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Abstract

It is a common practice to model an object for detection tasks as a boosted ensemble of many
models built on features of the object. In this context, features are defined as subregions with
fixed relative locations and extents with respect to the object’s image window. We introduce
using deformable features with boosted ensembles. A deformable feature adapts its location de-
pending on the visual evidence in order to match the corresponding physical feature. Therefore,
deformable features can better handle deformable objects. We empirically show that boosted
ensembles of deformable features perform significantly better than boosted ensembles of fixed
features for human detection.
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ABSTRACT

It is a common practice to model an object for detection taska
boosted ensemble of many models built on features of thecbbje
In this context, features are defined as subregions fix#d rela-
tive locations and extents with respect to the object’s ienagdow.
We introduce using deformable features with boosted entssmA
deformable features adapts its location depending on thelevi-
dence in order to match the corresponding physical feaflinere- C)
fore, deformable features can better handle deformabkxtshj We

empirically show that boosted ensembles of deformableifeaper-  Fig. 1. An illustration of the desired behavior of a deformable-fea
form significantly better than boosted ensembles of fixetlifea for  tyre for the head. The feature’s typical location is marked Hotted

human detection. rectangle and the desired final location is marked with alselit-
Index Terms— Human Detection, Boosting, Deformable Fea- angle. Notice how the typical location is often not aligneithvthe
tures actual location of the physical feature (head).

1. INTRODUCTION in boosting ensembles. To the best of our knowledge, our work

Human detection is one of the most challenging tasks in coenpu introduces deformation to feature based models for thetifingt.

vision with a long list of fundamental applications frometigent The rest of the paper is organized as follows: Section 2-intro
vehicles and video surveillance to interactive environmmenAp-  duces deformable features. Boosting of deformable festisrex-
proaches for human detection can be categorized based otheow Pl@ined in Section 3. Details of our implementation and expen-
human body is modeled. In one category, a holistic modeleglus t@l results are provided in Sections 4 and 5. Finally, theepap
where the human body is modeled as a whole without beingetivid concluded in Section 6.

into smaller partse.g. [1, 2, 3]. In a second category, a part-based

model is used, where models for parts of the body are leaoasiply 2 DEFORMABLE FEATURES

along with global constraints that need to be satisfiegl, [4, 5, 6].

Part-based models, in general, deliver better performérazeholis- |, the context of feature-based models for object detectiande-
tic models since they can better handle partial occlusiooweéver,  fine 5 geformable feature (d-feature) as a feature that isauid to
their drawback is that th(_a number of parts and their Iocatlbgs a fixed location in the object's model. Rather it can moven@tate)
to be manually set. A third category of approaches addrébs®s 5 small neighborhood around a central location. We waikdteld
problem by modeling the body as an ensemble of simple featéve o5t re to be able to locate the physical feature it reprisswithin
feature in this context is a subregion of an object's imagedeW i neighborhood. Figure 1 illustrates the desired befafi a d-
identified by its relative position and size. Typically, lstiag tech-  ¢o51re that represents the head of a human. Starting fromicat
niques [7] are used to select the best features among albid®s,  |ocation for the physical feature, illustrated as a doteEdangle, the

e.g. [8,9,10]. feature moves to a better location to capture the physiealife. In
The common drawback of most part and feature based modejis section, we explain how to train a model for a d-featimesec-

is the difficulty of handling deformation since feature anatp o 3 e explain how to combine models for individual dfeas

locations are fixed. However, in deformable objects, pRysic ¢, piiq an ensemble that represents the object as a whole.
parts/features are hardly fixed in location. Consider faanegle

the head part/feature in the human images in Figure 1, fran th

INRIA Person dataset [3]. In [11], deformable part modelgave 2.1. Learning Deformable Features
proposed to handle this problem. However, as other partdbas
models, this work lacks the flexibility of automatically damnining
the number, locations, and sizes of parts. In this paper,nive-i
duce deformable features, instead of deformable partse toskd

eI'he main advantage of feature-based models is the autosedic-
tion of representative features from a very large pool. Weate@ven
need to know what the underlying physical features are. &fbes,
we cannot assume the availability of ground truth annat&fo our

*The first author is a graduate student at the University ofylaad, and ~ features. Hence, we want our framework to automaticallynlea
was an intern at MERL while doing most of this work. d-features based solely on the image data.




procedure DEFREFINE(F, X)
> F is a featureX is a set ofNV training examples
v e X,z — 2o
for j =0tokdo
Estimatey; based orz},i = 1..N

points in the same central square. We trained a Linear Digcaint
Analysis model on the raw binary pixel values of the inte2tak 20
squares in all images. In the bottom row of Figure 3, we shav th
obtained weight vectors aftér 1, and2 refinement iterations. As is
clear in the figure, the more we refine the model, the betteaithes

241+ argmax,e; 0;(Ar(z,X")), Vi the shape of the object we are training for, which is a ciroléhis
end for case.

end procedure

. . 2.2. Classification With Deformable Features
Fig. 2. Pseudo-code for the d-feature model refinement procedure.
We explained how a d-feature learns its best location on eaitting
example and its object likelihood function through iteraly refin-
ing both in alternation. On a testing example, we select ¢a¢ufe
location,z*, to be the location that maximizes the scoring function,
and then consider the score at that location to be the objexi-|
hood, equations 1 and 2.

