
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Secure Function Evaluation Based on Secret
Sharing and Homomorphic Encryption

Shantanu Rane, Wei Sun, Anthony Vetro

TR2009-084 December 2009

Abstract

Consider the following problem in secure multiparty computation: Alice and Bob posses integers
X and y respectively. Charlie is a researcher who would like to compute the value of some
function f(x,y). The requirement is that Charlie should not gain any knowledge about x and
y other than that which can be obtained from the function itself. Moreover, Alice and Bob
do not trust each other and should not gain knowledge about each other’s data. This paper
contains initial work on a methodology to enable such secure function evaluation using additive
and multiplicative homomorphisms as cryptographic primitives instead of oblivious transfer. It
is shown that Charlie can compute the encrypted value of any polynomial in x and y. We present
two secure function evaluation protocols for semi-honest participants that can be extended to
polynomial functions of an arbitrary number of variables.

Allerton Conference 2009

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2009
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Secure Function Evaluation based on
Secret Sharing and Homomorphic Encryption

Shantanu Rane, Wei Sun and Anthony Vetro

Mitsubishi Electric Research Laboratories

Cambridge, MA 02139

{rane,weisun,avetro}@merl.com

Abstract—Consider the following problem in secure
multiparty computation: Alice and Bob possess integers
x and y respectively. Charlie is a researcher who would
like to compute the value of some function f(x, y). The
requirement is that Charlie should not gain any knowledge
about x and y other than that which can be obtained
from the function itself. Moreover, Alice and Bob do not
trust each other and should not gain knowledge about
each other’s data. This paper contains initial work on
a methodology to enable such secure function evaluation
using additive and multiplicative homomorphisms as cryp-
tographic primitives instead of oblivious transfer. It is
shown that Charlie can compute the encrypted value of
any polynomial in x and y. We present two secure function
evaluation protocols for semi-honest participants that can
be extended to polynomial functions of an arbitrary
number of variables.

I. INTRODUCTION

This paper is concerned with privacy-preserving data

analysis. The data in question is assumed to be dis-

tributed among several mutually untrusting data centers.

It is required to analyze this data to obtain some statisti-

cal information or to form some inference by evaluating

a function of the data. To preserve the privacy of the data

centers, no information about the data should be divulged

beyond the result of the analysis. One example of such

a situation arising in practice is as follows: An external

agency, henceforth labelled the “researcher,” is entrusted

with the task of gathering statistical information about

disease symptoms observed in a number of hospitals.

With today’s amplified concerns over the privacy of

patients, each hospital must ensure that this analysis

can be facilitated without divulging its patients’ pri-

vate information. Performing computation in this secure

fashion presents many challenges: First, is it possible

to obtain non-trivial analytical results under these strict

privacy requirements? In other words, what class of

functions can the researcher hope to evaluate while

respecting the privacy of the untrusting data centers?

Second, what is the transmission cost and computational

overhead incurred by the data centers and the researcher?

Third, how does the overhead scale with the number

of participating data centers? Fourth, is such a protocol

resistant to collusion between the data centers? This

paper presents initial work on the use of secret sharing

and homomorphic mappings to construct practical secure

function evaluation protocols that address some of these

questions.

This problem is posed under the umbrella of secure

multiparty computation, in which several parties execute

a protocol to securely evaluate a function of several vari-

ables. The function to be evaluated is usually modeled

as a combinatorial circuit [1], [2], or as a polynomial

over a finite field [3], [4]. In the most general settings

considered for secure multiparty computation [1], [5],

each participant communicates with a large number of

participants (possibly all other participants) such that, at

the end of the protocol, each party knows the value of

the function while keeping its input private from all other

parties. Much work has been devoted to securing these

protocols against different classes of adversaries: passive

colluders, Byzantine colluders, coercive colluders [6].

