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Abstract

In this paper, a methodology for Lyapunov-based adaptive PID control for different nonlinearly-
parameterized series and parallel PID realizations presented using simple first and second or-
der dominant plants. The corresponding designs are based on using only the tracking error,
its derivative, its integral, and the current value of the adaptive gains in order to update the
PID gains. The conventional independent parallel realization, which most existing adaptive
designs have used, yields a linearly parameterized adaptive control problem. Whereas, other
parallel as well as series realizations yield nonlinearly parameterized adaptive systems allowing
for coupled adaptation of the PID gains and further design flexibility. These coupled archi-
tectures promise to yield better adaptation and learning as they reflect the inherently coupled
nature of PID tuning. Case study simulations are provided to demonstrate the capabilities
of the developed algorithms.
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Nonlinearly Parameterized Adaptive PID Control for
Parallel and Series Realizations

Khalid EI Rifai

Abstract—1In this paper, a methodology for Lyapunov-based
adaptive PID control for different nonlinearly-parameterized
series and parallel PID realizations is presented using simple
first and second order dominant plants. The corresponding
designs are based on using only the tracking error, its derivative,
its integral, and the current value of the adaptive gains in
order to update the PID gains. The conventional independent
parallel realization, which most existing adaptive designs have
used, yields a linearly parameterized adaptive control problem.
Whereas, other parallel as well as series realizations yield non-
linearly parameterized adaptive systems allowing for coupled
adaptation of the PID gains and further design flexibility. These
coupled architectures promise to yield better adaptation and
learning as they reflect the inherently coupled nature of PID
tuning. Case study simulations are provided to demonstrate the
capabilities of the developed algorithms.

Index Terms— direct adaptive control; PID control.

I. INTRODUCTION

Proportional-Integral-Derivative (PID) controllers remain
the dominant algorithm in control engineering practice due to
their simplicity and fundamental capability. A long standing
problem with significant interest from industry is to improve
the robustness of PID controllers and reduce their sensitivity
to gain tuning for system uncertainty and time-variations.

Adaptive control, e g., [6], [2], [4], [8] is a mature
field with many results. However, most adaptive controllers
require either a detailed process model or an approximation
of that model such as neural nets in order to estimate system
parameters. The problem with this approach is that for many
systems the complexity of a stable adaptive controller is
very high, which, limits practical usability. Furthermore,
strong theoretical arbitrary stability guarantees of model-
based adaptive controllers are typically violated in practice
due to digital effects, saturation, and unmodeled dynamics.
As a result, stable adaptive designs depend in practice on
careful tuning of learning rate gains and fixed feedback gains
as well as robust adaptive modifications used. Therefore,
there’s a great need for simpler universal controllers cap-
turing the essence of adaptive control while retaining ease
of tuning for practically stable adaptive control even if they
do not possess the same degree of a priori guarantees on
stability for as large class of systems in theory.

Adaptive PID control is one approach to improve the
robustness and autonomy of PID controllers as well as
capture the essence of adaptive control theory within a simple
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architecture. Numerous publications in the control commu-
nity have considered this problem but with very different
approaches. One approach is to use a fixed PID controller
and combine it with some function approximation, e.g. neural
nets, based adaptive controller. However, the complexity and
usability of such controllers is no better then model-based
algorithms. Other approaches use some type of heuristics
to adjust the PID gains such as genetic algorithms or
fuzzy logic. Whereas, fundamental adaptive PID algorithms
analogous to classical direct adaptive control for full state
feedback [2] without using any function approximation or
heuristic methods are less common. Adaptive non-heuristic
PID controllers, without use of model-based compensation or
their functional approximation, are developed in [5], [1], [7],
[3] with applicability to different 1* and 2" order systems
using different designs approaches such MRAC, MIT rule,
and high gain adaptive stabilization. Such results though are
only developed for the standard parallel PID realization with
independent linearly parameterized adaptation. In this paper,
a methodology, which generalizes these results, is developed
for adaptive PID with different parallel and series realizations
allowing for coupled adaptation with nonlinear parametriza-
tion. This is achieved by utilizing only the feedback tracking
error, its derivative, and its integral as driving signals as well
as the current gain values to adjust the adaptive gains.

