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Abstract

The recently introduced theory of compressive sensing (CS) enables the reconstruction of
sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly
chosen, the number of measurements can be significantly smaller than the ambient dimension
of the signal and yet preserve the significant signal information. Interestingly, it can be shown
that random measurement schemes provide a near-optimal encoding in terms of the required
number of measurements. In this report, we explore another relatively unexplored, though often
alluded to, advantage of using random matrices to acquire CS measurements. Specifically, we
show that random matrices are democractic, meaning that each measurement carries roughly
the same amount of signal information. We demonstrate that by slightly increasing the number
of measurements, the system is robust to the loss of a small number of arbitrary measurements.
In addition, we draw connections to oversampling and demonstrate stability from the loss of
significantly more measurements.

1 Introduction

The recently developed compressive sensing (CS) framework allows us to acquire a signal x ∈ RN

from a small set of M non-adaptive, linear measurements [1, 2]. This process can be represented as

y = Φx (1)

where Φ is an M × N matrix that models the measurement system. The hope is that we can
design Φ so that x can be accurately recovered even when M � N . In general this is not possible,
but if x is K-sparse, meaning that it has only K nonzero entries then it is possible to design Φ
that preserve the information about x using only M = O(K log(N/K)) measurements. The most
commonly studied Φ that satisfy this bound on M are random, i.e., each entry of Φ is drawn
independently from some suitable distribution [3]. We will focus our attention on such Φ.
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Among the advantages of random measurements is a property commonly referred to as democ-
racy. While it is not usually rigorously defined in the literature, democracy is usually taken to
mean that each measurement contributes a similar amount of information about the signal x to the
compressed representation y [4–6].1 Others have described democracy to mean that each measure-
ment is equally important (or unimportant) [7]. Despite the fact that democracy is so frequently
touted as an advantage of random measurements, it has received little analytical attention in the CS
context. Perhaps more surprisingly, the property has not been explicitly exploited in applications
until recently [8].

The fact that random measurements are democratic seems intuitive; when using random mea-
surements, each measurement is a randomly weighted sum of a large fraction (or all) of the entries
of x, and since the weights are chosen independently at random, no preference is given to any
particular entries. More concretely, suppose that the measurements y1, y2, . . . , yM are independent
and identically distributed (i.i.d.) according to some distribution fY , as is the case for the Φ con-
sidered in this report. Now suppose that we select M̃ < M of the yi at random (or according to
some procedure that is independent of y). Then clearly, we are left with a length-M̃ measurement
vector ỹ such that each ỹi ∼ fY . Stated another way, if we set D = M − M̃ , then there is no
difference between collecting M̃ measurements and collecting M measurements and deleting D of
them, provided that this deletion is done independently of the actual values of y.

However, following this line of reasoning will ultimately lead to a rather weak definition of
democracy. To see this, consider the case where the measurements are deleted by an adversary.
By adaptively deleting the entries of y one can change the distribution of ỹ. For example, the
adversary can delete the D largest elements of y, thereby skewing the distribution of ỹ. In many
cases, especially if the same matrix Φ will be used repeatedly with different measurements being
deleted each time, it would be far better to know that any M̃ measurements will be sufficient to
reconstruct the signal. This is a significantly stronger requirement.

In order to formally define this stronger notion of democracy, we must first describe the prop-
erties that a matrix must satisfy to ensure stable reconstruction. Towards that end, we recall the
definition of the restricted isometry property (RIP) for the matrix Φ [9].

Definition 1. A matrix Φ satisfies the RIP of order K with constant δ ∈ (0, 1) if

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 (2)

holds for all x such that ‖x‖0 ≤ K.

Much is known about matrices that satisfy the RIP, but for our purposes it suffices to note that
if we draw a random M ×N matrix Φ whose entries φij are i.i.d. sub-Gaussian random variables,
then provided that

M = O (K log(N/K)) , (3)

we have that with high probability Φ will satisfy the RIP of order K with constant δ [3, 10].
When it is satisfied, the RIP for a matrix Φ provides a sufficient condition to guarantee successful

sparse recovery using a wide variety of algorithms [9, 11–20]. As an example, the RIP of order
2K (with isometry constant δ <

√
2 − 1) is a sufficient condition to permit `1-minimization (the

canonical convex optimization problem for sparse approximation) to exactly recover any K-sparse
signal and to approximately recover those that are nearly sparse [11]. The same assumption is also
a sufficient condition for robust recovery in noise using a modified `1-minimization [11].