It has been shown that any function can be evalu-

ated securely given a cryptographic primitive known

as Oblivious Transfer (OT). OT itself is implemented

using assumptions on the computational intractability

of certain problems, such as factoring large integers,

noisy polynomial reconstruction, the RSA problem, the

quadratic residuosity problem to name a few [7]. For

general secure multiparty computation with densely con-

nected participants, the protocols are extremely intensive

in terms of computational and communication overhead,

even for relatively simple functions. For instance, se-

curely evaluating a function of two variables owned by

separate parties requires a protocol which implements

one OT per input wire of the resulting combinatorial

circuit, and performs one encryption per bit of the



input [8].

In our work, we consider a particular realization of

secure multiparty computation in which the data centers

can support only a limited number of communication

links, while the researcher and possibly some assisting

servers can provide a communication link with each data

center. In general, such asymmetric realizations are much

more susceptible to privacy breaches caused by a well-

chosen set of colluders. Hence, it becomes necessary to

analyze the collusion resistance of protocols based on

these realizations. In the first protocol presented in this

paper, the individual data centers do nothing other than

providing the data for computation; the burden of secure

computation is shouldered entirely by the researcher and

one or more untrusted assisting servers. In the second

protocol, which is more resilient to collusion attacks, the

data centers are still limited to one communication link,

but they perform encryptions or decryptions as directed

by the researcher.

To begin with, the problem is framed as one of secure

function evaluation with three untrusting parties: two

data centers (Alice and Bob) and a researcher (Char-

lie), all of whom are assumed to be semi-honest. It is

shown in Section II that, using additive secret sharing

and additive homomorphic mappings, it is possible to

securely compute any polynomial in two variables. In

this simplified situation, one of the data centers (Alice)

also serves as an assisting server. In Section III, the

protocol for polynomial evaluation is extended to an

arbitrary number of semi-honest data centers and hence,

to an arbitrary number of variables. It is shown that this

protocol resists collusion between the researcher and the

data centers, but fails in the case of collusion between

the researcher and the assisting servers. To address

this, an alternative protocol is presented in which the

assisting server is removed, giving a star topology with

the untrusted researcher directing communications to and

from the data centers. Beyond polynomial evaluation,

this protocol can also be used when the functions are

not polynomials to begin with, but the problem can

be still converted into one of polynomial evaluation.

Two examples of this kind, viz., comparison of two

integers and determination of the error pattern between

two binary strings, are considered in Section IV.

II. SECURE FUNCTION EVALUATION

Let ξ(·) be an additively homomorphic mapping, i.e.,

ξ(m1 + m2) = ξ(m1)ξ(m2) and ξ(km1) = ξ(m1)k

for integer messages m1, m2 and a constant integer

k. Examples of such a mapping include the Paillier

Bob
y

Alice
x Charlie

c d

Fig. 1. A three party protocol for privacy-preserving function
evaluation: Charlie computes a polynomial function of Alice and
Bob’s inputs without knowing the inputs themselves.

cryptosystem [9] and the Benaloh cryptosystem[10]. To

simplify notation, the encryption and decryption keys are

not explicitly specified; the encryption and decryption

functions are simply referred to as ξ(·) and ξ−1(·) and

the ownership of the relevant keys is assumed to be clear

from the context. Let f(x, y) =
∑

i,j≥0 γi,jx
iyj be a

polynomial with integer variables x and y and integers

coefficients γi,j . Suppose that Alice and Bob possess x
and y respectively and want to keep their data private.

Charlie, the researcher, wants to compute f(x, y) without

explicitly finding out x and y.

By the additively homomorphic property of ξ(·), we

have

ξ(f(x, y)) =
∏

i,j≥0

ξ(γi,jx
iyj) =

∏
i,j≥0

ξ(xiyj)γi,j . (1)

To show the feasibility of computing ξ(f(x, y)), it

suffices to show the feasibility of computing ξ(xiyj),
i.e., the encryptions of the individual monomials. Let

y = c + d where c and d are integers. Then

ξ(xiyj) = ξ(xi(c + d)j) = ξ(xi
j∑

k=0

(
j

k

)
ckdj−k)

= ξ(
j∑

k=0

(
j

k

)
xickdj−k) =

j∏
k=0

ξ(xickdj−k)(
j

k)

(2)

A. Protocol for Secure Computation

Now, consider the following protocol (Fig. 1) for

secure computation of ξ(f(x, y)) using the additive

homomorphic property and additive secret sharing. For

the time being, assume that Alice, Bob and Charlie are

all honest but curious, i.e., each of them will follow

the steps of the protocol but can store the intermediate



values at each step in which they are involved, and

thus try to obtain information about the other parties’

inputs. Consider also that the homomorphic mappings

are semantically secure, thus repeated encryptions of

the same plaintext result in different ciphertexts. Both

the Paillier and Benaloh cryptosystems achieve semantic

security via a random parameter that is used during

encryption but not during decryption.