Z* = argmax6(Ar(2)) (1)
zeZ
0" = 0(A:(ZY)) . 2

This procedure is equivalent to finding the MAP estimate ef th
feature location first and then use the object likelihoodigdhere as
Fig. 3. A toy classification task to illustrate the effect of refigin the score of the feature for this given test sample. Thisnilai to
d-feature’s model. Sample positive and negative imagesnatee  the way parts are deformed in [11].
first the second rows. The learned weight vector after 0, d,2an
refinement iterations, Figure 2, are in the bottom row. Reiieret 3. BOOSTED DEFORMABLE FEATURES
enhances the match to the shape of the positive object.
A boosting algorithm forms a strong classification comneitbeit of
weak classifiers. It adds committee members incrementalijat
LetF = (s, 29, Z) be a d-feature identified by its siggits initial each newly added member performs the best in the traininglsam
locationz, and a neighborhood relative toz, in which the feature that are poorly learned by the current committee. In feabhased
is allowed to move. Let\g(x,z) be a descriptor of the feature’s detectors, each weak classifier is built on a single feaflinere are
appearance in the examplat locationz € Z, e.g. a HOG descrip-  several variants of boosting. We experimented with the {Bigpst
tor [12]. We will omit the variablex for simplicity. Letd(Ag,z)  algorithm [7]. For completeness of presentation, the dlgar is
be a scoring function that measures the likelihood of an @kam reproduced in Figure 4 with the necessary modifications tafse
being positive given the appearance of the feafuia locationz, plied to our framework. The only change is in the fitting 6fto

i.e. p(O]Ar(z),2). Note that,§ depends on boti\g(z) andz it- xi, Wherez; is computed by the algorithm, and in our case is the
self, althoughAr itself is a function ofz. This allows us to model A descriptors. In the case of d-features, we do not apply @ st
the case when the prior probability ofs not uniform. of least squares regression. Instead we use the iteratieeghure in

On one hand, to learn the scoring functignwe need to know Figure 2 to allow the feature to find its best location. An imtpot
the locations of the featutein the training examples. On the other point to make here is that values of thefunction used to update
hand, if we already have the scoring function, we can estrttet ~ F'() in the final step of the for loop of LogitBoost must be based
location of the feature in a given example by maximizing tharimg ~ ©n the estimates of the best locatiansomputed in the final itera-
function over the feature’s neighborho@d To break this cycle, we tion of DefRefine in Figure 2. It may be tempting to skip conipgt
can start with an approximation to the scoring function tsuasing  thez values in the final iteration, since they are not used to @&dat
the feature exists at its initial locatian in all training examples. the model ford again. However, they are used to compute the ob-
Let 6, be the initial estimate for the scoring function obtaineddsh  ject likelihood scores, which, in turn, are used to update) of
on such an assumption. Recall that we assume that featunes mol-ogitBoost.
within a small neighborhood around their initial (typictdgations.
If we assume also that typically the feature is close to iitsaino- 4. IMPLEMENTATION DETAILS
cation, then the initial moded, is expected to capture the rough
appearance of the feature. Therefore, we carfyde estimate the We used HOG descriptor to represent the features. The HOG de-
feature location in a given example by maximizing the fumeidver  scriptor of a feature is a concatenation of four histograeash built
the neighborhood. Given these estimated locations, we can learn an one quadrant of the feature. Each histogram containssorep
better estimate for the scoring functiénWe can keep iterating over resenting 9 ranges of orientation directions. Each pixetrdoutes
these two steps to reach a refined estimate for the scoringjdard.  to two bins of the histogram by linear interpolation. Eackepialso

This procedure is illustrated in Figure 2. contributes to the 4 quadrants with bilinear interpolati@Gomputing
To visualize the effect of refining the d-feature’s modehsider  these descriptors is very fast using kernel integral im§b@ls
the toy classification task illustrated in Figure 3. In thisk, all The deformation neighborhood was made to be double the size

images arel0 x 40. Positive samples contain circles with the sameof the feature in both dimensions, with a maximum of 16 pixels
radius of8 pixels. The circles can be at random locations in theaway from the feature’s boundary. On searching for the bt f
20x 20 central square of the image. Negative images contain randorture location, we used 5 steps in each dimension. We used/pes t



procedure LOGITBOOST(F, X)
> F: set of M features X': set of N examples
VX' € X wi = +,p(X) =1, F(x') =0
for k =1to K do
Compute the working response and weights

y; — p(x)
p(xf)(l - p(x*))

p(x')(1 = p(x"))