1The original introduction of this term was with respect to quantization [4, 5], i.e., a democratic quantizer would
ensure that each bit is given “equal weight.” As the CS framework developed, it became empirically clear that CS
systems exhibited this property with respect to compression [6].

2



The RIP also provides us with a way to quantify our notion of democracy. To do so, we first
establish some notation that will prove useful throughout this report. Let Γ ⊂ {1, 2, , . . . ,M}. By
ΦΓ we mean the |Γ| ×M matrix obtained by selecting the rows of Φ indexed by Γ. Alternatively,
if Λ ⊂ {1, 2, . . . , N}, then we use ΦΛ to indicate the M × |Λ| matrix obtained by selecting the
columns of Φ indexed by Λ. Following [8], we now formally define democracy as follows.

Definition 2. Let Φ be and M ×N matrix, and let M̃ ≤M be given. We say that Φ is (M̃,K, δ)-
democratic if for all Γ such that |Γ| ≥ M̃ the matrix ΦΓ satisfies the RIP of order K with constant
δ.

In Section 2 below we present a simple proof that Gaussian matrices are democratic and demon-
strate how the proof can be extended to sub-Gaussian matrices. The core of this proof can be found
in [8], but is included in full in this report. In Section 3 we discuss the implications of the result
and alternative interpretations. Section 4 contains the additional theorems required by the proof.

2 Random matrices are democratic

We now demonstrate that certain randomly generated matrices are democratic. While the theorem
actually holds (with different constants) for the more general class of sub-Gaussian matrices, for
simplicity we restrict our attention to Gaussian matrices. We provide discussion of the sub-Gaussian
case in Section 4.

Theorem 1. Let Φ by an M ×N matrix with elements φij drawn according to N (0, 1/M) and let
M̃ ≤M , K < M̃ , and δ ∈ (0, 1) be given. Define D = M − M̃ . If

M = C1(K +D) log
(
N +M

K +D

)
, (4)

then with probability exceeding 1− 3e−C2M we have that Φ is (M̃,K, δ/(1− δ))-democratic, where
C1 is arbitrary and C2 = (δ/8)2 − log(42e/δ)/C1.

Proof. Our proof consists of two main steps. We begin by defining the M × (N + M) matrix
A = [I Φ] formed by appending Φ to the M ×M identity matrix. Theorem 2, also found in [21],
demonstrates that under the assumptions in the theorem statement, with probability exceeding
1− 3e−C2M we have that A satisfies the RIP of order K +D with constant δ. The second step is
to use this fact to show that all possible M̃ ×N submatrices of Φ satisfy the RIP of order K with
constant δ/(1− δ).

Towards this end, we let Γ ⊂ {1, 2, . . . ,M} be an arbitrary subset of rows such that |Γ| ≥ M̃ .
Define Λ = {1, 2, . . . ,M} \ Γ and note that |Λ| = D. Additionally, let

PΛ , AΛA†Λ, (5)

be the orthogonal projector onto R(AΛ), i.e., the range, or column space, of AΛ.2 Furthermore,
we define

P⊥Λ , I−PΛ, (6)

as the orthogonal projector onto the orthogonal complement of R(AΛ). In words, this projector
nulls the columns of A corresponding to the index set Λ. Now, note that Λ ⊂ {1, 2, . . . ,M}, so
AΛ = IΛ. Thus,

PΛ = IΛI†Λ = IΛ(ITΛIΛ)−1ITΛ = IΛITΛ = I(Λ),

2A†Λ = (AT
ΛAΛ)−1AT

Λ denotes the Moore-Penrose pseudoinverse of AΛ.

