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Abstract

Time scalings in the multi-output observer form for uncontrolled nonlinear continuous-time sys-
tems are considered in this paper. It is the multi-output version of an existing single-input result.
Time scaling broadens the class of systems which admits an exact error linearization observer
design by including time scaling transformations. The existence conditions of the time scaling
transformation and the change of state coordinates to time-scaled observer form are provided.
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Multiple Time Scalings of a Multi-Output Il. PROBLEM STATEMENT

Observer Form Early work on time scaling for control design [11], [12],
) [13] enlarged the class of state feedback linearizableenyst
Yebin Wang and Alan F. Lynch To generalize the class of single-output systems which tsdmi

an OF, an output dependent time scaling transformation was
Abstract— Time scalings in the multi-output observer form for introduced in [8]:7 = s(y(t)) > 0, 7(to) = 70, Wheres(y(t))
uncontrolled nonlinear continuous-time systems are condered in s g non-vanishing positive smooth function, called a ticale
this paper. It is the multi-output version of an existing simgle- 505 (TSF). For multi-output systems, existence ctiods

input result. Time scaling broadens the class of systems wdt . X
admits an exact error linearization observer design by inaiding 0T the multi-output observer form (OF) have been estabtish

time scaling transformations. The existence conditions dhe time  in [4], [3]. This OF has the form
scaling transformation and the change of state coordinateso

time-scaled observer form are provided. t=Az+(y), y=0C¢,
where A = Blockdiag{ Ay, ---,A4,}, C =
I. INTRODUCTION _ gAr, 0 Ii};l
We consider observer design for uncontrolled multi-outpiockdiadCu, -+, Gy}, and 4; = (0 0 )  Gio=
systems in state space form (1,0)T with I, a k x k identity matrix.
i=f(z), y=h(z) (1) Given time scaling transformations for each subsystem
where i denotesdz/dt, € R™ is the state,f : R" — 7i = si(y(t)) >0,  7i(to) = Tio, (2)

R™ is a C*° vector field, andh : R* — RP is a C*°
output function. The well-established exact error lineatibn
nonlinear observer design method uses an Observer Form  dz;
(OF) to obtain stable LTI state estimate error dynamics in dr;
OF coordinates [1], [2]. Significant effort has been placed .
on extending this original work for single-output contimse o (i, zia)™ %) -

time systems, e.g. [3], [4], [5], [6], [7]. Recent work [8PB][ .(%‘,.1 (), -+ ,vixy)t, and X\, are the Ob.SEI‘vablllty.
considers a generalization of exact error linearizationictwvh indices of system (1) [14]. The TOF for the entire system in

incorporates output dependent time scaling transformaiior time s

we define the TOF as an OF in the time

=Aizi+7(y), vi=Cizi, 1<i<p, (3)

Zi

single-output nonlinear systems. Time scaling transftiona 2= S8y)(Az +1(y), y=0Cx, (4)
lead to an additional degree of freedom when transformi T T T T/ WT

the system to OF. Given the wide array of nonlinear obser\?(\agrqerez = (G z) W) = (@)% ()7, and
design methods that have been developed, it is important S(y) = Blockdiag{s1(y)Ly,, - - ., sp(y)Ix, }.

to establish the useful properties of any approach. OFebase

methods benefit from a relatively straightforward desigo-prWe remark that the difference between multi-output and

cedure which exploits the target normal form and potentialfingle-output TOF is in the matri%(y). This difference leads

larger regions of attraction with relatively low observerins. to a different approach to derive the TOF existence conubtio

Although other approaches such as [6], [10] consider difier Given TSF (2) and TOF (3), we have the following definition.

system classes, these properties of OF-based designs &an maDefinition 2.1: System (1) is said to be locally (globally)

them attractive alternatives. transformable to TOF (3) if there exists a local (global)
This paper considers a multi-output version of work in [8iliffeomorphismz = ®(x) and time scaling transformations

[9]. In Section Il we introduce the time-scaled multi-outpu(2) such that the system can be represented as

observer form (TOF), and state the problem to be solved. In (x)

