
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Fast Adaptive Algorithms for Abrupt
Change Detection

Daniel Nikovski, Ankur Jain

TR2009-057 July 2009

Abstract

We propose two fast algorithms for abrupt change detection in streaming data that can operate
on arbitrary unknown data distributions before and after the change. The first algorithm, MB-
GT, computes efficiently the average Euclidean distance between all pairs of data points before
and after the hypothesized change. The second algorithm, MB-CUSUM, computes the log-
likelihood ratio statistic for the data distributions before and after the change, similarly to the
classical CUSUM algorithm, but unlike that algorithm, MB-CUSUM does not need to know
the exact distributions, and uses kernel density estimates instead. Although a straightforward
computation of the two change statistics would have computational complexity of O(N4) with
respect to the size N of the streaming data buffer, the proposed algorithms are able to use the
computational structure of these statistics to achieve a computational complexity of only O(N2)
and memory requirement of O(N). Furthermore, the algorithms perform surprisingly well on
dependent observations generated by underlying dynamical systems, unlike traditional change
detection algorithms.

Machine Learning Journal

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2009
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Mach Learn
DOI 10.1007/s10994-009-5122-x

Fast adaptive algorithms for abrupt change detection

Daniel Nikovski · Ankur Jain

Received: 19 December 2007 / Revised: 22 May 2009 / Accepted: 22 May 2009
Springer Science+Business Media, LLC 2009

Abstract We propose two fast algorithms for abrupt change detection in streaming data that
can operate on arbitrary unknown data distributions before and after the change. The first
algorithm, MB-GT, computes efficiently the average Euclidean distance between all pairs of
data points before and after the hypothesized change. The second algorithm, MB-CUSUM,
computes the log-likelihood ratio statistic for the data distributions before and after the
change, similarly to the classical CUSUM algorithm, but unlike that algorithm, MB-CUSUM
does not need to know the exact distributions, and uses kernel density estimates instead. Al-
though a straightforward computation of the two change statistics would have computational
complexity of O(N4) with respect to the size N of the streaming data buffer, the proposed
algorithms are able to use the computational structure of these statistics to achieve a com-
putational complexity of only O(N2) and memory requirement of O(N). Furthermore, the
algorithms perform surprisingly well on dependent observations generated by underlying
dynamical systems, unlike traditional change detection algorithms.

Keywords Event detection · Distribution monitoring · CUSUM

1 Introduction

One of the main events that is often useful to detect in a sensor data stream is an abrupt
change in the nature of the streaming data. For example, the temperature of an industrial
process might depart from its normal values, and this might signal that the process is out of
control. However, at other times the temperature of the process might vary due to random
noise, for example caused by measurement error or unmodeled variables, without necessar-
ily being out of control. Distinguishing between these two situations is often a challenging
problem, and the field of statistical process control (SPC) is concerned with devising meth-
ods and algorithms for detecting such changes.

Editor: Weng-Keen Wong.

D. Nikovski (�) · A. Jain
Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA 02139, USA
e-mail: nikovski@merl.com

mailto:nikovski@merl.com

Mach Learn

From a mathematical point of view, the problem reduces to detecting a departure from
the in-control distribution of the data towards some other, out-of-control distribution. For
in-control and out-of-control distributions of known parametric form and known distribu-
tion parameters, the CUSUM algorithm originally due to Page (1954) has been used with
much success. Moreover, it has been proven that it is optimal, i.e., no other algorithm guar-
antees faster change detection for a pre-specified probability of false alarm (Basseville and
Nikiforov 1993). However, the in-control and especially all possible out-of-control distrib-
utions can very rarely be modeled explicitly. This necessitates the use of methods that can
detect abrupt changes only by inspecting the data streams and reasoning about the proba-
bility distributions implied by the data readings themselves. In this paper, we are proposing
algorithms based on memory-based machine learning methods for quick estimation of prob-
ability distributions from data.

Our change-detection framework assumes that there is only a single change in the entire
length of the stream, and this change persists for the remainder of the data stream. This is
the typical situation when the change is destructive (e.g., a burnout, motor failure, etc.)

The change point is detected based on a quantitative figure of merit produced by the
change detection algorithm. The figure of merit serves as an estimate of the difference be-
tween the two data distributions on the two sides of the change point. For example, in Page’s
CUSUM algorithm (Page 1954), the figure of merit is the log-likelihood ratio correspond-
ing to a specific change point. Other popular measures are distances between distributions,
e.g. Kullback-Leibler divergence, Rényi divergence, etc. (Guha et al. 2006). Each of these
figures of merit has its computational advantages and disadvantages; for example, the men-
tioned distances between distributions all suffer from the need to compute multiple integrals
over the entire domain of the data collected from the data stream.

In contrast, the focus of our work has been to develop a general and parameter-free
framework that offers scalable performance and operates in limited memory and in real time.
Since a sensor stream can potentially be unbounded in size, and any processing machine has
limited computational and memory resources, our algorithms use a sliding window over
the data stream. The length of the sliding window is the amount of historical data that an
algorithm stores and considers during the computation of the figure of merit. If we denote a
d-dimensional data vector from the sensor stream at time instant t as xt , and N is the length
of the sliding window, then a change-detection algorithm considers only the data points
{xt−N+1, . . . ,xt } to answer the following questions: “Given the data seen so far, what is the
likelihood that a change has occurred on or before time instant t? If a change has occurred,
when was the most likely time it occurred?” In the rest of the discussion, we denote the
sliding window at time t by �t . Since we use only the last N elements seen in the stream,
we omit the global time reference notation within the window, and refer to the elements of
the sliding window as {x1, · · · ,xN } where xN is the latest element obtained from the stream.

As new data become available, the sliding window slides by one element, discarding the
oldest data element and incorporating the latest one. Each time a sliding operation is made,
a change-detection algorithm α searches for a pair (i, j) that splits �t into two sub-windows
γ t

i,j−1 and γ t
j,N (as shown in Fig. 1) such that

γ t
p,q = {xp, . . . ,xq}, where �t = {x1, . . . ,xN } ∧ (1 ≤ i < j ≤ N). (1)

This split is made in such a way that point j has the highest likelihood of being a change
point, if one did occur in �t . Note that the size of the two sub-windows may or may not be
the same.

Under the operation of algorithm α, the possibility of the occurrence of a change for any
time instant t is quantified by the value of the figure of merit ϒα

t , which is a measure of

Mach Learn

Fig. 1 An instance of a sliding
window and its probable
sub-windows

the difference between the data distributions contained in the sub-windows γ t
i,j−1 and γ t

j,N .
Different algorithms compute figures of merit in different ways, which affects their ability
to detect the true change point accurately.