1) Charlie generates a key pair for homomorphic

encryption, consisting of a public encryption key

and a private decryption key.

2) Bob splits y into additive shares c and d, i.e., y =
c + d. He sends c to Alice and d to Charlie.

3) Charlie encrypts dj−k for all k = 0, 1, ..., j and

transmits ξ(dj−k) to Alice.

4) Using the additive homomorphism of ξ(·), Alice

computes ξ(dj−k)(x
ick) = ξ(xickdj−k) for each

k = 0, 1, ..., j, and then computes ξ(xiyj) accord-

ing to (2). Then she obtains ξ(f(x, y)) using (1)

and sends it to Charlie.

5) Charlie decrypts f(x, y)

B. Security Analysis

1) Alice knows only the plaintext share c of Bob’s

data y. All the other operations that she performs

are in the homomorphically encrypted domain.

Thus, she finds out nothing about y.

2) Bob does not receive any information either from

Alice or Charlie.

3) Charlie knows only the plaintext share d of Bob’s

y. In the last step of the protocol, he recovers

f(x, y). If f(x, y) is a polynomial in a single

variable, i.e., if x = 1 or y = 1 in the above

protocol, then Charlie can obtain candidate values

for that variable via polynomial factorization. In

all other cases, it is computationally infeasible for

Charlie to obtain x or y.

C. Computational and Transmission Overhead

Suppose that the polynomial f(x, y) has degree M in

the variable x, degree N in the variable y. The commu-

nication and computational load incurred by Alice, Bob

and Charlie are approximated below. While computing

the number of multiplications, only those conducted in

the encrypted domain are counted as they are much more

intensive than plaintext multiplications. Bob conducts

only two one-way communications, one with Alice and

one with Charlie in Step 2. Charlie performs O(N)
encryptions in Step 3 and one decryption in Step 5. Alice

performs no encryptions or decryptions, but incurs one

# Encryptions or # Transmissions # Multiplications
Decryptions

Alice - 1 O(SM )
Bob - 2 -

Charlie O(N) 1 -

TABLE I
RESOURCES USED BY ALICE, BOB AND CHARLIE FOR THE CASE

OF SEMI-HONEST PARTICIPANTS.

communication with Charlie at the end of Step 4. Alice’s

resources are almost entirely used up in computation

in Step 4. She performs O(SM ) multiplications in the

encrypted domain, where S is the size of the field

from which x and y are chosen. The computational and

transmission overhead of the three parties is summarized

in Table I.

III. EXTENSIONS

A. Numerous Participating Data Centers

Table I indicates that Bob’s computational load and

communication overhead are both very small. Mean-

while, Alice shoulders the computation overhead, while

Charlie performs the tasks of key generation, encryp-

tion and decryption. This asymmetric distribution of

responsibilities permits scaling the protocol to numerous

participating data centers which do not possess large

computational resources. In this extended setting, there

is a single researcher, Charlie, who wants to compute

a function of several variables f(x1, x2, x3, ...). There

is a single assisting server, Alice, who provides com-

puting resources. Finally, there are many data centers

P1, P2, P3, ..., who allow Charlie to evaluate the function

f on the condition that he will not gain access to their

individual data. This configuration is shown in Figure 2.

Assuming honest but curious parties, the protocol also

ensures, via additive secret sharing, that the data of the

data centers is secure from each other and from Alice.