Section Il we discuss the single and multiple time scalingt = ——= f(x) =S (Az+~(y)), y=C=z. (5)

transformation cases, propose the existence conditiotiseof i Oz r=0-1(z) o

TOF, compare the time scalings to output transformatiams, a SI"ce TSFs are non-vanishing, we can multiply” (y) to

investigate the design, implementation, and robustnesa ofP©th sides of (5) and obtain

TOF-based observers. Two numerical examples are given in dz

Section |V to illustrate the construction of TOF coordirste ar Az+(y), y=0Cxz,

time scaling transformations, and the implementation ef th T
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result for an OF. Following [4] we define two co-distribut®on  Remark 3.4:Given system (1) in observable form, we know
Qi, Q- Yi = Tj 1, thi = T; 2, andL;ihi e wl(x) forl1 <i<p.
0, = spar{dL’}hT(:z:), 0<k<hi—1,1<r<p} Taking g; = 9/0x; »,, we reformulate Condition (7) as

\{dLY 'hi(@)}, 1<i<p, _O%%'(x) I Osi
Q = spa{dLbh, (2),0 <k < A, —1,1 <7 < p}. ‘9232‘_9(“;1 lsi ayi ;
. . SDZ T Ai T 54 .
For system (1), it has been shown in [4, Thm. 2.3] that Dtradrss s, e 1<k <pk #i.
Q; = Q; N Q guarantees the existence of the starting vector A ‘
g satisfying Sinces; > 0, we introduce the change of variable = In(s;)
and have

Lg, L5y (2) = 05,1050, 0< k<X —1, 1 <7 <p. (6)

The starting vectoy; is generally not uniquely defined. When
system (1) is in observable form [10], a typical solution &f (
is g; = 8/61‘@)\1.

8/431' - l)\l;—lgo}ﬁ,l(x% k 7& ia
Oy oeli(@), k=i

wherey;, ; = 9%¢'(x)/0xy 20; 5, . A solution of x; exists if

and only if 225 = _2°%i_\which imposes conditions on
A. Multiple Time Scaling Transformation Case (2): 9y;0yr — Fyrdy;’
Theorem 3.1:System (1) is locally transformable to TOF _ _
5) if and only if, locally for1 < i < p, Opyi(x) 09l () .
= J#Fik#i
1) The TSFs;(y) of the ith subsystem satisfies the partial Ay, dyr ’ ’
differential equations 1 9} ,;(x) _ 1 o’ () it
N 1L 9sly) D Oy b1 oy
dLg, Ly hi(z) = ) D=5, dLshi(z) Remark 3. 5 “The necessary Condition (7) fer has the ad-
» % Yi @) vantage of being relatively easy to present and verify. édde
b, — 1)2 Isi(y )dL hy(z )) mod {dy} as discussed in the previous remark, we can reexpress (7)
oLt N / ’ into conditions involving only the system dynamics. Since

Condition (7) is implied by Condition (9), we can expand
with [, = @ +1, 1 <k <)\, andg; given by (6). Condition (9) to obtain necessary and sufficient conditions

2) Q:=Q;NQ. s;. The resulting differential equations would be more disect
3) Given the starting vector fields related to the system dynamics but would be complicated
X ,\v—1 in general. A similar issue arises with feedback lineaitrat
Lg, Lhi(z) = 577 (h(2)) 0k x; 101, ®) in [11, Egn. (22)] where a significant number of necessary

for 0 < k < A\ — 1:1 < [ < p, and the vector fields conditions are given for the TSF. However, the solvability o
Y ’ these differential equations is difficult to discuss.
(3 = Yi; Z,_Sl h’ ad_ 1.772§ SAv
st = Gio T (h(e))ad s j-1 J Remark 3.6:From Definition (8), we knowj; = Sf‘i’_lgi
Mirsms] =0, 1 <r < X311 <s< A\;1<i,0<p. (9) andits existence is guaranteed by Condition 2) [4]. We note
the following fact which is useful to show Theorem 3.1. Given