Since the search for the change point is made over all possible sub-windows within �t ,
any change-detection algorithm ϒ has a time complexity of at least O(N2). We designed
our change detection algorithms with the following considerations in mind:

1. Generality, i.e. they do not make any assumptions about the shape and parameters of the
underlying data distributions.

2. Scalability, i.e. they offer time complexity comparable to that of O(N2).
3. Operation in limited memory.

We propose the following two memory-based abrupt change detection algorithms:

– Memory Based Graph Theoretic (MB-GT) This algorithm approaches the problem from
a graph-theoretic perspective. Qualitatively, the figure of merit (ϒMB-GT

t) is based upon the
spatial (Euclidean) distance between pairs of data elements from different sub-windows.
It can also be perceived as a memory-based clustering approach where the objective is
to minimize the intra-cluster distance while maximizing the inter-cluster distances. We
present more details of this algorithm in Sect. 2.

– Memory Based CUmulative SUM (MB-CUSUM) This algorithm is inspired by the clas-
sic CUSUM algorithm. It iteratively computes the likelihood of a data element coming
from the two distributions in the sub-windows and uses the cumulative likelihood ratio as
its figure of merit (ϒMB-CUSUM

t). The details of this algorithm are presented in Sect. 3

2 A memory-based graph theoretic algorithm

One straightforward solution to the problem of computing the distance between two distri-
butions indirectly specified by means of two sample sets is to compute the average distance
between the samples themselves. Since each sample is a point in a multi-dimensional Euclid-
ean space, a natural distance measure between pairs of points xk and xl is their Euclidean
distance dk,l

.= ‖xk − xl‖. For a particular split defined by the index pair (i, j) specified in
Fig. 1, we can compute the average distance between the two sub-windows as

Ci,j =
∑j−1

k=i

∑N

l=j dk,l

(j − i)(N − j + 1)
. (2)

We will call the corresponding change detection algorithm MB-GT (Memory-Based
Graph Theoretic). Its overall figure of merit ϒMB-GT

t can be computed as described above:
ϒMB-GT

t = max1≤i<j≤N Ci,j . Since computing each Ci,j is of complexity O(N2), and there
are O(N2) such terms to be considered, the overall complexity of computing ϒMB-GT

t seems

Mach Learn

to be O(N4), if implemented directly. This complexity is unacceptable for practical appli-
cations.

However, the computation of individual Ci,j terms has certain redundancy and repetitive
structure that can be exploited to bring the computational complexity of MB-GT back down
to O(N2). If we define

C ′
i,j

.=
j−1∑

k=i

N∑

l=j

dk,l , βi,j
.=

N∑

l=j

di,l , (3)

one can verify that the following recurrent relationships hold: βi,j−1 = βi,j + di,j−1, with
βi,N+1 = 0, and C ′

i−1,j = C ′
i,j + βi−1,j , with C ′

j,j = 0 for all 1 ≤ j ≤ N . These recurrences
suggest the following efficient computational algorithm. If the values C ′

i,j are placed in a
tableau that is conceptually similar to a matrix, this matrix would be upper triangular due
to the constraint i < j . Computation can start with the bottom row of this matrix that has a
single element C ′

N,N which is zero by definition. For each row 1 ≤ i < N above the last one,
proceeding from bottom to top, the following two steps are performed:

1. All values βi,j are computed recurrently from their immediate neighbor to the right,
proceeding right to left, and using the recurrence βi,j−1 = βi,j + di,j−1.

2. All values C ′
i,j are computed from the respective values βi,j and the values C ′

i+1,j in the
row immediately below the current one, using the recurrence C ′

i,j = C ′
i+1,j + βi,j .

Computing ϒMB-GT
t can be done simultaneously with the computation of the individual

terms C ′
i,j , since it involves only normalization and maximization. For this reason, it is not

necessary to keep all values βi,j and C ′
i,j in memory; it suffices to keep a buffer of size N

elements for the current row i of values βi,j , and two buffers of the same size for C ′
i,j and

C ′
i+1,j . Thus, the memory requirement of this algorithm is only O(N). The computation of

βi,j and C ′
i,j for each row i is only of O(N), and since there are N such rows, the overall

computational complexity is only O(N2), as opposed to O(N4) for a naive implementation.
Algorithm 1 shows in detail how the MB-GT algorithm computes its figure of merit given a
sliding window of observation data.

3 A Memory-Based CUSUM Algorithm

Unlike MB-GT, the second algorithm we propose, MB-CUSUM, has probabilistic founda-
tions identical to that of the original CUSUM algorithm, which potentially allows it to
achieve optimal change detection under certain modeling conditions. At the same time, de-
spite its very different theoretical foundation, MB-CUSUM has similar computational struc-
ture to MB-GT, and we will demonstrate how this structure can be leveraged to achieve the
same significant improvements in computational complexity.

Following the derivation of CUSUM in (Basseville and Nikiforov 1993), we consider the
following hypotheses about a possible change within the current buffer of N readings kept
in memory:

Hi,0: xk ∼ p0 for i ≤ k ≤ N,

1 ≤ i < j ≤ N,Hij : xk ∼ p0 for i ≤ k ≤ j − 1,

xl ∼ p1 for j ≤ l ≤ N,

where p0 and p1 are the data distributions before and after the change, respectively.

Mach Learn

Algorithm 1 Compute ϒMB-GT
t

Inputs:
Sliding window size: N

Sliding window : �t = {x1, . . . ,xN }
Distance function : d(x1,x2) /* e.g., d(x1,x2) = ‖x1 − x2‖ */

Local variables:
Partial-sum vector: β = {b[i]|1 ≤ i ≤ N}
Recurrent figure of merit C : /* Max. figure of merit for an (i, j) pair */

Outputs:
Figure of merit: ϒMB-GT

t /* Max. figure of merit for �t */

1: for i = 1 to N do
2: β[i] = 0 /*Reset the array values to zero*/
3: end for
4: for j = (N − 1) to 2 do
5: C = 0
6: for i = (j − 1) to 1 do
7: β[i] = β[i] + d(xi ,xj) /*Incrementally update the partial sums*/
8: C = C + β[i]
9: ϒMB-GT

t = max(C
(j−i)(N−j)

,ϒMB-GT
t) /*Updating figure of merit*/

10: end for
11: end for
12: return ϒMB-GT

t

Here we are considering the null hypotheses Hi,0 that no change has occurred while the
latest N − i + 1 samples were collected, vs. multiple hypotheses Hi,j that such a change
has occurred. Compared to CUSUM, by introducing the starting index i, we are expanding
the set of hypotheses to be tested to those that do not necessarily use all N samples in the
window. According to the Neyman-Pearson lemma, the most powerful test that we can per-
form when testing each particular hypothesis Hi,j vs. Hi,0 (i.e., the test that has the highest
probability of rejecting a false null hypothesis), is the likelihood ratio