3



where we use I(Λ) to denote the M ×M matrix with all zeros except for ones on the diagonal
entries corresponding to the columns indexed by Λ. (We distinguish the M ×M matrix I(Λ) from
the M×D matrix IΛ — in the former case we replace columns not indexed by Λ with zero columns,
while in the latter we remove these columns to form a smaller matrix.) Similarly, we have

P⊥Λ = I−PΛ = I(Γ).

Thus, we observe that the matrix P⊥ΛA = I(Γ)A is simply the matrix A with zeros replacing
all entries on any row i such that i /∈ Γ, i.e., (P⊥ΛA)Γ = AΓ and (P⊥ΛA)Λ = 0. Furthermore,
Theorem 3, also found in [22], states that for A satisfying the RIP of order K + D with constant
δ, we have that (

1− δ

1− δ

)
‖u‖22 ≤ ‖P⊥ΛAu‖22 ≤ (1 + δ)‖u‖22, (7)

holds for all u ∈ RN+M such that ‖u‖0 = K + D − |Λ| = K and supp(u) ∩ Λ = ∅. Equivalently,
letting Λc = {1, 2, . . . , N + M} \ Λ, this result states that (I(Γ)A)Λc satisfies the RIP of order K
with constant δ/(1−δ). To complete the proof, we note that if (I(Γ)A)Λc satisfies the RIP of order
K with constant δ/(1− δ), then we trivially have that I(Γ)Φ also has the RIP of order at least K
with constant δ/(1− δ), since I(Γ)Φ is just a submatrix of (I(Γ)A)Λc . Since ‖I(Γ)Φx‖2 = ‖ΦΓx‖2,
this establishes the theorem.

3 Discussion

3.1 Robustness and stability

Observe that we require roughlyO(D log(N)) additional measurements to ensure that Φ is (M̃,K, δ)-
democratic compared to the number of measurements required to simply ensure that Φ satisfies
the RIP of order K. This seems intuitive; if we wish to be robust to the loss of any D measure-
ments while retaining the RIP of order K, then we should expect to take at least D additional
measurements. This is not unique to the CS framework. For instance, by oversampling, i.e., sam-
pling faster than the minimum required Nyquist rate, uniform sampling systems can also improve
robustness with respect to the loss of measurements. Reconstruction can be performed in principle
on the remaining non-uniform grid, as long as the remaining samples satisfy the Nyquist range on
average [23].

However, linear reconstruction in such cases is known to be unstable. Furthermore the linear
reconstruction kernels are difficult to compute. Under certain conditions stable non-linear recon-
struction is possible, although this poses further requirements on the subset set of samples that
can be lost and the computation can be expensive [24]. For example, dropping contiguous groups
of measurements can be a challenge for the stability of the reconstruction algorithms. Instead, the
democratic principle of CS allows dropping of an arbitrary subset D of the measurements without
compromising the reconstruction stability, independent of the way these measurements are chosen.

In some applications, this difference may have significant impact. For example, in finite dynamic
range quantizers, the measurements saturate when their magnitude exceeds some level. Thus, when
uniformly sampling with a low saturation level, if one sample saturates, then the likelihood that
any of the neighboring samples will saturate is high, and significant oversampling may be required
to ensure any benefit. However, in CS, if many adjacent measurements were to saturate, then for
only a slight increase in the number of measurements we can mitigate this kind of error by simply
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rejecting the saturated measurements; the fact that Φ is democratic ensures that this strategy will
be effective.

Theorem 1 further guarantees graceful degradation due to loss of samples. Specifically, the
theorem implies that reconstruction from any subset of CS measurements is stable to the loss of a
potentially larger number of measurements than anticipated. To see this, suppose that and M ×N
matrix Φ is (M −D,K, δ)-democratic, but consider the situation where D + D̃ measurements are
dropped. It is clear from the proof of Theorem 1 that if D̃ < K, then the resulting matrix ΦΓ will
satisfy the RIP of order K− D̃ with constant δ. Thus, from [25], if we define K̃ = (K− D̃)/2, then
the reconstruction error is then bounded by

‖x− x̂‖2 ≤ C3
‖x− x eK‖1√

K̃
, (8)

where x eK denotes the best K̃-term approximation of x and C3 is an absolute constant depending
on Φ that can be bounded using the constants derived in Theorem 1. Thus, if D̃ is small then
the additional error caused by dropping too many measurements will also be relatively small. To
our knowledge, there is simply no analog to this kind of graceful degradation result for uniform
sampling with linear reconstruction. When the number of dropped samples exceeds D, there is are
no guarantees as to the accuracy of the reconstruction.