The transformatiorr = ®(z) is the solution of the system of (5), we can verify

n? partial differential equations

_ 0S(y)
0o (!
[771 gy 7771 1,00 77717)\;,7"' 777171] _I (10) dhz((b (Z)) ayl (AZ‘F'Y(y))
Remark 3.2:We express; in terms ofy to emphasize its 1 IS(y) 4
dependence on the output. The formule(z)) is required = dhy(®7(2)) Em ST WS W)(Az +7(y))
to compute the starting vectogs and vector fieldsy; ;, and dsi(y) 1 )
verify Lie bracket conditions. We abbreviatgh(x)) or s;(y) = a—yis_—y)thi(‘If (2))-
ass;, 7(y) asv, andS(y) asS, . Note that all the conditions Proof: <: The proof of necessity is to derive conditions

of Theorem 3.1 are independent of the choice of coordinatg$-Theorem 3.1 in-coordinates, which implies the conditions
However, observable form coordinates are useful to simplify the original coordinates since they are independent of
the calculation of; sinceg; and Lsh;(z) = z;,2 have simple coordinates. The computation is therefore carried out-in
expressions in these coordinates. coordinates. To simplify the notation, we denobzle:) as the
Remark 3.3:The TOF coordinates are globally defined ikxpression ofh(z) in z-coordinates instead of(®~1(z)).
system (1) is globally observable, the conditions in ThemreTak,ngm 1 = 8/dz,,1 < i < pand following the definition
3.1 are satisfied globally, and the vector fiels,1 < j < of Mik,2 < k < A, we haven, , = 9/0z x,_x4+1. Clearly,
Ai, 1 <1 < p are complete. This is because the transformaﬂqpk 1 <k < M\,1 < i < p are unit vector fields in-
®(x) can be constructed from the composition of flows cfoordinates, i.e., Condition (9) is necessary. Next wevedtie
vector fieldsn; ;, which is globally defined if the vector fields gefinition of the starting vectay; (8). Sinceg; = mia,1 <i<
are complete. p, We havedhy(z)/0z;x, = 0= Lo hy(z) =0 for 1 <1 < p.



Further computation gives Sinceg; = s;""'gi, we havedLg L}y h; = s~ 'dLy, L} h,

Ohy(2) mod {dy}. Hence we have Condmon (7) by pluggmg the
=5 = (dhi(2), mi,2) above equation into (15).
At 1 1 = Given the TSFs of each subsystamsolved from (7),
= <dhl(z), —[-, gi]> = —Lg Lihi(2) it is readily shown conditions 2)-3) are sufficient to guaean
5i 8 the existence of state coordinate= ®(x) which puts system
for 1 <1 < p. By induction, one can show far < | < p, (1) into TOF (4) by following the proof in [1], [4], [16]. m
MG g << -2, Remark 3.7:Given (11a), one can compu®V/dz; ;,1 <
Lg,LEhi(2) = % Dzin j < A — 1 iteratively and have
gitfr g 718hl(z)_ k=L
g 621 1

Zk 1
dkf 1+TLf(SZ)a.d I 13

’L

Hence, the starting vectgs; satisfies (8). For the necessity of

Condition 2), one can refer to [4] and the references therein” - —* Sz

To derive the condition on the TSFs, we first state the span{ad’ ;7,0 <j<k—2},1<k <)\ —1.
;ao(qufltl<ohs<ensurlng the existence of state transformét{a). Further calculation yields the right hand side of (11b)
<i1<p
Ai—1 .
ow oW ow 1 i Dt J Ai —1
i—— =ad 2< < N\ 11 ad_j— =——ad>;g, + ————L ad™
By e, PSISN () ooy T T b
oW ow s an{adj Gi,0<j <\ —2}
— S(Az+7))=ad_,=—, j=1, (11b P ~ g9V S0 S A2y _
0z 3Zi,1( (Az+7)) =a P (11b) Remark 3.8:The multiple time scaling transformation case
ow , has a different TSF for each subsystem. This can be general-
th—azi,j =0,10ri, 1<j<A31<r<p, (110) jzeq by employing a TSF for each state, i.e.,
whereW = &~1(z), anddW/dz, , is the starting vectoy;. S(y) = Blockdiag{s1(y), - - -, sn(y)},
One can see from (11a) thatV/0z; ; = mix,—j+1,1 < j < ) i _
A, 1<i<p. ' e which leads to the multi-output extension of the output de-
“ThEIeE hand side of (11b) is pendent observability linear normal form in [17]. Allowing
distinct time scaling transformation for each state furthe
OW O(S(Az+7)) _OW (95 (Az+4)+ S %l enlarges the class of admissible systems transformabléto O
0z 0zi1 0z 0zi1 0zi1 A similar procedure can be followed to obtain the existence