�ij =
∏j−1

k=i p0(xk) · ∏N

l=j p1(xl)
∏N

k=i p0(xk)
. (4)

For convenience, the log-likelihood ratio Sij = log(�ij) is commonly used. In our algo-
rithm, we replace the true pdfs p0 and p1 with their Parzen kernel density estimates (Hastie
et al. 2001), as described by Eq. 5:

p(x) = 1

n

n∑

i=1

w(x − xi), (5)

where w is a suitably chosen kernel, and xi , i = 1, n is a sample of data points from the dis-
tribution to be modeled. Popular choices for the kernel are Gaussian, tri-cubic, etc. (Hastie
et al. 2001). This results in the following figure of merit for a particular split (i, j):

Si,j =
N∑

l=j

log
1

N−j+1

∑N

k=j wl,k

1
j−i

∑j−1
k=i wl,k

, wl,k
.= w(xl − xk). (6)

Mach Learn

Here wl,k is a kernel weight for the pair of samples (xl ,xk). By using the maximum like-
lihood principle, the figure of merit for this algorithm will be ϒMB-CUSUM

t = max1≤i<j≤N Si,j .
Again, a direct computation of ϒMB-CUSUM

t would have computational complexity of O(N4).
However, ϒMB-CUSUM

t has a similar structure to ϒMB-GT
t that can again be exploited to

reduce its computational complexity. Again, we can conceptually organize the values of Si,j

in a tableau, and define the following auxiliary variables:

μl
j

.=
N∑

k=j

wl,k, νl
i,j

.=
j−1∑

k=i

wl,k. (7)

Although there appear to be O(N3) νl
i,j terms to be computed, the recurrent re-

formulation of Eq. 6

Si,j = Si,j+1 + logμ
j

j − logν
j

i,j + log(j − i) − log(N − j + 1) (8)

can convince us that not all of them are needed. By further defining μ′
j

.= μ
j

j , and ν ′
i,j

.= ν
j

i,j ,
we can use the following equations as a basis for an efficient algorithm:

μ′
j =

N∑

k=j

wj,k, ν ′
i,j = ν ′

i+1,j + wj,i . (9)

Note that only the one for ν ′
i,j happens to be recurrent; the other, for μ′

j , is computed
directly. These equations suggest the following efficient algorithm (described in detail in
Algorithm 2):

S1: Compute μ′
j for j = 1,N directly, per Eq. 9. This computation takes O(N2), but the

results can be stored in O(N) space.
S2: For each row i = N,1 of the matrix Si,j , starting from the bottom row i = N and

moving upwards to the first row i = 1, perform the following two steps:

S2.1: For each value of j between i + 1 and N , compute ν ′
i,j from the corresponding

ν ′
i+1,j in the row below, and wj,i , per Eq. 9.

S2.2: For each value of j between N and i + 1, compute Si,j from the value Si,j+1

immediately to the right, using the equation Si,j = Si,j+1 + logμ′
j − logν ′

i,j +
log(j − i) − log(N − j + 1), starting with Si,N+1 = 0 for all i = 1,N . The com-
putation in this step proceeds strictly right to left (j = N, i + 1).

4 Other figures of merit

In addition to the novel schemes discussed so far, some other known methods can also be
adapted such that their incremental versions can be applied to the change-detection problem.
In order to provide a comparative analysis, we used the popular Student’s t -test (MB-TSTAT)
and the Kolmogorov-Smirnov (MB-KS, Massey 1951) procedures to verify the performance
of our novel techniques. While we could not find an incremental version of the MB-KS
method (an O(N3 logN) procedure), we realized that the MB-TSTAT procedure can naturally
be extended using recurrent calculations. In the rest of this section, we provide the details of
the incremental version of the MB-TSTAT method (details in Algorithm 2).

Mach Learn

Algorithm 2 Compute ϒMB-CUSUM
t

Inputs:
Sliding window size: N

Sliding window : �t = {x1, . . . ,xN }
Kernel function : w(z) = 1

σ
√

2π
exp−‖z‖2/2σ 2

Local variables:
Partial-sum vector: υ = {υ[i]|1 ≤ i ≤ N}
Recurrent figure of merit S : /* Max. figure of merit for an (i, j) pair */

Global variables:
Partial-sum vector: μ = {μ[i]|1 ≤ i ≤ N}
First run indicator: init=true /* Changes state when the algorithm

is called the first time */
Outputs:

Figure of merit: ϒMB-CUSUM
t /* Max. figure of merit for �t */

1: if init then
2: for i = 1 to N do
3: μ[i] = 0 /*Reset the μ vector*/
4: end for
5: init = false
6: end if
7: for i = 1 to N − 1 do
8: υ[i] = 0 /*Reset the υ vector*/
9: μ[i] = μ[i + 1] + w(xi − xN) /*Updating the μ vector*/

10: end for
11: υ[N] = 0
12: μ[N] = w(0)

13: for i = (N − 2) to 1 do
14: S = 0
15: for j = (N − 1) to i + 1 do
16: υ[i] = υ[i] + w(xi − xj) /*Incrementally update the υ vector*/

17: S = S + log
(

μ[j](j−i)

υ[j](N−j)

)

18: ϒMB-CUSUM
t = max((S,ϒMB-CUSUM

t) /*Updating figure of merit*/
19: end for
20: end for
21: return ϒMB-CUSUM

t

4.1 Memory based t -statistic MB-TSTAT

Student’s t -test quantifies the difference between two Gaussian distributions using the means
and variances in the data. In the sliding-window mode of operation, the distance between
two Gaussian distributions (as identified by the t -statistic) can be represented as:

T t
i,j =

| 1
j−i

∑
xk∈γ t

i,j
xk − 1

N−j

∑
xk∈γ t

j,N
xk|

�t
i,N

. (10)

In Eq. 10, the numerator is simply the absolute value of the difference in the means of
the data and the denominator is the standard deviation of the data over the whole window

Mach Learn

normalized by the appropriate degrees of freedom. If we denote the variance of the data in
the two sub-windows as δt

i,j and δt
j,N , then �T

i,N can be computed as follows:

�t
i,N =

√
(j − i − 1)δt

i,j + (N − j − 1)δt
j,N

(j − i − 1) + (N − j − 1)

(
1

j − i
+ 1

N − j

)

. (11)

Let us introduce two new variables such that:

si,j =
j∑

k=i

xk, s̄i,j = si,j

j − i
, s2

i,j =
j∑

k=i

x2
k. (12)

Equation 10 can then be represented as:

T t
i,j = | si,j

j−i
− sj,N

N−j
|

�t
i,N

. (13)

The variance of data in a given sub-window can be calculated as follows:

δt
i,j = 1

j − i − 1

j∑

k=i

(xk − s̄i,j)
2,

= 1

j − i − 1

j∑

k=i

(
x2

k + (s̄i,j)
2 − 2xk s̄i,j

)
,

= 1

j − i − 1

(

s2
i,j + (si,j)

2

(j − i)
− 2

(si,j)
2

(j − i)

)

,

= 1

j − i − 1

(

s2
i,j − (si,j)

2

(j − i)

)

. (14)

Furthermore, Eq. 11 can now be simplified as follows:

�t
i,N =

√
√
√
√ s2

i,j − (si,j)2

(j−i)
+ s2

j,N − (sj,N)2

(N−j)

N − i − 2

(
N − i

(j − i)(N − j)

)

,

(15)

�t
i,N =

√
√
√
√ s2

i,N − (si,j)2

(j−i)
− (sj,N)2

(N−j)

N − i − 2

(
N − i

(j − i)(N − j)

)

.

