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Abstract
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ABSTRACT

It is a common practice to model an object for detection tasksas a
boosted ensemble of many models built on features of the object.
In this context, features are defined as subregions withfixed rela-
tive locations and extents with respect to the object’s image window.
We introduce using deformable features with boosted ensembles. A
deformable features adapts its location depending on the visual evi-
dence in order to match the corresponding physical feature.There-
fore, deformable features can better handle deformable objects. We
empirically show that boosted ensembles of deformable features per-
form significantly better than boosted ensembles of fixed features for
human detection.

Index Terms— Human Detection, Boosting, Deformable Fea-
tures

1. INTRODUCTION

Human detection is one of the most challenging tasks in computer
vision with a long list of fundamental applications from intelligent
vehicles and video surveillance to interactive environments. Ap-
proaches for human detection can be categorized based on howthe
human body is modeled. In one category, a holistic model is used,
where the human body is modeled as a whole without being divided
into smaller parts,e.g. [1, 2, 3]. In a second category, a part-based
model is used, where models for parts of the body are learnt, possibly
along with global constraints that need to be satisfied,e.g. [4, 5, 6].
Part-based models, in general, deliver better performancethan holis-
tic models since they can better handle partial occlusion. However,
their drawback is that the number of parts and their locations has
to be manually set. A third category of approaches addressesthis
problem by modeling the body as an ensemble of simple features. A
feature in this context is a subregion of an object’s image window
identified by its relative position and size. Typically, boosting tech-
niques [7] are used to select the best features among all possibilities,
e.g. [8, 9, 10].

The common drawback of most part and feature based models
is the difficulty of handling deformation since feature and part
locations are fixed. However, in deformable objects, physical
parts/features are hardly fixed in location. Consider for example
the head part/feature in the human images in Figure 1, from the
INRIA Person dataset [3]. In [11], deformable part models were
proposed to handle this problem. However, as other part based
models, this work lacks the flexibility of automatically determining
the number, locations, and sizes of parts. In this paper, we intro-
duce deformable features, instead of deformable parts, to be used
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Fig. 1. An illustration of the desired behavior of a deformable fea-
ture for the head. The feature’s typical location is marked by a dotted
rectangle and the desired final location is marked with a solid rect-
angle. Notice how the typical location is often not aligned with the
actual location of the physical feature (head).

in boosting ensembles. To the best of our knowledge, our work
introduces deformation to feature based models for the firsttime.

The rest of the paper is organized as follows: Section 2 intro-
duces deformable features. Boosting of deformable features is ex-
plained in Section 3. Details of our implementation and experimen-
tal results are provided in Sections 4 and 5. Finally, the paper is
concluded in Section 6.

2. DEFORMABLE FEATURES

In the context of feature-based models for object detection, we de-
fine a deformable feature (d-feature) as a feature that is notbound to
a fixed location in the object’s model. Rather it can move (translate)
in a small neighborhood around a central location. We would like a
d-feature to be able to locate the physical feature it represents within
this neighborhood. Figure 1 illustrates the desired behavior of a d-
feature that represents the head of a human. Starting from a typical
location for the physical feature, illustrated as a dotted rectangle, the
feature moves to a better location to capture the physical feature. In
this section, we explain how to train a model for a d-feature.In sec-
tion 3, we explain how to combine models for individual d-features
to build an ensemble that represents the object as a whole.

2.1. Learning Deformable Features

The main advantage of feature-based models is the automaticselec-
tion of representative features from a very large pool. We donot even
need to know what the underlying physical features are. Therefore,
we cannot assume the availability of ground truth annotation for our
features. Hence, we want our framework to automatically learn a
d-features based solely on the image data.



procedure DEFREFINE(F,X )
. F is a feature,X is a set ofN training examples

∀xi ∈ X , zi
0 ← z0

for j = 0 to k do
Estimateθj based onzi

j , i = 1..N

zi
j+1 ← arg maxz∈Z θj(∆F(z, xi)),∀i

end for
end procedure

Fig. 2. Pseudo-code for the d-feature model refinement procedure.
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Fig. 3. A toy classification task to illustrate the effect of refining
d-feature’s model. Sample positive and negative images arein the
first the second rows. The learned weight vector after 0, 1, and 2
refinement iterations, Figure 2, are in the bottom row. Refinement
enhances the match to the shape of the positive object.