The contribution of the paper is that it develops novel
designs for Lyapunov-based adaptive PID control in order
to update the PID gains in a generally coupled manner for
different parallel and series architectures. These architectures
promise to yield better adaptation then existing decoupled
designs as they reflect the inherently coupled nature of PID
tuning.

The paper is organized as follows. Section II develops
the basic design methodology for nonlinearly-parameterized
adaptive PID control. The methodology is used to develop
adaptive PID controllers with different parallel and series
realizations in Section III . Extensions of the basic controllers
via augmentation with simple model-based adaptive terms
is briefly discussed in Section IV. Case Study simulations
are presented in Section V. Conclusions and future work are
given in Section VI.

II. METHODOLOGY

The basic problem is to design PID controllers with
adaptive gains based on Lyapunov stability without use of
detailed model-based compensation and parameter estima-
tion. In particular, the designs are based on updating the
PID gains directly using only the error, its derivative, its



integral, and the current value of the adaptive gains. This
motivated by the fact that fixed PID controllers are non-
model based and in principal only require basic knowledge
about the controlled plant but are very sensitive to tuning.
However, as the problem of tuning fixed PID controllers is
coupled, then a similar approach to adaptive PID is taken,
which yields a nonlinearly parameterized adaptive control
problem. In order to verify Lyapunov stability, minimal plant
models for first and second order dominant systems are used
in order to obtain the adaptive PID designs as a starting
step. The range of applicability of the developed algorithms
in terms of provably stabilizable classes of systems is not
the focus of this paper.

Consider the following class of plants consisting of a chain
of integrators:

ay™ =u (1)

Where y(™ is the n'" derivative of the targeted output
y, where n is the chosen dominant order of the system.
Whereas, unknown constant parameter a is the high fre-
quency gain. The main assumptions for the designs are given
by:

Assumption 2.1: The dominant order n < 2 is a known
constant.

Assumption 2.2: The signals y,y(!) are available.

Assumption 2.3: The sign of the scalar a is known and
constant, without loss of generality a > 0 is assumed.

Assumption 2.4: The reference trajectory r and its first n
derivatives r(l), ey r(") are known, bounded and, piecewise
continuous.

The procedure starts with creating a filtered version of the
actual tracking error to create a first order equivalent error
system as in sliding mode and the robust part of adaptive
controllers in [6]. Define the following error variables:

—(d/dt + Kpp)" e

/zdt

Where K, > 0 is a chosen scalar, e = r —y is the tracking
error for a desired reference r. Let 2 = y(™ — w ¢f and
denote the feedforward gain regressor wyy where wyp =
f(y,g,r,7D ... r(™) only, which are all available signals.
Note that for n = 1, we have wy; = 7, whereas wy; =
7 + Kppé for n = 2. Consider the following control law:

z =

zZr =

u = —KPUZ—KwZ[+(Kff+Xff)Wff—|-ua )

Where K, > 0 is a fixed proportional gain, K;, > 0
is a fixed integral gain. Whereas, K;; and K; are fixed
and adaptive feedforward gains respectively. The adaptive
PID control term is u, (K, e, ¢, [¢) with K € R® being a
vector of adaptive PID gains. Substituting Equation (2) into
Equation (1) yields:

az = — pvszmszrf(ffwfquua

Where K;; = K s — a+ Kyy is the feedforward gain
estimation error.