Thus, the figure of merit ϒMB-TSTAT
t for an (i, j) split can be computed using the sum

of the data in the sub-windows (si,j) and the sum of the squares of all the elements (s2
i,N).

Since these terms can be easily updated incrementally, the algorithm takes O(N2) times
using constant, i.e., O(1) memory. For high-dimensional data, a �t

i,N score is computed for
each dimension, and the final figure of merit is quantified by the norm of the vector holding
the scores for each dimension.

Note that our proposed algorithms work for any possible (i, j) split within the window.
There has been some research work such as (Guha et al. 2006) where the use of fixed-size
sub-windows has been proposed (i.e., when N − j = j − i). Using fixed-size sub-windows

Mach Learn

Algorithm 3 Compute ϒMB-TSTAT
t

Inputs:
Sliding window size: N

Sliding window : �t = {x1, . . . ,xN }
Local variables:

Partial-sum: stot /* For an (i, j) split, stot = ∑N

k=i xk */

Partial-sum: sr /* For an (i, j) split, sr = ∑N

k=j xk */

Partial-sum: sl /* For an (i, j) split, sl = ∑j−1
k=i xk */

Partial-sum: s2
tot /* For an (i, j) split, s2

tot = ∑N

k=i x2
k */

Recurrent figure of merit:T t
MB-TSTAT /* Max. figure of merit for an (i, j) pair */

Outputs:
Figure of merit: ϒMB-TSTAT

t /* Max. figure of merit for �t */

1: stot = xN

2: s2
tot = x2

N

3: for i = (N − 1) to 1 do
4: stot = stot + xi

5: s2
tot = s2

tot + x2
i

6: sr = 0;
7: for j = N to i − 1 do
8: sr = sr + xj

9: sl = stot − sr ;
10: T = |sr /(N−j)−sl /(j−i)

√

s2
tot −

(sl)
2

(j−i)
− (sr)2

(N−j)
N−i−2 (N−i

(j−i)(N−j)
)

11: ϒMB-TSTAT
t = max((T ,ϒMB-TSTAT

t) /*Updating figure of merit*/
12: end for
13: end for
14: return ϒMB-CUSUM

t

can only provide a reduction in the asymptotic complexity of O(N2) by a constant. As we
will show in our experimental results, using fixed-sized sub-windows can be a significant
prohibition and can affect the change detection performance adversely in some cases.

5 Experimental analysis

To facilitate a better understanding of the results and to interpret the behavior of underlying
algorithms, we conducted an extensive experimental analysis on both simulated and real
data. The effectiveness of a change detection method can be analyzed based on the following
two performance metrics:

– Receiver Operating Characteristic Curve (ROC)—this is a plot of the true-positive rate
against the false-positive rate, constructed as described in (Provost and Fawcett 1997).

– Activity Monitor Operating Characteristic (AMOC)—this is a plot of the mean detection
delay (also called the average run-length of the algorithm), against the false-alarm rate.

We are investigating the algorithms under the assumption of a single change hypothesis
(SCH) which, as noted, is appropriate for destructive changes that persist indefinitely after

Mach Learn

they have occurred. Under this assumption, once the algorithm has decided that the change
has occurred, it believes that this change persists for all subsequent time steps, until the
end of the data stream. This entails the following definitions of when true (false) positives
(negatives) occur:

True positive (TP): Time step when the algorithm has declared that a change has occurred,
and such a change has indeed already occurred in the data stream. Also known as a “hit”.

False positive (FP): Time step when the algorithm thinks that a change has occurred, but it
has not occurred yet in the data stream.

True negative (TN): Time step when the algorithm has not declared that a change has oc-
curred, and such a step has indeed not occurred in the data stream.

False negative (FN): Time step when a change has in fact occurred, but the algorithm has
failed to detect it yet. Also known as a “miss”.

The corresponding rate for each of these four events is equal to the number of such
events divided by the overall number of positive (respectively, negative) events. Under the
SCH, when computing these four rates, what really matters is only the time when the change
occurs respective to the time when the algorithm declares that it has occurred. If we denote
the length of the data stream by M , the time when the change occurs by τ , and the time
when the algorithm declares the change has occurred by τ̄ , the following equations hold
true. (Here the letter “R” after an event abbreviation denotes the rate of that event.) When
τ̄ < τ (early detection), FPR = (τ − τ̄)/τ , TNR = τ̄ /τ , FNR = 0, and TPR = 1. When,
conversely, τ̄ > τ (late detection), FPR = 0, TNR = 1, FNR = (τ̄ − τ)/(M − τ), and TPR =
(M − τ̄)/(M − τ). Only when τ̄ = τ it holds that TPR = TNR = 1, FPR = FNR = 0. By
definition, the ROC curve is the plot of TP versus FP rates.

It turns out that under the assumption of a single change hypothesis (SCH), the AMOC
curve can be derived trivially from the ROC curve by a simple reflection along the vertical
axis. The reason is that under the SCH, the figure of merit grows monotonically, and the
delay in detecting an abrupt change, as displayed on the y-axis of the AMOC curve, is
exactly equal to the rate of false negatives, or misses. When there is a delay, its actual
duration is τ̄ − τ , which, normalized by the number of time steps when change existed,
gives (τ̄ − τ)/(M − τ) for the normalized delay of detection that is plotted in the AMOC
curve. However, as noted, this is precisely equal to FNR under the SCH. And, since FNR =
1 − TPR, in its turn, it follows that the AMOC curve is a mirror image of the ROC curve
across the vertical direction. For this reason, we present ROC curves only.

5.1 Simulated data

For simulated data, we used the CUSUM method as a gold standard for comparison, since it
is known to be optimal when the data distributions before and after the change are known. In
this way, it establishes an upper limit on the possible performance of any learning algorithm
for change detection. The ROC curves for the CUSUM method were generated by providing
the true shape and parameter information of the data distributions to the CUSUM algorithm.
Although our novel algorithms operate in a parameter-free setting, we first present simula-
tion results using Gaussian distributions (characterized by their means and standard devia-
tions). Keeping the characteristics of the underlying data distribution fixed, different testbeds
were constructed to study the effect of one particular aspect on the tested algorithms. For
each testbed, we averaged the results over 100 independent runs. When averaging them, we
used the vertical averaging method, as opposed to threshold averaging (Provost and Fawcett
1997).