3.2 Numerical exploration

As discussed previously, the democracy property is a stronger condition than the RIP. To demon-
strate this, we perform a numerical simulation which illustrates this point. Specifically, we would
like to compare the case where the measurements are dropped at random versus the case where
the dropped measurements are selected by an adversary. Ideally, we would like to know whether
the resulting matrices satisfy the RIP. Of course, this experiment is impossible to perform for two
reasons: first, determining if a matrix satisfies the RIP is computationally intractable as it would
require checking all possible K-dimensional sub-matrices of ΦΓ. Moreover, in the adversarial set-
ting one would also have to search for the worst possible Γ as well, which is impossible for the same
reason. Thus, we instead perform a far simpler experiment, which serves as a very rough proxy to
the experiment we would like to perform.

The experiment proceeds over 100 trials as follows. We fix the parameters N = 2048 and K = 13
and vary M in the range (0, 380). In each trial we draw a new matrix Φ with φij ∼ N (0, 1/M) and
a new signal with K nonzero coefficients, also drawn from a Gaussian distribution, and then the
signal is normalized ‖x‖2 = 1. Over each set of trials we estimate two quantities:

1. the maximum D such that we achieve exact reconstruction for a randomly selected (M −
D)×N submatrix of Φ on each of the 100 trials;

2. the maximum D such that we achieve exact reconstruction for R = 300 randomly selected
(M −D)×N submatrices of Φ on each of the 100 trials..

Ideally, the second case should consider all (M − D) × N submatrices of Φ rather than just 300
submatrices, but as this is not possible (for reasons discussed above) we simply perform a random
sampling of the space of possible submatrices. Note also that exact recovery on one signal is also
not proof that the matrix satisfies the RIP, although failure is proof that the matrix does not.

The results of this experiment are depicted in Figure 1. The circles denote data points with
the empty circles corresponding to the random selection experiment and the solid circles corre-
sponding to the democracy experiment. The lines denote the best linear fit for each data set where
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Figure 1: Maximum number of measurements that can be dropped Dmax vs. number of measure-
ments M for (a) exact recovery of one (M − D) × N submatrix of Φ and (b) exact recovery of
R = 300 (M −D)×N submatrices of Φ.

D > 0, with the dashed line corresponding to the random selection experiment and the solid line
corresponding to democracy experiment.

The maximum D corresponding to the random selection experiment grows linearly in M (with
coefficient 1) once the minimum number of measurements required for RIP, denoted by M ′, is
reached. This is because beyond this point at most D = M−M ′ measurements can be discarded. As
demonstrated by the plot, M ′ ≈ 90 for this experiment. For the democracy experiment M ′ ≈ 150,
larger than for the RIP experiment. Furthermore, the maximum D for democracy grows more
slowly than for the random selection case, which indicates that to be robust to the loss of any D
measurements, CD additional measurements, with C > 1, are actually necessary.

4 Theorems

In this section, we prove the two supporting Theorems used in the proof of Theorem 1. We begin
by demonstrating that the matrix A = [I Φ] satisfies the RIP. To do so, we first establish the
following lemma, that closely parallels the result in equation (4.3) of [3]. The lemma demonstrates
that for any u, if we draw Φ at random, then ‖Au‖2 is concentrated around ‖u‖2.