Let F = (s, z0, Z) be a d-feature identified by its sizes, its initial
locationz0 and a neighborhoodZ relative toz0 in which the feature
is allowed to move. Let∆F(x, z) be a descriptor of the feature’s
appearance in the examplex at locationz ∈ Z, e.g. a HOG descrip-
tor [12]. We will omit the variablex for simplicity. Let θ(∆F, z)
be a scoring function that measures the likelihood of an example
being positive given the appearance of the featureF at locationz,
i.e. p(O|∆F(z), z). Note that,θ depends on both∆F(z) andz it-
self, although∆F itself is a function ofz. This allows us to model
the case when the prior probability ofz is not uniform.

On one hand, to learn the scoring functionθ, we need to know
the locations of the featureF in the training examples. On the other
hand, if we already have the scoring function, we can estimate the
location of the feature in a given example by maximizing the scoring
function over the feature’s neighborhoodZ. To break this cycle, we
can start with an approximation to the scoring function by assuming
the feature exists at its initial locationz0 in all training examples.
Let θ0 be the initial estimate for the scoring function obtained based
on such an assumption. Recall that we assume that features move
within a small neighborhood around their initial (typical)locations.
If we assume also that typically the feature is close to its initial lo-
cation, then the initial modelθ0 is expected to capture the rough
appearance of the feature. Therefore, we can useθ0 to estimate the
feature location in a given example by maximizing the function over
the neighborhoodZ. Given these estimated locations, we can learn a
better estimate for the scoring functionθ. We can keep iterating over
these two steps to reach a refined estimate for the scoring functionθ.
This procedure is illustrated in Figure 2.

To visualize the effect of refining the d-feature’s model, consider
the toy classification task illustrated in Figure 3. In this task, all
images are40 × 40. Positive samples contain circles with the same
radius of8 pixels. The circles can be at random locations in the
20×20 central square of the image. Negative images contain random

points in the same central square. We trained a Linear Discriminant
Analysis model on the raw binary pixel values of the internal20×20
squares in all images. In the bottom row of Figure 3, we show the
obtained weight vectors after0, 1, and2 refinement iterations. As is
clear in the figure, the more we refine the model, the better it matches
the shape of the object we are training for, which is a circle in this
case.

2.2. Classification With Deformable Features

We explained how a d-feature learns its best location on eachtraining
example and its object likelihood function through iteratively refin-
ing both in alternation. On a testing example, we select the feature
location,z∗, to be the location that maximizes the scoring function,
and then consider the score at that location to be the object likeli-
hood, equations 1 and 2.

z∗ = arg max
z∈Z

θ(∆F(z)) (1)

θ∗ = θ(∆F(z
∗)) . (2)

This procedure is equivalent to finding the MAP estimate of the
feature location first and then use the object likelihood value there as
the score of the feature for this given test sample. This is similar to
the way parts are deformed in [11].

3. BOOSTED DEFORMABLE FEATURES

A boosting algorithm forms a strong classification committee out of
weak classifiers. It adds committee members incrementally so that
each newly added member performs the best in the training samples
that are poorly learned by the current committee. In featurebased
detectors, each weak classifier is built on a single feature.There are
several variants of boosting. We experimented with the LogitBoost
algorithm [7]. For completeness of presentation, the algorithm is
reproduced in Figure 4 with the necessary modifications to beap-
plied to our framework. The only change is in the fitting ofzi to
xi, wherezi is computed by the algorithm, andxi in our case is the
∆F descriptors. In the case of d-features, we do not apply one step
of least squares regression. Instead we use the iterative procedure in
Figure 2 to allow the feature to find its best location. An important
point to make here is that values of theθ function used to update
F (x) in the final step of the for loop of LogitBoost must be based
on the estimates of the best locationsz computed in the final itera-
tion of DefRefine in Figure 2. It may be tempting to skip computing
the z values in the final iteration, since they are not used to update
the model forθ again. However, they are used to compute the ob-
ject likelihood scores, which, in turn, are used to updateF (x) of
LogitBoost.

4. IMPLEMENTATION DETAILS

We used HOG descriptor to represent the features. The HOG de-
scriptor of a feature is a concatenation of four histograms,each built
on one quadrant of the feature. Each histogram contains 9 bins rep-
resenting 9 ranges of orientation directions. Each pixel contributes
to two bins of the histogram by linear interpolation. Each pixel also
contributes to the 4 quadrants with bilinear interpolation. Computing
these descriptors is very fast using kernel integral images[13].