Mach Learn

Fig. 2 ROC plots for Testbed 1 with (N = 100, BC − mean = 0.0, BC − std = AC − std = 0.20)

5.1.1 Testbed 1—performance against difference in means in Gaussian data

The experimental results for this testbed were conducted on a one-dimensional data stream
with 300 elements with a window size of 100 (i.e., N = 100) such that the change-point
always occurred at the center of the sequence (i.e., at time index τ = 150). The before-
change (BC) data is always zero-mean. We keep the standard deviation of the data fixed
before and after the change. Each algorithm was tested in two modes:

– EQ—Using only equally-sized sub-window splits, i.e., (N − j + 1 = j − i) ∧ (1 ≤ i <

j < N).
– UNEQ—Using all possible window splits, i.e., 1 ≤ i < j ≤ N .

The objective of conducting experiments on Testbed 1 was to answer the following three
questions:

1. How does the performance change as we change the separation between the two dis-
tributions, as measured by the ratio between their means normalized by their standard
deviations?

2. How well do the novel memory-based change detection schemes compare against the
CUSUM method?

3. Is using all possible (i, j) splits instead of fixed-sized sub-windows providing any per-
formance enhancement?

In Figs. 2–3, we show the ROC plots for different values of the standard deviation of the
data. Since the standard deviation is fixed for a particular set of experiments, the ease of
detection is directly under the influence of the change in the mean of the data. Hence the
ease of detection increases from left to right in all the figures. As expected, all the algo-
rithms show a consistent improvement in performance as we increase the AC mean. In terms
of the non-parametric methods, the MB-KS emerges as the best method (only marginally
inferior to CUSUM), and shows better robustness to data variance. However, this algorithm
suffers from the prohibitive complexity of O(N3 logN). Furthermore, MB-CUSUM catches
up quickly with MB-KS, and hence would be the preferred scheme, considering its low com-
putational complexity. Hence, in the rest of our discussion, we will restrict ourselves to the
other versions of the memory based algorithms.

Relatively, the MB-CUSUM algorithm performs better than any of the other algorithms,
especially when in the UNEQ mode. In absolute terms, its performance is comparable to that

Mach Learn

Fig. 3 ROC plots for Testbed 1 with (N = 100, BC − mean = 0.00, BC − std = AC − std = 1.00)

of CUSUM even when the change in the two distributions is subtle (as evident in Figs. 2(a)
and 3(a)). When the change is significant, its performance is almost as good as that of
CUSUM. This addresses Question 2 above. Furthermore, the performance of the MB-GT
is pretty much similar to that of MB-TSTAT. However, note that the MB-TSTAT algorithm,
operates under the assumption that the underlying data distributions are Gaussian, while
the MB-GT algorithm does not make any such assumptions. Given the minimal memory
requirements of the MB-TSTAT algorithm (note that the computational complexity of both
algorithms is the same), one would prefer MB-TSTAT over MB-GT, if it is known a priori
that the data distribution is Gaussian.

The answer to Question 3 is also evident from the figures. The UNEQ mode provides
significant performance enhancement for all the proposed algorithms especially for the
MB-CUSUM method. The EQ mode has negligible effect on the MB-TSTAT algorithm, how-
ever the MB-GT algorithm starts to show significant improvements in performance when the
noise in data is high (i.e., when the standard deviation is increased).

5.1.2 Testbed 2—effect of the sliding window size N

The experiments for this testbed were designed to analyze the effect of the sliding window
size (N) on the performance of the algorithms. Having analyzed the results from Sect. 5.1.1,
it is reasonable to assume that our memory based techniques provide best results when used
in the UNEQ mode. Hence, to simplify the plots, we conducted experiments in this mode
only.

We observed that for any fixed window size, the performance improved as we increased
the data separability. Hence, the window size does not affect performance adversely. How-
ever, using too small windows can marginally lower the performance, especially when the
data separability is not high. Whereas using very small windows can make the system
susceptible to noise, using large windows can cause the system to lose sensitivity. Since
MB-CUSUM operates using additive log-likelihood ratios, it is expected to be more robust to
data noise than other algorithms. We observed that MB-CUSUM offered good performance
when the window size was sufficiently large. Using very large windows can cause some
degradation in the performance of the MB-GT and MB-TSTAT algorithms. However, overall,
all the algorithms are robust to changes in the window size. Also, the relative performance of
the algorithms does not change with the window size, and MB-CUSUM is the best performer
in all cases.

Mach Learn

Fig. 4 ROC plots for Testbed 3 with (N = 100, BC − mean = 0.0, AC − mean = 0.50,
BC − std = AC − std = 1)

5.1.3 Testbed 3—performance against the size of the smallest sub-window

As we discussed in the earlier section, our memory based techniques compute the figure of
merit by analyzing sub-windows of many possible sizes. Although this helps in making our
methods more general (as seen in Sect. 5.1.1), it could introduce arbitrary bias in the per-
formance results. For example, consider an (i, j) split on sliding window of size 300, with
i = 1, and j = N . The sample sizes in question are 299 and one, respectively. Regardless
of the algorithm used, estimates computed over a sub-window of one element only have
no statistical significance. Hence, the objective of constructing this testbed is to verify if
having a lower bound on the size of a sub-window (MSW) can affect detection accuracy. In
Figs. 4–5, we show the ROC curves obtained as we increased this lower bound on the size of
the smallest sub-window, for different separability of the data. Note that the data separability
in the figures doesn’t change in the horizontal direction.

One direct observation from the figures is that the MB-CUSUM algorithm is not very
sensitive to the MSW bound, and does not exhibit a significant change in the performance
as we increased the lower bound. But generally, all the algorithms show improvements in
performance as the lower bound was raised. Algorithms working on the Euclidean space
distances are more sensitive to the lower bound and show significant performance enhance-
ments using larger sized sub-windows. MB-TSTAT is most sensitive to this lower bound,
matches CUSUM when MSW = 35, and outperforms MB-CUSUM by a significant margin.

5.1.4 Testbed 4—effect of data dimensionality

While the MB-CUSUM and the MB-GT algorithms naturally generalize to high dimensional
data, we compute the figure of merit for the MB-TSTAT algorithm by first computing the
t -statistic for each dimension individually, and then taking the norm over the computed
values. We generated high dimensional data such that data on each dimension was i.i.d.,
and there was no covariance between data from different dimensions. The results suggested
that all three schemes do not exhibit any performance degradation when increasing the data
dimensionality; just on the contrary, the higher the dimensionality of the data, the closer the
curve for the MB − CUSUM algorithm is to that of the CUSUM algorithm that uses the true
data distributions. One possible explanation for this effect is that each of the dimensions of
the data adds more evidence that a change has indeed occurred.