As an example, suppose that there are two data centers

P1 and P2 who split their data as x1 = c1 + d1 and



Alice Charlie

P2

P1

P3
P4

Pn

participants

assisting
server

researcher

x

y z
w

v

f
s

Alice Charlie

P2

P1

P3
P4

Pn

f

x1

x2
x3 x4

xn

c1

c2

c3 c4
cnd1

d2 d3
d4

dn

Fig. 2. With the help of an assisting server, the researcher can
securely evaluate the value of a function with n arguments without
knowing the values of the function’s arguments.

x2 = c2 + d2 respectively. Then,

ξ(xi
1x

j
2) = ξ((c1 + d1)i(c2 + d2)j)

= ξ(
i∑

k=0

(
i

k

)
ck
1d

i−k
1

j∑
k′=0

(
j

k′

)
ck′
2 dj−k′

2 )

=
i∏

k=0

j∏
k′=0

ξ(
(

i

k

)(
j

k′

)
ck
1d

i−k
1 ck′

2 dj−k′

2 )

=
i∏

k=0

j∏
k′=0

ξ(di−k
1 dj−k′

2 )(
i

k)(
j

k′)ck
1ck′

2 (3)

Comparing with Section II, P1 and P2 perform the

role of Bob and incur low communication and com-

putation overhead. Alice and Charlie can execute the

protocol as before. Note that, in the example chosen

here, Alice is only supplying computational resources

and not contributing any data to the function evaluation.

Provided that Alice has enough computational resources

to perform the increased number of multiplications,

the protocol can be readily scaled to accommodate an

arbitrary number of data centers.

B. Collusion Attacks

Up to this point, all parties in the protocol have been

assumed to be honest but curious. We now analyze

the different ways in which one or more parties may

collude in an effort to subvert the privacy requirements

and discover the inputs owned by the data centers. Of

course, the set of colluders might want to interfere

with the protocol with a related aim - to provide the

researcher with an erroneous value of the function f . In

the sequel, we regard the privacy of the data centers

Pi as paramount, and therefore only analyze privacy

attacks in this paper. In this analysis, there are n data

centers P1, P2, ..., Pn, an assisting server, Alice, and a

researcher, Charlie.

1) Suppose that the value of the function f is made

public by Charlie at the end of the protocol. In this

case, a set of colluders (the coalition) containing

t ≤ n − 2 data centers cannot discover anything

about the data of the remaining n− t data centers.

If the set of colluders consists of n−1 data centers,

then f reduces to a polynomial in one variable. The

coalition can find the roots of this polynomial, one

of which is the input of the remaining data center.

2) Suppose that the value of the function f is not

made public, and only retained by Charlie. In this

case, a coalition with t ≤ n−1 data centers cannot

discover anything about the data of the remaining

n − t data centers.

3) Suppose that the coalition consists of the assisting

server, Alice, as well as any t data centers. Since

Alice lacks the decryption key for the homomor-

phic mapping, it is computationally intractable for

the coalition to learn the data of the remaining

n − t data centers. As above, when the value of

f is made public, a coalition containing Alice as

well as t ≤ n − 2 colluders will be unsuccessful

in discovering the data of the remaining n− t data

centers.

4) Suppose that the coalition contains the researcher,

Charlie, as well as any t data centers. Again, in this

case, a coalition of size t ≤ n − 2 cannot obtain

the data of the remaining n − t data centers.

5) Suppose the coalition consists of the researcher

and the assisting server. Owing to the asymmetric

distribution of responsibilities in our protocol, this

is the most serious kind of collusion attack and

therefore the weakest link that an adversary can

exploit. With the protocol as described in Sec-

tion II, this attack would enable the coalition to

obtain the data of all n data centers. This type

of attack reduces the network to a star topol-

ogy with the n data centers interacting with a

centralized researcher who has direct access to

every protocol transmission. The next subsection

presents a collusion-resistant protocol for com-

puting polynomials for a star topology. We note

that the collusion attack described above could

be mitigated using other techniques, such as by



including a large number of assisting servers to

share secrets, or by allowing a limited amount

of direct communication among the data centers

themselves. However, owing to our assumption

that the data centers are constrained in the number

of communication lines they can support, we do

not consider such strategies.