Consider the following Lyapunov function:
V:azg—l—sz?—&—%?flf(?f—i—f(/F_lf( 3)

Where ;¢ > 0 is the adaptation gain for the feedforward
gain K srand I' = I'>0isa symmetric positive definite
adaptation gain matrix for the update of the adaptive PID
gains K, which will be enforced to be diagonal for simplicity.
The above Lyapunov function is in the typical form found
in adaptive control with the exception that the adaptive PID
gains K rather then some gain or parameter estimation error
is used.
Computing V' yields:

~Kp2® + zua + Kpp(zwpp + 777 Kyyp)
+K'T'K

V:

This yields the typical choice for the feedforward adaptation,
see for instance [6]:

Kpp = —qprwyppz “)

Therefore, we are left with:

V o= —2K,,2°+2zu, +2K T 'K

Recall that for a C3, i.e., three times continuously differen-
tiable function, using the mean value theorem suggests that
Ja€]0,1] :

fly+at) = f0)+y Vin + 5y V3 ty
ﬂLéy’V?’f(m +ay, t)yy

Using the above exact 3"¢ order expansion for u, yields:

n 1~/ .

uo(K,t) = ua(0,t) + K Vuu(0,t) + 5K V2u,(0,1) K
1 A2
+5K Viua(aK)K K

Where u,(K,e,¢é, [€) is denoted by u,(K,t). Where
Vue(0,t) is the gradient of the adaptive PID control term
u, with respect to K and evaluated at K = 0. Whereas,
V2u,(0,t) is the hessian of u, with respect to K and
evaluated at K = 0. Whereas, V3u,(aK,t) is the third
derivative tensor of order 3 with argument oK. Note that
V3u, generally requires dealing with tensor algebra but the
associated term reduces to a very simple quantity for this
particular problem.

Enforcing the condition u,(0,?) = 0 on the adaptive PID
to be designed, which simply suggests that the adaptive
control vanishes when all adaptive gains are zero, and
comparing the obtained expression for u, with 1% suggests
the following update law for the PID gains:

X 1 N
K = -T (Vua(O,t)+ 2V2ua(0,t)K> z

-T (évsua(af{,t)ffk) z ®)



Substituting Equation (5) into the expression for V' yields:
V o= —2K,,2°<0

Which proves Lyapunov stability of the system. This yields
the following closed loop error dynamics, in addition to
Equation (5):

az =

Kyp =

—Kypyz — Kivzr + f(ff Wyt —|—ua(f(,t)
—VffWEr 6)

A formal statement is made next:

Theorem 1: Under assumptions (2.1-2.4) for plant given
by Equation (1) and controller given by Equations (2), (5),
and 4) ¥ v;; > 0,0 =T > 0 and K, K;,y > 0 and
an adaptive PID feedback ua(f( ,e,é, [e) the closed loop
system given by Equations (6) and (5) is Globally Lyapunov
Stable and e — 0 asymptotically.

Proof:

Using the Lyapunov function V' given by Equation (3) and
system equations (6) and (5) then global Lyapunov stability is
shown by computing V' = —2K,,2? < 0, see above analysis.
Furthermore, by applying typical Barbalat Lemma arguments
concludes uniform continuity of V since V> 0 and V is
bounded, therefore z — 0 asymptotically and thus e — 0
asymptotically. |
Note that adaptation may be turned off and stability of the
system is clearly maintained. The above statement does not
specify the adaptive PID control law uq (K, e, ¢, J €). Next,
adaptive PID controllers will be designed based on Equations
(2)-(5) for different PID realizations.

A. Remarks

e The role played by the fixed PID is different here
from that in model-based adaptive control, where the
fixed part is assumed to be designed for the ideal
response and model based adaptive terms need to cancel
the apparent dynamics in order to realize this ideal
closed loop response. Note, however, that this is why a
conservative or too aggressive choice for the fixed part
does significantly affect the performance of adaptive
controllers in practice. In here, these feedback gains are
not assumed to be well designed and are expected to be
better tuned by the adaptive PID.