Lemma 1. Let Φ by an M ×N matrix with elements φij drawn i.i.d. according to N (0, 1/M) and
let A = [I Φ]. Furthermore, let u ∈ RN+M be an arbitrary vector with first M entries denoted by
w and last N entries denoted by x. Let η ∈ (0, 1) be given. Then

E
(
‖Au‖22

)
= ‖u‖22 (9)

and
P
(∣∣‖Au‖22 − ‖u‖22

∣∣ ≥ 2η‖u‖22
)
≤ 3e−Mη2/8. (10)
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Proof. We first note that since Au = w + Φx, we have that

‖Au‖22 = ‖w + Φx‖22
= (w + Φx)T (w + Φx)

= wTw + 2wTΦx + xTΦTΦx

= ‖w‖22 + 2wTΦx + ‖Φx‖22. (11)

Since the entries φij are i.i.d. according toN (0, 1/M), it is straightforward to show that E
(
‖Φx‖22

)
=

‖x‖22 (see, for example, [26]). Similarly, one can also show that 2wTΦx ∼ N
(
0, 4‖w‖22‖x‖22/M

)
,

since the elements of Φx are distributed as zero mean Gaussian variables with variance ‖x‖22/M .
Thus, from (11) we have that

E
(
‖Au‖22

)
= ‖w‖22 + ‖x‖22,

and since ‖u‖22 = ‖w‖22 + ‖x‖22+, this establishes (9).
We now turn to (10). Using the arguments in [26], one can show that

P
(∣∣‖Φx‖22 − ‖x‖22

∣∣ ≥ η‖x‖22) ≤ 2e−Mη2/8. (12)

As noted above, 2wTΦx ∼ N
(
0, 4‖w‖22‖x‖22/M

)
. Hence, we have that

P
(∣∣2wTΦx

∣∣ ≥ η‖w‖2‖x‖2) = 2Q
(

η‖w‖2‖x‖2
2‖w‖2‖x‖2/

√
M

)
= 2Q(

√
Mη/2),

where Q(·) denotes the tail integral of the standard Gaussian distribution. From (13.48) of [27] we
have that

Q(z) ≤ 1
2
e−z

2/2

and thus we obtain
P
(∣∣2wTΦx

∣∣ ≥ η‖w‖2‖x‖2) ≤ e−Mη2/8. (13)

Thus, combining (12) and (13) we obtain that with probability at least 1− 3e−Mη2/8 we have that
both

(1− η)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + η)‖x‖22 (14)

and
−η‖w‖2‖x‖2 ≤ 2wTΦx ≤ η‖w‖2‖x‖2. (15)

Using (11), we can combine (14) and (15) to obtain

‖Au‖22 ≤ ‖w‖22 + η‖w‖2‖x‖2 + (1 + η)‖x‖22
≤ (1 + η)

(
‖w‖22 + ‖x‖22

)
+ η‖w‖2‖x‖2

≤ (1 + η)‖u‖22 + η‖u‖22
= (1 + 2η)‖u‖22,

where the last inequality follows from the fact that ‖w‖2‖x‖2 ≤ ‖u‖2‖u‖2. Similarly, we also have
that

‖Au‖22 ≥ (1− 2η)‖u‖22,

which establishes (10).
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We note that while the above proof assumes that the entries of Φ are Gaussian, this proof holds
with essentially no modifications for a wide class of sub-Gaussian distributions. A random variable
X is sub-Gaussian if there exists a constant C > 0 such that

E
(
eXt
)
≤ eC2t2/2 (16)

for all t ∈ R. This says that the moment-generating function of our distribution is dominated by
that of a Gaussian distribution, which is also equivalent to requiring that the tails of our distribution
decay at least as fast as the tails of a Gaussian distribution. Examples of sub-Gaussian distributions
include the Gaussian distribution, the Rademacher distribution, and the uniform distribution. In
general, any distribution with bounded support is sub-Gaussian. See [28] for more discussion on
sub-Gaussian random variables. It can be shown (see Lemma 6.1 of [10] or [29]) that if the entries
of Φ are drawn according to a sub-Gaussian distribution, then (12) holds where 8 is replaced with
a constant that depends on the constant C in (16). Similarly, the cross-term

∣∣2wTΦx
∣∣ is also a

sub-Gaussian random variable, and so using elementary results in [28], a bound analogous to (13)
can be obtained.