C. Robustness to Collusion Attacks

When the adversary corrupts both the researcher and

the assisting server, he has access to both the additive

shares ci and di and can trivially obtain the participants’

data xi = ci + di. In other words, the topology of

Fig. 2 reduces to a star topology. This is shown in

Fig. 3 for the case of 3 participating data centers. The

researcher and the assisting server have been collapsed

into a single entity. In addition to trivially discovering

every participant’s data, another obvious consequence of

this attack is that the adversary gains access to each

individual monomial in the expression of the function

f . Note, from Section II, the monomials were evaluated

in the encrypted domain by the assisting server. These

were combined using additive homomorphism and the

result was transmitted to the researcher, who proceeded

to decrypt the polynomial f . When an adversary corrupts

both the researcher and the assisting server, then he also

obtains access to the unencrypted monomials.

In a star topology with a centralized researcher, the

problem of data privacy at the researcher would be

solved if he only receives encrypted transmissions from

the data centers. Correctness of the protocol would be

ensured if this encryption preserves the algebraic struc-

ture, namely allows computation of encrypted versions

of the constituent monomials. Based on this realization,

we present below a protocol to compute the constituent

monomials. Let θ(·) be a multiplicatively homomor-

phic mapping, i.e., θ(m1 · m2) = θ(m1) · θ(m2) and

θ(mk
1) = (θ(m1))k for integer messages m1, m2 and

a constant integer k. The El Gamal cryptosystem [11]

is an example of a semantically secure multiplicative

homomorphic cryptosystem.

To facilitate explanation, we assume that the mono-

mial is xi
1x

j
2x

k
3 . Now the protocol for securely evaluating

this monomial is as follows:

1) Suppose that the data centers Pm hold integer

inputs xm. Let each data center have access to a

unique encryption/decryption key pair for a public

key cryptosystem. The encryption key of every par-

ticipant m is public and the encryption function is

denoted by ζm(·). The decryption key of every data

center is privately held throughout the protocol.

2) The researcher generates an encryption/decryption

key for multiplicative homomorphic encryption.

The encryption key is publicly available to all data

centers, and the encryption of xm is denoted by

θ(xm) = x̌m. Thus, by the multiplicative homo-

morphic property, θ(xi
m) = x̌i

m. The decryption

key is privately held by the researcher throughout

the protocol.

3) Participant P1 encrypts xi
1 using the researcher’s

public encryption key and obtains θ(xi
1) =

(θ(x1))i = x̌i
1. He then chooses a non-zero integer

α at random and obtains ζ2(αx̌i
1) using the public

encryption key of P2. He transmits this result to

the researcher, who forwards it to P2.

4) P2 obtains αx̌i
1 by decryption. He computes x̌j

2

as above, using the researcher’s public encryption

key. Then, he computes ζ3(αx̌i
1x̌

j
2) using the pub-

lic encryption key of P3. He transmits it to the

researcher, who forwards it to P3.

5) P3 obtains αx̌i
1x̌

j
2 by decryption, computes

ζ1(αx̌i
1x̌

j
2x̌

k
3) using the public encryption key of

P1. He transmits it to the researcher who forwards

it to P1.

6) P1 obtains αx̌i
1x̌

j
2x̌

k
3 , removes α by division and

forwards x̌i
1x̌

j
2x̌

k
3 = θ(xi

1x
j
2x

k
3) to the researcher.

7) The researcher uses his private decryption key for

θ(·) to obtain xi
1x

j
2x

k
3 .