Given the right hand side of (11b) in Remark 3.7, (11b§Onditions of the corresponding TOF.
multiplied by dh;(z)(0W/dz)~ 1 is

IS Oy B. Single Time Scaling Transformation Case
dhi(2) 0zi1 (Az +7) + dhi(z)sa Zi1 The existence conditions is given in the following theorem
ad g, Tl (12)  without proof.
= dhi(z) L7 + dhi(2) I Ly(si)ad X ;. Theorem 3.9:System (1) is locally transformable to TOF
i i (5) if and only if, locally for1 <i <p
According to Remark 3.6, (12) is modified into 1) Condition 1) in Theorem 3.1 witk(y) = s;(y) holds.
Os; 1 2) Qi=Q:NQ.
Bzi1 5i —Lyhi(z) + p(y) 3) the following Lie brackets conditions hold, i.e.,
I A Vi S . 13) 0<k<A -1
Si\i—l + 52\ 7(si) ad i g, i(2). [ad’ifgr,adl,ffiq =0, 0<I<A —1; (16)
From [15, Lem. 4.1.2], [16, Thm. A.3.1], we have L<rq=<p,
)\7;71 . )\7;71 _
de*fl* hi(z) = LgLy " hi(z) = s, and where f(z) = f(z)/s(h(z)), and g; is the starting
L, zh'( z) = Lg, L}ihi(z). Sinceh;(z) = h;(x) = y;, (13) vector field in timer and defined by
s rearranged as i Lo, Lhh=Spn16i0, 0S k< A—L1 <7 <p. (17)
Osi Lyhi +ply) = L‘?ifflhi _ A1) iLf( ). (14) The transformation = ®(x) is the solution of the system of
Ay si st 2 Si n? partial differential equations
Collecting the terms of (14) and taking the differential, we ¢ -
have ad¥ g ad gy g =T (18)
N n—208i %emark 3.10:The difference between Theorem 3.9 and [4,
dLg, Ly hi = Uy s; Em dLshi Thm. 3.4] is the additional Condition 1) orfy). Provided the
g (15) existence of a TSF, the necessity and sufficiency of Conitio
+(Iy, — 1)s)i ™2 Z % —dLsh; mod {dy}. 2) — 3) have been shown in [4]. Condition 1) is a special case

ety Y of Condition 1) in Theorem 3.1.



Remark 3.11:Assuming for system (1), the starting vector$or 1 < [,i,k < p. For the output transformation case, we

gi,1 < i < p can be solved from (6), we have the startingefine the output transformatigh= +(y) = (11, ,¢p)T
vectors defined k_Jy a7y, = sAf 1.gi. This is because by and Compu'[‘:'{l_?ﬂi = ile_ ?;5; PSP P @gkg;i il
induction, we derive that for a fixedand anyr,1 <r <p,  Transformability to OF with output transformation reqsire
dL’;—.hr =s"'dL;h, mod {dh,}, k=0, Lo 92 %y _

K Ckark : . > L4 =0, i#k,
dL%h, =s~"dLh, mod {dL}h,,0 < j <k —1} — Oy OYr0yi ~ OyiOyk 20
1<k<\-—L1 "L o 9%y d%; . 20

Remark 3.12:The multiple time scaling transformations are yr 092 + 2—8y-2 =0, i=k,

=1 @ @

a generalization of the single time scaling transformatiase.