Using Lemma 1, we now demonstrate that the matrix A satisfies the RIP provided that M is
sufficiently large.

Theorem 2. Let Φ be an M ×N matrix with elements φij drawn according to N (0, 1/M) and let
let A = [I Φ]. If

M = C1(K +D) log
(
N +M

K +D

)
(17)

then with probability exceeding 1− 3e−C2M we have that A satisfies the RIP of order (K +D) with
constant δ, where C1 is arbitrary and C2 = (δ/8)2 − log(42e/δ)/C1.

Proof. First note that it is enough to prove (17) in the case ‖x‖2 = 1, since A is linear. Next, fix
an index set J ⊂ {1, 2, . . . , N +M} with |J | = K +D, and let XJ denote the (K +D)-dimensional
subspace spanned by the columns of A indexed by J . We choose a finite set of points SJ such that
SJ ⊆ XJ , ‖s‖2 ≤ 1 for all s ∈ SJ , and for all x ∈ XJ with ‖x‖2 ≤ 1 we have

min
s∈SJ
‖x− s‖2 ≤ ε. (18)

One can show (see Chapter 15 of [30]) that such a set SJ exists with |SJ | ≤ (3/ε)K+D. We then
repeat this process for each possible index set J , and collect all the sets SJ together

S =
⋃

J :|J |=K+D

SJ . (19)

There are
(
N+M
K+D

)
≤
(
eN+M
K+D

)K+D
possible index sets J , and hence |S| ≤

(
3e
ε
N+M
K+D

)K+D
. We now

use the union bound to apply Lemma 1 to this set of points such that, with probability exceeding

1− 3
(

3e
ε

N +M

K +D

)K+D

e−
Mη2

8 = 1− 3e−
Mη2

8
+(K+D) log( 3e

ε
N+M
K+D ), (20)

we have
(1− 2η)‖s‖22 ≤ ‖As‖22 ≤ (1 + 2η)‖s‖22, for all s ∈ S.
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We now define ΣK+D = {x : ‖x‖0 ≤ K +D}. We define B as the smallest number such that

‖Ax‖22 ≤ B‖x‖22, for all x ∈ ΣK+D, ‖x‖2 ≤ 1. (21)

Our goal is to show that B ≤
√

1 + δ. For this, we recall that for any x ∈ ΣK+D with ‖x‖2 ≤ 1,
we can pick a s ∈ S such that ‖x− s‖2 ≤ ε and such that x− s ∈ ΣK+D (since if x ∈ XJ , we can
pick s ∈ SJ ⊂ XJ satisfying ‖x− s‖2 ≤ ε). In this case we have

‖Ax‖2 ≤ ‖As‖2 + ‖A(x− s)‖2 ≤
√

1 + 2η +
√
Bε.

Since by definition B is the smallest number for which (21) holds, we obtain
√
B ≤

√
1 + 2η+

√
Bε,

which upon rearranging yields
√
B ≤

√
1 + 2η/(1− ε). One can show that by setting ε = δ/14 and

η = δ/2
√

2, we have that
√

1 + 2η/(1− ε) ≤
√

1 + δ, which establishes the upper inequality in (2).
The lower inequality follows from this since

‖Ax‖2 ≥ ‖As‖2 − ‖A(x− s)‖2 ≥
√

1− 2η −
√

1 + δ
ε

1− ε
≥
√

1− δ,

where the last inequality again holds with ε = δ/14 and η = δ/2
√

2. This establishes the theorem.
To arrive at the formula for C2 we first bound the result in (20) using

log
(

3e
ε

N +M

K +D

)
≤ log

(
3e
ε

)
log
(
N +M

K +D

)
and then we replace (K +D) log((N +M)/(K +D)) with M/C1. After simplification, this yields
C2 = η2/8− log(3e/ε)/C1. By substituting the values for ε and η, we obtain the desired result.

In Theorem 3 below, we show that the matrix P⊥ΛA satisfies a modified version of the RIP. We
begin with an elementary lemma that is a straightforward generalization of Lemma 2.1 of [11], and
states that RIP operators approximately preserve inner products between sparse vectors.