Mach Learn

Fig. 5 ROC plots for Testbed 3 with (N = 100, BC − mean = 0.0, AC − mean = 1.5,
BC − std = AC − std = 1)

5.1.5 Testbed 5—performance on other distributions

For the sake of a comprehensive experimental analysis, we tested the performance of our
methods on other distributions, as well. As we have already seen in Sect. 5.1.3, the size of
the smallest sub-window has a significant effect on the relative performance of our memory-
based techniques. Hence, in this section, as we vary the distribution separation, we also vary
the MSW factor, in order to verify if a similar trend of relative change in performance is
prevalent.

We focused the experiments in this testbed on exponential distributions, since their shape
is very different from that of Gaussian distributions. While keeping the before-change dis-
tribution parameter λ fixed, we increased the after-change distribution parameter. An inter-
esting observation is that detecting change is significantly easier when the AC distribution
is wider-spread than the BC distribution. That is, the case when λBC > λAC is much harder
than the opposite case. Furthermore, when the above condition holds true, the MB-TSTAT al-
gorithm can significantly improve its performance when we increase the MSW . However, in
the opposite case, MB-CUSUM is the best performer. Also, MB-GT’s performance degrades
significantly for harder cases.

One hard representative case, when the two means are fairly close (λ0 = 0.25, λ1 = 0.5),
is shown in Fig. 6. It can be seen that detecting the change is trivial for the omniscient
CUSUM algorithm, which is supplied with the exact distributions p0 and p1. The two al-
gorithms MB-CUSUM and MB-GT perform relatively well, while the Gaussian assumption
built into the MB-TSTAT algorithm results in much worse performance.

5.2 Experiments with data acquired from a physical system

In this section, we present the performance results of the proposed memory-based change
detection algorithms on data collected from a real physical system. The change-detection
task at hand was to detect the state transition of an air conditioner’s compressor (from off to
on) based on temperature observations of the air blowing out of the air conditioner’s vent.
The entire air conditioner was indoors, i.e., both its evaporator (internal heat exchanger) and
condenser (external heat exchanger) were in contact with room air. The ground-truth (the
actual state of the compressor) was obtained by monitoring the power consumption of the

Mach Learn

Fig. 6 For exponential
distributions, the relative
performance of the algorithms
remains the same

air conditioner at a constant fan speed. The air conditioner always drew less than 100 Watts
of power when the compressor was ‘off’, and more than 400 Watts when ‘on’.

To introduce variability in the data, we collected temperature observations at different
times of the day while operating the air-conditioner under different set-point requirements
that were varied between 19°C and 22°C. We used two temperature sensors (accuracy
±0.1°C) to record the mean air-temperature of the air coming out of the vent of the air
conditioner, and an energy meter to monitor the power consumption of a 5,000 BTU/h win-
dow air-conditioner. Both the temperature and the power data were sampled uniformly at
one-second intervals. We collected over five hours of data; during that time the compressor
switched its state from off to on 36 times.

In Fig. 7, we have shown a snapshot of the temperature time-series obtained using the
described procedure. In the figure, the solid line represents the temperature observations
obtained when the compressor was on and the broken line when it was off. The temperature
falls steadily when the compressor is on, but rises gradually otherwise.

The raw time series of vent air temperature does not conform to the assumptions of the
change detection algorithms described above, since there is no discontinuous jump in air
temperature due to the constraints of the physical system, and even more importantly, the
data before and after the change (compressor switch) do not come from stationary distribu-
tions. Rather, when the compressor is off, the temperature rises gradually and steadily, and
when it is on, it declines gradually and steadily. However, it might be expected that the rate
of change of temperature would be much more stationary: positive before the compressor is
turned on, and negative after that. Furthermore, this change from positive to negative will
indeed be abrupt.

This reasoning suggests that pre-processing the time series by differencing it would bring
the data sequence closer to the assumptions of the change detection algorithms. To this end,
we performed change detection experiments on two types of time series:

– zeroth-order: the original time series of vent air temperatures;
– first-order: the first difference of the vent air temperatures.

Since our change-detection algorithms are tailored for single-change hypothesis, we
processed the recorded data further to obtain shorter data-streams such that each individual

Mach Learn

Fig. 7 Time series from the vent of an air conditioner. The solid line corresponds to operation of the fan
when the compressor is switched on; the broken line shows measured air temperature when the compressor
is off

stream had only one ‘off’ to ‘on’ transition or change-point in it. We randomly generated
100 such data streams of 420 observations (i.e., 7 minutes) with the change-point positioned
randomly within the stream. Since there are only 36 change-points in the entire dataset, the
100 data-streams generated had repetitions; however the change-point position was at differ-
ent position in different runs. We report performance using ROC curves (aggregated using
vertical averaging) over the 100 runs.

For the CUSUM algorithm, we model both the before-change and after-change temper-
atures by normal distributions. Note that unlike the testbed with simulated data reported
above, we cannot provide it with the true data distributions before and after the change.
Rather, we provide it with estimates of the parameters of these distributions from data.

We used two different ways of estimating these parameters: one where the distribution
parameters were obtained once from the entire 5 hour data, and another where the para-
meters were obtained for each individual run (we called this approach CUSUM-LOCAL).
If the streaming data distribution is truly normal, then the CUSUM-LOCAL algorithm is
expected to offer the best performance.

Mach Learn

We also tested a domain-specific change detector that is based on physical understanding
of the process of heat exchange in air. Heating by convection is based on Newton’s law of
cooling, where the exchanged heat is proportional to the difference in temperatures of the
two bodies that participate in the exchange. In this case, these two bodies are the evaporator
of the air compressor and the air going through it. When the compressor is off, the temper-
ature of the room air goes up, and the temperature of the evaporator and the refrigerant in it
goes up, too. When the compressor is turned on, the relatively warm refrigerant is removed
from the evaporator and replaced with refrigerant that has low heat content and low temper-
ature. At this point the difference between the temperatures of the evaporator and the room
air entering it is the largest, and hence the rate of heat exchange is also the largest. This
corresponds to the fastest change in the temperature of air coming out of the vent.

Based on this reasoning, we can build a domain-specific change detector that would sig-
nal a change when the first difference of air temperature is higher than a certain threshold.
However, this threshold would be different under different operating conditions, user set-
tings, and air conditioner models, so the accuracy of detection will vary. We report its ROC
curve along with that of the other window-based change detectors. (In order to generate
this ROC curve, we use the negative first difference as the figure of merit, so as to keep
consistency in ROC curve generation policy, where higher figure-of-merit indicates higher
probability of the sample being an after-change sample.) Similarly, the actual temperature
value could also be used as a figure-of-merit, although its performance is expected to be
much lower.