If we replaceS(y) with s(y), Theorem 3.1 is equivalent tofor 1 < i,k,1 < p. Comparing Conditions (19) and (20),
Theorem 3.9. We can verify thg; solved from (8) is the we recover the result in [8] that an output transformation is
same agj; solved from (17), andid’fflgi = mk, 1 < k < equivalentto a time scale transformation. This is becaussnw
\i, 1 <i < p. Thus the Lie bracket conditions are equivalenp = 1,7 = 2,i = k = [, (19) and (20) are not only sufficient
Whenp = 1, Theorem 3.9 and Theorem 3.1 lead to the sanklt also equivalent. We next present examples, which \éolat

existence conditions as [8, Thm. 1]. either (19) or (20), to show that an output transformation is
in general not equivalent to a time scale transformation.
C. OF, TOF, and OF with Output Transformation Consider the example system with indicgs 2, 2) which

We discuss differences between TOF and OF with outpd?es not satisfy (19c), i.e., no TOF exists, but it is trans-

transformation [3]. Our discussion relies on a system (I)de formable to OF with output transformation:
in observable form with indiceg;,1 < i < p. Giveng; =

i1 = (212 + 101 () 5 +2(W) s 1 =2
8/0x; », and L' h; = @i(x), Condition (7) is P e T gy T

(91'11 (91'12

2 = ( (W) 5— W5— v2=2

p 2 22 + 721(Y1 + Y22( Y2 21,
) X 0 0

Opi(xz) 1 0s; zis+ (b, —1) Z 2 T21 T22

Rl (1%
Ti,\; Si Yi j=1,j7i j?g = I32 8;331 + ($12£C22 =+ Igg)

(91'327 Y3 = T31,

wherez, = (5011,1712)T,I2 = (I21,$22)T,1173 = ($31a$32)T-
Performing coefficient matching of the above equation, we cahis system is not transformable to OF without output trans-
solves; only if ¢, is affine inz; 5, and the coefficients of; , formation sincexri,z22 appears inpz = i32. Solving for the

in ¢; are of the forma; (y)x;2 or aa(y). However, without output transformation’s = y1y» — 2ys, the system with new
the time scale transformation, the necessary conditiolofer outputy = (211, x21,3)7 is transformable to OF.

mod {dy}, 1<i<p.

requires no terms of the foran (y)z; 2; 5, In ;. This illus- Consider a system in observable form with indi¢2s2)
trates a benefit of introducing a time scaling transfornmatib 9

Ai = 1 andy;(z) has dependence an .,k > 2, no TOF can 1 =:v128— + (z11212222 + lexfg)a—, Y1 = T11,

be solved. On the other hand, ¢f; has linear dependence i T12 (21)

! . . , B , .0
on z; o, introducing the output transformation leads to the, :xgga— + (z12221 T22 —1—1611:322)6—, Yo = Toq.
transformability to OF. T21 T22

We perform the comparison between a time scaling trarSystem (21) is not transformable to OF singg, 12222, and
formation and an output transformation by considering-a 23, are present inp; andes, respectively. We apply Theorem
output system with observability indices, = 2,1 < k < p. 3.1 to investigate whether system (21) admits a TOF. The
Assuming the system is in observable fogp,1 < i < p are starting vectors arg, = 9/0x12, g2 = 9/0x22 and we have
unit vectors and therefore commute. We chégle, 1] =

. i Ly, L%hy = x11299 + 2291212,
[s; 'ad_;gi, 9] = 0 to derive necessary conditions for a TOF gL s

ngL?@ = x21712 + 2T11T22.

-1 - -1

;ad_¢gi, gr| = |ad_;g; — s; Ly(8:)gi; . . .
[SZ a¢-r9 gk} [a r9i =8 (s )g_fkgk] With Lthy, = zre, k = 1,2, Condition (7) in Theorem 3.1
= s [ad_ ;i k] + Laa_ 9. (sk)gk + [=si " Ly(si)9i: skgn] yields partial differential equations

P 92
g1 0 Osp O sk 0si O 1 9s; 1 05y
=S B . A + a- - OlE) 2 = 737 = 757
g ; YOy Oy Oy; Oy si Oy O, 27 S0 T s o
which yields the partial differential equations 2y = i%, Yo = i%
52 99 52 Oy s2 Oy
—,90; + 2% 0, (19a) Solving these equations gives = sy = e¥2¥1. With s; = sa,
28%‘ s Oy Theorem 3.9 can be applied. Defining = f/s1,9: =
0%y 1 Osy, —0, ki (19b) s19x, k = 1,2, we verify Condition (16) and conclude that
0Oy~ sk Oy ’ ’ system (21) is transformable to a TOF. On the other hand,
system (21) cannot be put into an OF with an output transfor-

=0, [#ki#1 (19¢) mation since no output transformation satisfies (20).