The deformation neighborhood was made to be double the size
of the feature in both dimensions, with a maximum of 16 pixels
away from the feature’s boundary. On searching for the best fea-
ture location, we used 5 steps in each dimension. We used two types



procedure LOGITBOOST(F ,X )
. F : set ofM features,X : set ofN examples

∀xi ∈ X , wi = 1
N

, p(xi) = 1
2
, F (xi) = 0

for k = 1 to K do
Compute the working response and weights

zi =
y∗

i − p(xi)

p(xi)(1− p(xi))

wi = p(xi)(1− p(xi))

∀F ∈ F fit the functionθF

by a weighted least-squares regression ofzi to xi

with weightswi using the procedure in Figure 2.
UpdateF (x)← F (x) + 1

2
fk(x), and

p(x)← eF (x)/(eF (x) + e−F (x)),
wherefk(x) is θF that minimizes the residual.

end for
Output the classifiersign[F (x)]

end procedure

Fig. 4. Pseudo-code for the LogitBoost algorithm on d-features.
Note thaty∗

i is set to0 for a negative example and to1 for a pos-
itive example.

of scoring functions. One is based only on the descriptor andthe
other is based on the descriptor and location together. In the latter
version, similar to [11], we concatenateδ = z∗−z0 and its element-
wise square to the descriptor and estimate a functionθ based on the
concatenated descriptor. Since the functionθ in our case is a linear
function, the concatenation ofδ values to the descriptor is equivalent
to decomposingθ asθdescriptor + θdisplacement. Therefore, this is
equivalent to using an additive penalty term in the scoring function.
This is also equivalent to learning a non-uniform prior for the feature
location.

We used a rejection cascade [14] of 30 layers of LogitBoost clas-
sifiers. Each layer was adjusted to produce detection rate of99.8%
at false alarm rate of65%.

5. EXPERIMENTAL RESULTS

We trained and tested all our classifiers on the INRIA Person
dataset [3]. In this dataset, training and testing positiveimages
are resized so that the human body is around96 pixels high. A
margin of 16 pixels is added to the top and the bottom to make
the height 128 pixels and the width 64 pixels. The negative testing
images are scanned with this window size (64 × 128) with a step
of 8 pixels in both dimensions, to create close to a million sample
negative images.

In this section, we refer to the variant of d-features that uses an
additive penalty term in the scoring function (Section 4) byMax-
Def-Add, and the variant without penalty as Max-Def. We exper-
imented with the two variants with number of refinement steps1
or 2, along with the conventional Non-Def features (0 refinements).
We use DET (Detection Error Tradeoff) curves to present the de-
tection results, figures 5, where the plots are generated by changing
the number of cascade layers used. In these plots the number of re-
finements appears at the end of the legend when applicable. Asthe
figure shows, only the Max-Def-2 and the Max-Def-Add-2 consis-
tently outperform the Non-Def classifier. Max-Def-Add-1 compares
favorably over most of the false alarm rate’s range. Max-Def-1 is in-
ferior to the Non-Def classifier beyond false alarm rates of2×10−3.
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Fig. 5. DET curves for cascaded boosted HOG features classifiers on
INRIA Person dataset with and without d-features. Using d-features
helps reduce the miss rate by up to30% at false alarm rate of3 ×
10−4, and reduce the false alarm rate by66% at the miss rate of8%.

Max-Def-Add-2 is the clear winner among all. At a false alarmrate
3× 10−4, Max-Def-Add-2 reduces the miss rate compared to Non-
Def by30%, from10% to 7%. At the miss rate of8%, it reduces the
false alarm rate to about one third, from8 × 10−4 to 2.5 × 10−4.
These results highlight the value of d-features and the importance of
performing multiple refinement iterations during training.

In Figure 6, examples of detection errors obtained using Non-
Def that are successfully corrected using Max-Def-Add-2 are shown.
To produce these images, each classifier is applied to the image us-
ing a sliding window approach, where the search step is set to5%
of the size of the search window in each dimension. The search
sizes are selected based on knowledge of ground truth annotations.
The resulting detection windows are then grouped using the mean
shift algorithm on the location and height of the windows. For each
searching size, the image is resized so that we always searchusing
the size used in training.

6. CONCLUSION

We introduced deformable Features (d-features in short) and showed
how they can be used to enhance the performance of boosted feature-
based object detectors. The advantage of d-features over the reg-
ular ones is their ability to search for the locations of the corre-
sponding physical features before computing their matching scores.
This property makes them able to better handle complicated object
structures and deformations than fixed location features. We exper-
imented with d-features on human detection in a cascaded boosting
framework. Our experiments showed a consistent enhancement in
performance when using d-features.

Currently, training and testing classifiers using d-features is very
slow. We believe that the distance transform techniques [15] can be
used to make it more efficient. Afterwards, this approach canbe
extended in many ways. We can apply the d-features using other
common descriptors, such as the covariance descriptors [10]. Other
objects, rigid and non-rigid, can benefit from the approach.
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