« Note that the assumption that both y and g are available
is a prerequisite to PID control, even if only y is
measured as gy is usually obtained through some type
of filtered differentiation in practice.

o Note that the constant « that appears in the update law
given by Equation (5) from the application of the mean
value theorem is unknown. However, since the control
law w, is a polynomial of at most order three in the
three PID gains, then V3u, is independent of K and
thus, « will not be needed.

o Note that the coupled adaptation laws, as will be seen
in next sections, are easily implementable as they are
simply a set of coupled differential equations as opposed

to a set of decoupled differential equations as commonly
found in adaptive control.

o Note that the adaptation law of Equation (5) can be used
with not only linear PID controllers but also nonlinear
PID controllers, with absolute values, polynomials and
exponential functions of the error, its derivative, or its
integral.

o The developed control can be combined with MRAC for
full state feedback control and almost strictly positive
real plants, by observing the similarity in the underlying
problem structure in these cases, this will not be shown
here for space limitations.

III. PARALLEL AND SERIES PID DESIGNS

PID controllers can be represented in different parallel and
series realizations. Due to space limitations, the design for
only 3 realizations will shown and contrasted next.

A. Design for Standard Parallel PID

The standard parallel realization yields a traditional lin-
early parameterized adaptive control problem where each
gain is multiplied by it’s “regressor” which are the error, its
derivative, and its integral. Most, if not all, existing adaptive
PID designs fall under this form such as [1], [7], [5], [3]
with applicability to different 1% and 2"¢ order systems
using different designs approaches such MRAC, MIT rule,
and high gain adaptive stabilization. The design presented in
this section may be viewed as a generalization of the ones
in [1], [71, [5], [3] though derived differently.

The basic adaptive controller using the conventional par-
allel PID design is given by:

u, = f(pe+f(Dé+f(,/edt (7)
Where Kp is the adaptive proportional gain, Kp, is the
adaptive derivative gain, K is the adaptive integral gain.

Using Equations (7) and (5) the adaptive gains are updated
using the following adaptation laws:

Kp = —vpez (8)
Kp = —-9péz 9)
R'I = —W/edtz (10)

Where vp,vp,yr > 0 are the adaptation gains for
proportional, derivative, and integral gains, respectively such
that I' = diag(yp,vp,r). Therefore, the overall design is
given by Equations (2), (4), (7) and, (8)-(10).

B. Design for Parallel PID with Overall Integral Gain

The adaptive controller using the parallel design with
overall integral gain is given by:

ug, = Kj (/edt+f<pie+f(mé> (1)
Where K7 is the adaptive integral gain, Kpi, is the adaptive
derivative gain scaled by the integral gain, Kp; is the
adaptive proportional gain scaled by the integral gain.



Using Equations (11) and (5) the adaptive gains are
updated using the following adaptation laws:

2 K
Kpi = —pi ez (12)
: K
Kp; = _'YDi7IéZ (13)

K = ’yl</ P*e+K2Dié>z (14)

Where vp;,vpi, 71 > 0 are the adaptation gains for
scaled proportional, scaled derivative, and integral gains,
respectively such that T' = diag(yp:, Ypi,vr). Therefore,
the overall design is given by Equations (2), (4), (11) and,
(12)-(14).

C. Design for Standard Series PID
The adaptive controller using the conventional series de-

sign is given by:
Kiy (/édt+kpp/edt)

+K,, (éA+—12ppe)

Ug =
(15)

Where K pp 1s the adaptive outer proportional loop gain,
va is the adaptive inner proportional loop gain, K, is the
adaptive integral loop gain.

Using Equations (15) and (5) the adaptive gains are
updated using the following adaptation laws:

S { U Kl'U
K,, = _ypp< p / dt) (16)

2 K
Ky = —Ypo (é—&—;I’e) z a7

: K,,
Kiv = —iv (/édH—m /edt> z  (18)

Where 7pp, Ypus Vi > 0 are the adaptation gains for
outer proportional, inner proportional, and integral gains,
respectively such that I' = diag(vpp, Ypv; Viv). Therefore,
the overall design is given by Equations (2), (4), (15) and,
(16)-(18).