In Figs. 8–11, we report ROC curves for different window sizes (N = 10,25,50,100)
for all change-detection algorithms when operating on absolute temperature data (i.e., 0th-
order). We also report the ROC curves for the two domain-specific change-detectors VE-
LOCITY (one that uses the negative rate of change, i.e. first difference of temperature as the
figure of merit) and DATA (one that uses the data itself as a figure of merit). Note that it is
not possible to capture the distribution of the 0th-order data reliably since it is not stationary
and thus the probabilistic change-detection algorithms are not expected to work well.

As can be seen in Figs. 8–11, the DATA algorithm comes out as a top-performer followed
by CUSUM-LOCAL. However, the MB-CUSUM algorithm still offers the best performance
for a non-parametric and non-domain specific change detector. It is also the best algorithm
for N = 50 and N = 100. Even the MB-GT algorithm performs better than the CUSUM and
the MB-STAT algorithms. We further observe that increasing the window size improves the
performance of MB-CUSUM, and it performs as well as the DATA algorithm with N = 50.
Larger windows allow for better approximation of the ever changing data distribution. While
the CUSUM algorithm exhibits poor performance when the parameters are obtained from
the entire dataset, the CUSUM-LOCAL algorithm works well since it always has a more
accurate estimate of the distribution parameters. However, since the data is not likely to be
truly normal, MB-CUSUM offers better performance since it does not make any underlying
assumptions on the data distribution.1 While working with the 0th-order data, one can ex-
pect the DATA algorithm to work reasonably well, since the temperature in the compressor
“on” state is highly likely to be lower than for the compressor “off” state. Theoretically, it
is always possible to find a temperature threshold that would detect the change with a rea-
sonable accuracy. However, learning this threshold is not trivial as it will be sensitive to the
ambient conditions and user set-points. Other the other hand, probabilistic algorithms mea-

1The optimal kernel bandwidth depends on the window size, however in all our experimental analysis we
used a fixed kernel bandwidth value of unity.

Mach Learn

Fig. 8 N = 10, 0th-order

Fig. 9 N = 25, 0th-order

sure the change in the data distribution which is likely to be consistent across user settings
simplifying the task of threshold selection.

Our change detection algorithms (including CUSUM) are best-suited to detect change in
two stationary data distributions. For this dataset, the distribution of the rate of change of the
temperature (i.e. its first-order derivative) is likely to be much more stationary than the data
itself. This derivative can be approximated conveniently by simply computing the difference
between two consecutive temperature values. In Figs. 12–15 we show experimental results
with first-order differences as we change the window size. Since this is a much better rep-
resentation of the data, we observe that both versions of the CUSUM algorithm offer close
to 100% detection accuracy. Furthermore, our proposed algorithms outperformed the DATA
algorithm by significant margins when used with small sized windows. Hence, our proposed
methods match CUSUM’s performance, without making any underlying assumptions about
the distribution of the data. We observe that in this case, increasing the window size af-

Mach Learn

Fig. 10 N = 50, 0th-order

Fig. 11 N = 100, 0th-order

fects the performance of our algorithms adversely, which means that relatively small-sized
windows are better suited to this application.

5.3 Experimental results on dynamical systems with dependent observations

One of the fundamental assumptions of the CUSUM algorithm is that the observations in
the time series are independent and identically distributed. This assumption is violated when
the observations are produced by an underlying dynamical system, since the dynamics of
that system correlate consecutive observations, thus creating statistical dependencies among
them. In particular, the joint likelihood of the data points in a window cannot be factored as
in Eq. 4.

The traditional method to deal with dynamical systems is to continuously estimate mod-
els of these systems, and execute a change detection algorithm on the parameters of the
model, rather than on the original observations. This method works especially well for linear

Mach Learn

Fig. 12 N = 10, 1st-order

Fig. 13 N = 25, 1st-order

systems: in such cases, linear ARMA models are fit to windows of the observed data, and the
estimated vector of model parameters can be monitored directly by a change detection algo-
rithm such as CUSUM (Brodsky and Darkhovsky 1993). Since the parameter estimates for
linear systems are linear combinations of time-lagged windows of observations, Gaussian
noise in the observations translates directly into Gaussian noise in the estimates of model
parameters. This facilitates significantly the specification of the correct distributions before
and after the change that are needed for the proper operation of the CUSUM algorithm.

However, this approach works only for linear systems whose order p is known, and
even in such cases, it is fairly expensive computationally. For each candidate split (i, j)

of the memory buffer, the algorithm would have to estimate two linear models of order p.
This operation is linear in the size of the buffer N , but generally cubic in the order of the
system p, resulting in computational complexity of O(N3p3) when considering all possible
splits (i, j). Reusing partial results of the ARMA parameter estimation across different pairs

Mach Learn

Fig. 14 N = 50, 1st-order

Fig. 15 N = 100, 1st-order

(i, j) does not seem possible, since ARMA estimation for each pair involves the inversion
of a matrix that incorporates only the observations for this particular split.

Given the high computational cost of this approach, we decided to investigate the perfor-
mance of the two algorithms proposed by us, when applied directly to the observations in a
time series generated by a dynamical system. One particularly challenging detection prob-
lem for this approach is to detect changes in a harmonic oscillator whose frequency only
changes, but whose amplitude remains the same.

The differential equation that governs a harmonic oscillator is ẍ = −ω2x, where ω is
the frequency of the oscillator. Its solution x = sin(ωt) is a sine wave. Very clearly, the
observations in the time series x(t) are not independent. The probability distribution of
these observations is not Gaussian—rather, its two peaks are at the minimum and maximum
of the range. Moreover, this distribution does not depend on the frequency ω, so if the only
change in the system is a change in frequency, but not in amplitude, the data distributions

Mach Learn

Fig. 16 Change detection in a
harmonic oscillator whose
frequency increases from
ωbef ore = 3.0 Hz to
ωaf ter = 3.5 Hz

before and after the change would be completely identical, and traditional CUSUM executed
on these observation would have no way of detecting the change.

However, surprisingly, the two algorithms proposed in this paper performed very well in
this setting. In our experiments, we used a discrete-time version of the harmonic oscillator
with added Gaussian noise in the dynamics. In discrete-time state-space form, the system
can be represented as:

ẋt = ẋ(t−1) − ω2x�t,
(16)

xt = x(t−1) + ẋt�t + N (0,1).

In our experiments, we used a sampling frequency of 50 Hz (sampling interval �t =
0.02) , and the initial conditions were set to x0 = 10 and ẋ0 = 0, corresponding to a cosine
wave. The datasets always had 630 observations such that for a unit frequency value (ω = 1),
one sinusoidal cycle had 157 observations. Similarly to previous experiments, the change
point is exactly in the middle of the time series.