Lemma 2. Let u,v ∈ RN be given, and suppose that a matrix A satisfies the RIP of order
max(‖u + v‖0, ‖u− v‖0) with isometry constant δ. Then

|〈Au,Av〉 − 〈u,v〉| ≤ δ‖u‖2‖v‖2. (22)

Proof. We first assume that ‖u‖2 = ‖v‖2 = 1. From the fact that

‖u± v‖22 = ‖u‖22 + ‖v‖22 ± 2〈u,v〉 = 2± 2〈u,v〉

and since A satisfies the RIP, we have that

(1− δ)(2± 2〈u,v〉) ≤ ‖Au±Av‖22 ≤ (1 + δ)(2± 2〈u,v〉).

From the parallelogram identity we obtain

〈Au,Av〉 =
1
4
(
‖Au + Av‖22 − ‖Au−Av‖22

)
(23)

≤ (1 + 〈u,v〉)(1 + δ)− (1− 〈u,v〉)(1− δ)
2

= 〈u,v〉+ δ. (24)

Similarly, one can show that 〈Au,Av〉 ≥ 〈u,v〉 − δ, and thus |〈Au,Av〉 − 〈u,v〉| ≤ δ. The result
follows for u, v with arbitrary norm from the bilinearity of the inner product.
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One consequence of this result is that sparse vectors that are orthogonal in RN remain nearly
orthogonal after the application of A. From this observation, it was demonstrated independently
in [22] and [17] that if A has the RIP, then P⊥ΛA satisfies a modified version of the RIP.

Theorem 3. Suppose that A satisfies the RIP of order K with isometry constant δ, and let Λ ⊂
{1, 2, . . . , N}. Define P⊥Λ as in(6). If |Λ| < K then(

1− δ

1− δ

)
‖u‖22 ≤ ‖P⊥ΛAu‖22 ≤ (1 + δ)‖u‖22 (25)

for all u ∈ RN such that ‖u‖0 ≤ K − |Λ| and supp(u) ∩ Λ = ∅.

Proof. From the definition of P⊥ΛA in (5), we may decompose P⊥ΛAu as P⊥ΛAu = Au − PΛAu.
Since PΛ is an orthogonal projection, we can write

‖Au‖22 = ‖PΛAu‖22 + ‖P⊥ΛAu‖22. (26)

Our goal is to show that ‖Au‖2 ≈ ‖P⊥ΛAu‖2, or equivalently, that ‖PΛAu‖2 is small. Towards
this end, we note that since PΛAu is orthogonal to P⊥ΛAu, we have

〈PΛAu,Au〉 = 〈PΛAu,PΛAu + P⊥ΛAu〉
= 〈PΛAu,PΛAu〉+ 〈PΛAu,P⊥ΛAu〉
= ‖PΛAu‖22. (27)

Since PΛ is a projection ontoR(AΛ) there exists a z ∈ RN with supp(z) ⊆ Λ such that PΛAu = Az.
Furthermore, by assumption, supp(u) ∩ Λ = ∅. Hence 〈u, z〉 = 0 and from the RIP and Lemma 2,

|〈PΛAu,Au〉|
‖PΛAu‖2‖Au‖2

=
|〈Az,Au〉|
‖Az‖2‖Au‖2

≤ |〈Az,Au〉|
(1− δ)‖z‖2‖u‖2

≤ δ

1− δ
.

Combining this with (27), we obtain

‖PΛAu‖2 ≤
δ

1− δ
‖Au‖2.

Since we trivially have that ‖PΛAu‖2 ≥ 0, we can combine this with (26) to obtain(
1−

(
δ

1− δ

)2
)
‖Au‖22 ≤ ‖P⊥ΛAu‖22 ≤ ‖Au‖22.

Since ‖u‖0 ≤ K, we can use the RIP to obtain(
1−

(
δ

1− δ

)2
)

(1− δ)‖u‖22 ≤ ‖P⊥ΛAu‖22 ≤ (1 + δ)‖u‖22,

which simplifies to (25).
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