Other possible realizations include parallel PID with over-
all proportional or derivative gains as well as series PID with
overall derivative or integral gains.

IV. AUGMENTATION WITH MODEL-BASED DESIGNS

The above design may be simply augmented with well
known model-based designs, which could be useful if some
important non-linear terms are structurally known and need
to be canceled. Consider systems in the SISO companion
form given below:

ay™ = —W(y,y" )0+ By, y")u

The systems given by Equation (19) are a generalization
of those in Equation (1) where a and y are as defined in
Section II, which are simply first and second order nonlinear

19)

systems . Whereas, vector 6 = [0, 0s,.. ., F)m]/ is a vector
of plant parameters. An additional assumption is made for
these systems:

Assumption 4.1: W (y,y™ V) = [wy,wy, ..., wy,] with
wi(y,y™ V) Vi = 1...n and B(y,y"Y) are known
smooth functions in R and 3(y, "~ 1) # 0 Vy,y»= 1.
Using standard model based design procedures based on that
in [6] the control in Equation (2) is updated to:

Uqg
U = — (20)
B(x)
ug = —Kpyz— Kipzr + (Kpp + Kpp)wps + uq
W0
é - _FQW(y7 y)/ <

Where the matrix I'y = 1":9 > 0 is the adaptation gain matrix
for parameter vector 6. The above result simply states that we
can add model based adaptive terms W (y, %) 0 to the non-
model based control law of Equation (2) with u, and the
PID adaptation is given by any of the designs in Section III
or IV. This yields the following error dynamics, in addition
to Equation (5):

az = - pvszwz]+Kf-fwff-+ua(K,t)
. +W'
f(f.;f = —Yrrwss?
0 = -ToW(y,y) = @1

Where § = 6 — 6. The Lyapunov function , Equation (3)
of Section II is updated by using the following Lyapunov
function:

chaz2+sz,+yffof+Kr IK+60T;'% (22

For completeness, the formal result is stated below.

Theorem 2: Under assumptions (2.1-2.4) and assumption
5.1 for plant given by Equation (19) and controller given
by Equations (20), (5), and 4) V v5f > 0, I' = r' > o,
Ty = Fe > 0 and K,,,K;, > 0 and an adaptive PID
feedback ua(K e,é, [€) the closed loop system given by
Equations (21), and (5) is Globally Lyapunov Stable and
e — 0 asymptotically .

Proof:

Using the Lyapunov function V. given by Equation (22)
and system equations (21), and (5), then global Lyapunov
stability is shown by computing V, = —2K,,2% < 0.
Furthermore, by applying typical Barbalat Lemma arguments
concludes uniform continuity of V, since V, > 0 and V, is
bounded, therefore z — 0 asymptotically and thus e — 0
asymptotically. |

Similarly, the result may be extended to more general
classes of systems as long as the model-based control terms
do not significantly increase the complexity and practicality
of the controller.

V. SIMULATIONS

In this section a case study simulation will be used
to demonstrate the developed methodology. Consider the



following plant transfer function:
y(s) 8e —5 ((2:60)2 + %;ng +1)

s* ((z7755)° + 27106 + 1) (3ms000 T 1)

The plant used for simulations is of order 5 and relative
degree 3. However, the system is a 2"? order dominant
system and thus the designs of Section II with n = 2 will be
used with the plant treated as a double integrator. The chosen
designs of Section III are compared . In these simulations, the
fixed part of the adaptive PID controller of Equation (2) uses
nonoptimally tuned gain values K¢y = 3e — 5, K, = 25,
K,, = 0.004, and K;, = 0.4 in order to evaluate the
ability of the adaptive algorithms to automatically optimize
the PID controller’s tuning. Therefore, it is expected that
the performance will be improved over the nonadaptive
controller but the main focus is on the behavior of different
adaptive PID realizations.