In order to preserve the amplitude of the signal when changing its frequency, the change
must occur when the velocity of the oscillator is zero, i.e., when x(t) is at one of the two
extremes of its range. The physical rationale for this is that a harmonic oscillator corresponds
to an undamped mass-spring system, and the frequency of oscillation is determined by the
spring constant and the mass of the system. Changing the mass when the velocity is not zero
would change the kinetic energy of the system, which would result in a different amplitude
of motion. Because of this, in our experiments, the number of samples in the first half of the
time series was always an exact multiple of the period of the wave before the change; the
frequency after the change can have an arbitrary value.

The two algorithms performed surprisingly well for various frequency changes, both
when the frequency after the change was increased and when it was decreased with respect
to that before the change. Figures 16 and 17 show the ROC curves for two fairly difficult
cases, when two close frequencies (3 Hz and 3.5 Hz) were used. (Results are again averaged
over 100 runs.)

We attempted to analyze the surprisingly good performance of the two algorithms at
detecting the change point, and believe that it is due to the fact that they always compare
two contiguous and continuous portions of the relatively slowly varying signal. (The rela-
tively slow variation is ensured by the typically high sampling rates in modern monitoring

Mach Learn

Fig. 17 Change detection in a
harmonic oscillator whose
frequency decreases from
ωbef ore = 3.5 Hz to
ωaf ter = 3.0 Hz

systems—the sampling rate is always designed to be above the Nyquist rate, or twice the
frequency of the fastest-varying periodic component of the sampled signal.)

We experimentally observed that regardless of the size N of the memory buffer allowed
for analysis, the combined size N − i of the two windows that resulted in maximum differ-
ence Cij (respectively, Sij) always spanned less than one full cycle of the sine wave. This
can be explained by the fact that adding more cycles to either window would actually de-
crease the difference between the two windows, since the average value of the samples in
a complete cycle is zero. This suggests that our algorithms are in fact computing distances
that correlate well with the first derivative of the slowly varying signal, and since this deriv-
ative changes when the frequency of oscillation changes, the algorithms are able to detect
the change correctly.

6 Conclusion

Two novel fast memory-based algorithms for abrupt change detection were proposed, and
their performance versus known methods for change detection was tested. Experimental
verification under various conditions such as type of distribution, magnitude of change, data
dimensionality, and memory buffer size confirmed their good performance. Between the
two, the memory-based extension to CUSUM, MB-CUSUM, outperformed MB-GT in prac-
tically all cases, which can be attributed to its probabilistic foundation and the optimality
guarantees for its non-learning predecessor, the original CUSUM algorithm. The only algo-
rithm that outperformed MB-CUSUM was the one using the Kolmogorov-Smirnov statistic;
however, this algorithm is very expensive computationally (O(N3 logN)), and inherently
limited to one- or at most two-dimensional data. In contrast, MB-CUSUM is fast (O(N2)),
and easily handles multivariate data; its accuracy even increases on higher-dimensional data,
at least when the dimensions are uncorrelated. In addition, MB-CUSUM is not too sensitive
to the size of the memory-buffer. Furthermore, MB-CUSUM and MB-GT are non-parametric
memory-based algorithms that can work on all kinds of distributions, whereas using t -tests
is limited to those that do not depart too much from Gaussian distributions. The performance
of the proposed algorithms were also verified on a data stream from a real physical system,
achieving near perfect accuracy of change detection.

Mach Learn

Furthermore, the two algorithms performed surprisingly well on change detection in dy-
namical systems whose amplitude remains constant, while only their frequency changes.
Whereas such a change cannot be detected by the traditional CUSUM algorithm, and in-
stead computationally expensive system models have to be fit to data, both MB-CUSUM and
MB-GT were able to reliably detect even relatively small changes in frequency. This is likely
due to their direct comparisons between sets of samples, rather than reliance on pre-specified
data distributions before and after the change.

The proposed algorithmic solutions reduce the complexity of computing their respective
figures of merit from O(N4) to O(N2); the usefulness of these solutions is much reinforced
by the experimental verification that considering all possible splits of the memory buffer
does make a big difference when compared to the case when only equal splits are used. This
is a substantial improvement over the current practice in the field, where typically only one
single split into two windows of size N/2 is considered. Imposing a lower limit on the size
of either window can easily be implemented, and often results in better detection accuracy.

As to whether further improvements in computational complexity are possible, one di-
rection is to try to amortize computation across time periods. Currently, computation for
each time period t starts from scratch, and one might imagine an alternative scheme where
the statistics Ci,j , respectively Si,j , are computed from their counterpart values in previous
time slices. However, since these statistics are placed in a tableau of size O(N2), retaining
these tableaux in their entirety would destroy the O(N) memory property of the algorithms.

Another direction to consider is the use of more advanced memory-based learning algo-
rithms, for example ones that rely on data structures such as kd-trees, adaptive rectangular
trees, ball-trees, etc. (Atkeson et al. 1997). These methods have been used very effectively in
memory-based learning, especially for lower-dimensional data, and are suitable candidates
for future use in abrupt change detection algorithms.

References

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally weighted learning. Artificial Intelligence Review,
11(1–5), 11–73.

Basseville, M., & Nikiforov, I. V. (1993). Detection of abrupt changes: theory and application. Englewood
Cliffs: Prentice Hall.

Brodsky, B. E., & Darkhovsky, B. S. (1993). Nonparametric methods in change-point problems. Dordrecht:
Kluwer.

Fawcett, T., & Provost, F. (1999). Activity monitoring: noticing interesting changes in behavior. In Proceed-
ings of the fifth international conference on knowledge discovery and data mining (KDD-99) (pp. 53–
62).

Guha, S., McGregor, A., & Venkatasubramanian, S. (2006). Streaming and sublinear approximation of en-
tropy and information distances. In Proceedings of SODA’06 (pp. 733–742). New York: ACM Press.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning. Berlin: Springer.
Jain, A., & Nikovski, D. (2007). Memory-based change detection algorithms for sensor streams (Technical

Report TR2007-079). Mitsubishi Electric Research Laboratories. http://www.merl.com/publications/
TR2007-079.

Massey, F. J., Jr. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical
Association, 46(253), 68–78.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41, 100–115.
Provost, F. J., & Fawcett, T. (1997). Analysis and visualization of classifier performance: comparison under

imprecise class and cost distributions. In Proceedings of KDD’97 (pp. 43–48). Menlo Park: AAAI Press.

http://www.merl.com/publications/TR2007-079
http://www.merl.com/publications/TR2007-079

	Title Page
	Title Page
	page 2

	Fast Adaptive Algorithms for Abrupt Change Detection
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