VF € F fit the functionfr
by a weighted least-squares regression;db x*
with weightsw; using the procedure in Figure 2.
UpdateF'(x) < F(X) + 3 fx(x), and
p(X) — 6F<X)/(6F(X) + 67F<X)),
where fi (x) is 6¢ that minimizes the residual.

end for

Output the classifiesign[F'(X)]

end procedure
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Fig. 5. DET curves for cascaded boosted HOG features classifiers on
INRIA Person dataset with and without d-features. Usingatires
helps reduce the miss rate by up3@% at false alarm rate df x

10~*, and reduce the false alarm ratedsy? at the miss rate $%.

Fig. 4. Pseudo-code for the LogitBoost algorithm on d-features.

Note thaty; is set to0 for a negative example and tofor a pos-
itive example.

of scoring functions. One is based only on the descriptorthed
other is based on the descriptor and location together. dnatter
version, similar to [11], we concatenate= z* — zo and its element-
wise square to the descriptor and estimate a functibased on the
concatenated descriptor. Since the functidn our case is a linear
function, the concatenation éfvalues to the descriptor is equivalent
to decomposing asfuescriptor + Odispiacement. Therefore, this is
equivalent to using an additive penalty term in the scoringfion.
This is also equivalent to learning a non-uniform prior fog feature
location.

We used a rejection cascade [14] of 30 layers of LogitBoast-cl
sifiers. Each layer was adjusted to produce detection rad6.8%%
at false alarm rate af5%.

5. EXPERIMENTAL RESULTS

Max-Def-Add-2 is the clear winner among all. At a false alaate
3 x 10~*, Max-Def-Add-2 reduces the miss rate compared to Non-
Def by 30%, from 10% to 7%. At the miss rate 08%, it reduces the
false alarm rate to about one third, frédnx 107 t0 2.5 x 1074,
These results highlight the value of d-features and the itapoe of
performing multiple refinement iterations during training

In Figure 6, examples of detection errors obtained using-Non
Def that are successfully corrected using Max-Def-Adde2sirown.
To produce these images, each classifier is applied to thgeims:
ing a sliding window approach, where the search step is s&¥to
of the size of the search window in each dimension. The search
sizes are selected based on knowledge of ground truth diomsta
The resulting detection windows are then grouped using teanm
shift algorithm on the location and height of the windowsr Each
searching size, the image is resized so that we always saesitud)
the size used in training.

6. CONCLUSION

We introduced deformable Features (d-features in shodtshowed

We trained and tested all our classifiers on the INRIA PersofoW they can be used to enhance the performance of boostackfea

dataset [3]. In this dataset, training and testing positidages
are resized so that the human body is aro9fdpixels high. A

based object detectors. The advantage of d-features ovaeth
ular ones is their ability to search for the locations of tloere-

margin of 16 pixels is added to the top and the bottom to makesPonding physical features before computing their matchores.

the height 128 pixels and the width 64 pixels. The negatigérig
images are scanned with this window sisd (< 128) with a step
of 8 pixels in both dimensions, to create close to a milliomgke
negative images.

In this section, we refer to the variant of d-features thasusn
additive penalty term in the scoring function (Section 4)Ndgix-
Def-Add, and the variant without penalty as Max-Def. We expe
imented with the two variants with number of refinement stéps
or 2, along with the conventional Non-Def featur@sréfinements).
We use DET (Detection Error Tradeoff) curves to present the d
tection results, figures 5, where the plots are generateddyging
the number of cascade layers used. In these plots the nurhieer o
finements appears at the end of the legend when applicablétheAs
figure shows, only the Max-Def-2 and the Max-Def-Add-2 censi
tently outperform the Non-Def classifier. Max-Def-Add-Ingpares
favorably over most of the false alarm rate’s range. Max-D&fin-
ferior to the Non-Def classifier beyond false alarm ratez»fl0~2.

This property makes them able to better handle complicagetb
structures and deformations than fixed location features eXper-
imented with d-features on human detection in a cascadestihgo
framework. Our experiments showed a consistent enhandemen
performance when using d-features.

Currently, training and testing classifiers using d-feedus very
slow. We believe that the distance transform techniquepda® be
used to make it more efficient. Afterwards, this approach lwan
extended in many ways. We can apply the d-features using othe
common descriptors, such as the covariance descriptofsQtber
objects, rigid and non-rigid, can benefit from the approach.
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