In this simple example, P2 cannot discover x1 because

he does not know α or the decryption key for θ(·).
Similarly, P3 cannot discover x1 and x2 and so on. The

researcher has access to all the encrypted transmissions

from the data centers but possesses no keys to decrypt

them. In the semi-honest case with no collusions, this

protocol is secure for any monomial that contains 2 or

more variables. In general, for a monomial containing

s > 2 variables, a collusion consisting of t ≤ s − 2
data centers will be unsuccessful in compromising the

the data of the remaining s − t data centers. However,

if the researcher joins the colluders, a coalition of s/2
properly chosen data centers can discover the data of the

remaining s/2 data centers. This result can be verified,

for example, by considering a collusion attack in which

the researcher colludes with all the even numbered data

centers. Still, this protocol is more resilient to loss of data

privacy in the presence of collusion attacks, compared

to the one in Section II. Even if any subset of the

data centers collude (unknown to the researcher), they



P1 P2

P3

R

(a) Loss of Privacy

P1 P2

P3

R

P1 P2

P3

R

(b) Collusion Resistant Protocol

Fig. 3. (a) Attacking the researcher as well as the assisting server in Fig. 2 converts the secret sharing topology into a star topology in
which the adversary trivially obtains the contributions of the data centers as well as the individual monomials in f . (b) A modification in
which the participants use multiplicative homomorphic encryption to resist catastrophic loss of privacy from collusion attacks mounted by
the researcher or by a subset of data centers.

cannot compromise the privacy of the remaining data

centers. For example, if P1 and P3 collude, they can

only discover x̌j
2 = θ(xj

2) but cannot obtain the value of

x2.

The price paid for improved privacy preservation is

increased computation at the data centers. The researcher

performs only one decryption at the end of the protocol,

and his role is restricted to exchanging public keys,

notifying the participants about the monomial to be eval-

uated and directing the transmissions to the appropriate

participants. The reader will note that, in the absence of

the researcher, the connections between the participants

form a ring P1 → P2 → P3 → P1 between the

participants who own the relevant variables. If each data

center is connected to every other data center, then, a

ring can be set up between data centers corresponding to

any monomial. However, if a densely connected network

is not available, this ring topology can be expensive

to implement for arbitrary monomials. Instead, with

a star connection, every data center makes only one

connection to the researcher who sets up the appropriate

ring required to compute the monomial, and hence the

polynomial function.

The protocol just described also works if the mono-

mial products such as xi
1x

j
2x

k
3 are replaced by sums of

the form xi
1 + xj

2 + xk
3 . This modification allows the

computation of statistical properties such as the mean,

variance and higher order moments of the data stored in

the data centers. If, as explained above, we consider the

star network as merely facilitating the construction of

arbitrary rings of data centers, then this method of com-

puting sums of powers becomes similar to the scheme

described in [12]. In that scheme, the first data center

in the ring introduces a constant α and removes it from

the final result. Our scheme is similar in that respect,

however the introduction of a semi-honest researcher

at the center of the star topology necessitates the use

of encryption by the data centers. For the application

of finding secure summations, Karr et al. [12] also

note that it is advantageous to convert the ring to a

star topology with a centralized server directing the

traffic to appropriate data centers. Additionally, we have

introduced a second encryption in the protocol, namely

the multiplicatively homomorphic encryption using the

researcher’s public key, which prevents participants from

colluding to obtain the data of the other participants,

while still ensuring that the monomial can be evaluated

by the researcher. We note that by combining secure

summations and secure products, the protocol can be

used to evaluate many functions that are useful in prac-

tice. A few of these are explained in the next section.

IV. EVALUATION OF SOME USEFUL FUNCTIONS

The above protocol allows the researcher to securely

determine some practically useful functions on the data

of any subset of the n participants. Some examples

of these include the Hamming distance between bi-

nary sequences, the error pattern between two binary

sequences, maximum of two or more integers,. i.e., the

secure millionaires problem in secure multiparty compu-

tation [1], squared distance between integer sequences,

averages and higher moments of two or more integer

sequences. Some of these will be described in following

subsections. There has been previous work on these



problems, notably secure comparison [13] and secure

auctions [14]. In these works, participants interact with

one or more assisting servers to find out who possesses

the larger of two numbers. Since two protocols have

already been described in Section II and III-C, we restrict

the treatment in this section to describing the application

and obtaining an expression for the function f . In some

of these examples, f is obvious from the application,

while in some others, this may not be the case.