0.1
0.08
—— Cascade adaptive PID
0.06 ——Parallel adaptive PID 1
—— Parallel adaptive PID with overall integral gain
§ 0.04
5]
£ 002
4
[}
o
= ol
—-0.021
-0.04f
_0'060 02 04 06 08 1 12 14 16
time, seconds
Fig. 1. Tracking error for three different adaptive PID realizations ; overall
response.

Figure 1 shows the tracking error with the system com-
manded to follow three filtered step commands with 0.5 sec-
onds between them. The three adaptive controllers demon-
strate different transient behavior. In the simulations shown
the same equivalent relative adaptation gains are used for all
adaptive controllers given by Equations (8)- (10), Equations
(12)-(14), and Equations (16)-(18). This means ~yr and ¢y
are the same, yp; = vyp/ys, and yp; = yp/7vr, which
reflects the difference between the two realizations with
the integral gain being an overall gain in the nonlinearly
parameterized design of Equations (12)-(14). Similarly, the
same linear-equivalent adaptation gains are used for the
cascade adaptive controller. Figure 2 shows that, for the
chosen adaptation gains, the cascade design displays much
better settling and transient response then the other methods.
For reference, the response of this adaptive controller is
compared to that of the fixed PID used, i.e., the same fixed
part of the adaptive controllers with adaptation gain matrix
I" = 0. The performance improvement is evident. Note that

—— Cascade adaptive PID
0.02f —— Parallel adaptive PID
— Parallel adaptive PID with overall integral gain
0.01r
8
S 0
j=2]
i
X
[}
£
= -0.01f
—-0.021
_0'037 Il Il Il Il Il
11 1.2 13 1.4 15
time, seconds
Fig. 2. Tracking error for three different adaptive PID realizations ; end

of simulation.

the fixed part is intentionally detuned to compare the learning
capability of the adaptive PID controllers.

0.6

0.41

0.2p

o

I e R e |

1\\1\’/"7\*7*7’

Tracking error
|
o
N

-0.41 —— Cascade adaptive PID
Fixed PID only

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
time, seconds

Fig. 3.
PID part.

Tracking error for an adaptive cascade PID and the nonadaptive

The behavior of the control signal and adaptive gains for
the three adaptive methods is shown in Figure 4, 5, and
6. It is noteworthy that the control signal is larger with
the overall integral gain method, during the first command.
Note that if all gains are converted to the same equivalent
representation, e.g. parallel Kp, K7, Kp the values they
converge too are different with different methods, which
explains the difference in tracking response shape in Figure
1. For example, comparing the parallel and cascade adaptive
PID controllers at the end of the simulation shown, we get
final proportional gain of 4 versus 8.8, and derivative gains
of 0.075 versus 0.08, and integral gain of —12 versus 85.
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Adaptive Standard Parallel PID : (a) Control signal, (b) Adaptive
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Fig. 5. Adaptive Parallel PID with overall Integral gain: (a) Control signal,
(b) Adaptive gains.

VI. CONCLUSIONS

A methodology for Lyapunov-based adaptive PID control
for different nonlinearly-parameterized series and parallel
PID realizations has been presented. Lyapunov stability and
asymptotic tracking are proven using the exact third order
expansion of the control law using the mean value theorem.
The corresponding developed designs are based on using
only the tracking error, its derivative, its integral, and the
current value of the adaptive gains in order to update the
PID gains. The developed nonlinearly parameterized adaptive
PID controllers allow for coupled adaptation of the PID

Control Signal

o

Adaptive Gains
Noos

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
time, seconds

0 \ \ |

Fig. 6. Adaptive cascade PID: (a) Control signal, (b) Adaptive gains.

gains and further design flexibility as verified by case study
simulations. Future work will focus on further analysis of
when advantages of different realizations as well as extend-
ing the algorithms’ capabilities including utilizing robust
adaptive modifications and formal robustness analysis for
more general classes of plants.
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