nmattit
exhibits easily modeled sample-to-sample variability tbowould be natural to standardize the template protectioiydes
between samples of the same user and across users)3beh work is within the scope of ISO/IEC JTC1/SC37, which
same can not be said of fingerprints. It is shown that tli® an international standardization committee on biorogtri
fingerprint noise channel is far removed from the standard bOpen issues to be handled by this committee would range
flipping (e.g., BSC) channel model of communication systemom gquantifying the inherent entropy and security limits o
The design of a secure system for such biometric modalitis®metric data to remote authentication scenarios.
therefore requires additional attention. Two approaches a As a final note, the biometric system described in this
discussed. The first design is based on using a sparse bing¥pter is one example where a noisy version of an original
signal is available at the decoder for the purpose of authent
cation. This type of setup is extended to the problem of image
authentication following similar principles [32]. We bebe

8While determining the FAR, if an input feature vectar satisfies the
syndrome, it is counted as a false accept. This is a conserFAR estimate
since anya for which fhasi@) # fhas{@) is denied access.
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that there are many such applications of this nature in whigda] E. Martinian, S. Yekhanin, and J. S. Yedidia, “Secur@rBétrics via
the principles of distributed source coding can be applied.
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