A. Secure Comparison of Two Very Large Integers

Suppose that Alice and Bob possess two very large

positive integers x and y, and the researcher is interested

in knowing which is the larger of the two, without finding

out the integers themselves. This is an instance of the

secure millionaires problem. The researcher can trivially

construct f(x, y) = x − y and determine the larger of

x and y from the sign of f(x, y). However, this would

require secret sharing of x and y which are assumed

to be very large. An efficient solution can be obtained

by converting the large numbers into binary sequences

x = x1x2...xm and y = y1y2...ym, where m is the most

significant bit. For each i = 1, 2, ...,m, define

fi = xi − yi +
m∑

j=i+1

xj ⊕ yj

= xi − yi +
m∑

j=i+1

xj + yj − 2xjyj (4)

which is a polynomial in xi, xi+1, ..., xm, yi, yi+1, ..., ym.

Thus, Alice acting as the owner of xi, xi+1, ..., xm, Bob

acting as the owner of yi, yi+1, ..., ym, can interact with

a researcher who evaluates fi. Note here, that since the

xi and yi are bits, additive secret sharing of the form

xi = c1 + d1 and yi = c2 + d2 can be performed with

much smaller values of the individual shares, depending

upon the privacy desired. This is in contrast to the

very large individual shares that would be necessary

if the comparison was done directly on the integers x
and y, instead of the individual bits. There is another

advantage of this method which will become clear in

the next paragraph. Before that, consider the following

result which justifies calculating fi in (4) to compare the

integers x and y.

Proposition 1: x < y if and only if there exists an

i ∈ {m, m − 1, ..., 2, 1} such that fi = −1.

Proof: It is easy to verify that fi = −1 if and only

if xi − yi + 1 = 0 and
∑m

j=i+1 xj ⊕ yj = 0 since

both xi − yi + 1 and
∑m

j=i+1 xj ⊕ yj are nonnegative

integers. But, xi − yi + 1 = 0 implies (xi, yi) = (0, 1)

and
∑m

j=i+1 xj ⊕ yj = 0 implies xj = yj for all j > i.
These two statements together give x < y.

The above proposition provides a way to compare

xi and yi. Starting from the most significant bits, the

researcher calculates fm, fm−1, ... until he finds an i such

that fi = −1. As soon as such an i is found, then the

comparison concludes with the result that x < y. The

remaining least significant bits in positions 1, 2, ...., i−1
need not be tested at all. This is another reason why

this method of operating on the individual bits of x
and y is not as wasteful as it initially appears. If the

researcher finds that there is no i satisfying fi = −1, he

concludes that x ≥ y. A similar approach to comparing

two numbers is used in a three party protocol in [13]

which is slightly different from the scenario considered

here. In that work, Alice owns x and interacts with

Bob, who owns y, and an untrusted assisting server to

determine which of their numbers is larger. In our setting,

the researcher does not own either x or y but is interested

in the result. Via several pairwise comparisons, this

protocol allows the researcher to determine the largest

of n integers, to rank order them, and so on.

B. Error Pattern Between Binary Sequences

Suppose that Alice and Bob have massive binary

sequences {x} = x1x2...xm and {y} = y1y2...ym

respectively, and the researcher wants to know only the

places in which the bits of {x} and {y} differ. He defines

the polynomials fi = xi ⊕ yi = xi + yi − 2xiyi for

i = 1, 2, 3, ...,m. and computes fi to obtain the error

pattern between {x} and {y}.

C. Statistical Measures and Distortions

As noted in Section III-C, replacing the products of

powers of xi in the protocol by sums of powers of

xi allows the researcher to compute statistical measures

such as averages, variances and higher moments on the

data owned by the data centers. Further, the protocols

described in this paper allow privacy-preserving com-

putation of distortions such as the mean squared error

between images owned by two data centers.

V. CONCLUSION

This paper presented two protocols for privacy pre-

serving data analysis, specifically the case in which a

researcher evaluates functions in many variables owned

by mutually untrusting data centers. The protocols are

designed from the point of view of assigning low

communication overhead to the data centers, while the

major computation load is handled by the researcher and



one or more assisting servers. In the first protocol, any

polynomial function can be evaluated by using simple

additive secret sharing at the data centers and additive

homomorphic functions at the researcher. From the point

of view of data privacy, the most damaging attack on this

protocol would be for an adversary to simultaneously

corrupt the researcher as well as the assisting servers;

this would compromise the data of all data centers who

are connected to that assisting server. This problem is

addressed in the second protocol using multiplicative se-

cret sharing to enable secure computation of monomials

in a star topology where the data centers interact with a

centralized researcher. The protocols can be been utilized

to evaluate several useful functions, including finding

the error pattern between binary streams, comparing

large integers without revealing them to the researcher,

and computation of statistical moments of the inputs

contributed by the data centers.

REFERENCES

[1] Andrew Chi-Chih Yao, “How to Generate and Exchange
Secrets,” in Proceedings of the 27th Annual Symposium on
Foundations of Computer Science (FOCS), Washington, DC,
USA, 1986, pp. 162–167, IEEE Computer Society.

[2] Andrew Chi-Chih Yao, “Protocols for Secure Computations
(Extended Abstract),” in Proceedings of the 23th Annual
Symposium on Foundations of Computer Science (FOCS). 1982,
pp. 160–164, IEEE Computer Society.

[3] M. Naor and B. Pinkas, “Oblivious polynomial evaluation,”
SIAM Journal on Computing, vol. 35, no. 5, pp. 1254–1281,
2006.

[4] Y. Lindell and B. Pinkas, “Privacy Preserving Data Mining,”
in CRYPTO ’00: Proceedings of the 20th Annual International
Cryptology Conference on Advances in Cryptology, London,
UK, 2000, pp. 36–54, Springer-Verlag.

[5] O. Goldreich, S. Micali, and A. Widgerson, “How to Play Any
Mental Game,” in Proceedings of the 19th ACM Symposium
on the Theory of Computing, New York, NY, May. 1987, pp.
218–229.

[6] S. Goldwasser, “Multiparty Computations: Past and Present,”
in Proceedings of the 16th ACM Symposium on Principles of
Distributed Computing, Santa Barbara, CA, Aug. 1997, pp. 1–6.

[7] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Van-
stone, Handbook of Applied Cryptography, CRC Press, 2001.

[8] B. Pinkas, “Cryptographic Techniques for Privacy-Preserving
Data Mining,” SIGKDD Explorations, the newsletter of the
ACM Special Interest Group on Knowledge Discovery and Data
Mining, Jan. 2003.

[9] Pascal Paillier, “Public-Key Cryptosystems Based on Compos-
ite Degree Residuosity Classes,” in Advances in Cryptology,
EUROCRYPT 99. 1999, vol. 1592, pp. 233–238, Springer-
Verlag, Lecture Notes in Computer Science.

[10] J. Benaloh, “Dense Probabilistic Encryption,” in Proceedings
of the Workshop on Selected Areas of Cryptography, Kingston,
ON, Canada, May 1994, pp. 120–128.

[11] T. El Gamal, “A Public Key Cryptosystem and A Signature
Scheme Based on Discrete Logarithms,” IEEE Transactions on
Information Theory, vol. 4, pp. 469–472, Jul. 1985.

[12] A. Karr, W. Fulp, F. Vera, S. Young, X. Lin, and J. Reiter,
“Secure Privacy-Preserving Analysis of Distributed Databases,”
American Statistical Association, Technometrics, Journal, , no.
3, pp. 335–345, Aug 2007.

[13] I. Damgård, M. Geisler, and M. Krøigård, “Homomorphic
encryption and secure comparison,” International Journal of
Applied Cryptography, vol. 1, no. 1, pp. 22–31, Jan. 2008.

[14] M. Jakobsson and A. Juels, “Mix and match: Secure func-
tion evaluation via ciphertexts,” in Advances in Cryptology–
ASIACRYPT’00, 6th International Conference on the Theory
and Application of Cryptology and Information Security, Kyoto,
Japan, Dec. 2000, pp. 162–177.


	Title Page
	Title Page
	page 2


	Secure Function Evaluation Based on Secret Sharing and Homomorphic Encryption
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8