D. Observer Design, Implementation and Robustness Issu®ge consider the robustness of the error dynamics to measure-
Assuming the existence of a TOF, a Kalman-like observtent noise inz-coordinates and time With the measurement
design can be performed as in [18, Thm. 3.1]. The resultif§is€; €.94w =y + w(t), the observer is
error dynamics is guaranteed to be exponentially stable:-Ho 2 . N
: . . . " = S(yw)(A w) + L(Yyw — ,
ever, using this design would require additional obsertaes 2= Syu)(AZ+9(yw) + Ly ¢2)

to compute a time-varying observer gain by numerical irdegrand the corresponding error dynamics is
tion. We propose a relatively simple Luenberger observer in

TOF coordinates 2 =S(yuw)(A — LC)Z + (S(y) — S(yw)) Az @7
2= SW)(Az+(y) + Ly - C2)). (22) +Su)(Y) = Sw) (V(yw) + Luw ().
This proposed observer yields the error dynamics For simplicity, we assume that the zero solution of=
= S(y)(A - LC):. (23) S(yw)(A — LC)Z is globally exponentially stable, and con-

clude that the solution of (27) evolves in a bounded set. This

We have the following result on the stability of (23). is a similar situation to the Luenberger observer based on an
Theorem 3.13:Provided that system (1) is globally trans-OF which also provides state estimate with bounded errors in

formed to TOF (3) and given the observer (22) with- LC'  the face of measurement noise.

Hurwitz, the zero solution of the error dynamics (23) is

uniformly globally exponentially stable if and only if ther

exist positive constants, €2, such that
¢ A. Single Time Scaling Transformation Example

si(y(€))d€ > ext + ez, VL= 0. (24) We consider a two-output system in observable form with
Relative o the result in [18] an additional condition (24) iobservability indiceq2,2) corresponding to the output =
required to ensure the error dynamics stability. Howeves, t (1, y2)”.
proposed observer benefits from a simpler observer gain and

IV. NUMERICAL EXAMPLES

implementation. - i = Trag—+ (z2, + 1'121'22)8 . YL =11,
Proof: We only need to prove the stability of “gll ?2 (28)
Zi = si(y(t))(A; — LiCy) %, t > 0. 2 :I226x—21+(I§2+x12x22)8x22’ Y2 = T21,

<: We assume the zero solution of error dynamics is UGEv§here .
L=

in bothr andt times, i.e. = (#11,212)", 32 = (a2, 222)". We can verify

system (28) is not transformable to OF by a change of state co-
bie 7 < ||Z(1)|| < cre” T, (25a) ordinates since the Lie bracket condition in [16, Thm. §.i&1
bse V1t < ||Z(1)|| < cze” A, (25b) violated. Next, we apply Theorem 3.9 to solve the scalar TSF,

verify the conditions, and compute the state transformatio
whereck,bk, 1 < k < 4 are positive constants. Substitutingye first solveg; from (6) g1 = 0/dx12, go = 8/0x20, and

= [ s:(y(€))d¢ into (25a), we have computeLy, Lih; = 22 + w1299, dLsh; = wig,i = 1,2.
breb2Jo si(w(€)de < |ZioT(t)]| < cre™® Jo si(u(€))dg. Condition (7) is reduced to
. 5 )
Combining the last inequality with (25b) gives (221 + 722) = (28_Sd~’012 N % s 95 den) mod {dy}.
bie —b2 fot si(y(8))dg < cg e—cat j Y1 ay
S
which implies condition (24) withe; > ¢4/ba, €2 > 1 In lcn d(2z2 + z12) = (28—y2dx22 + a—dl'lg) mod {dy}.

= Since the zero solution of; in 7 time is UGES and
condition (24) holds, we assum;(7)|| < cie—" and We therefore set up the partial differential equatl%@l% =

readily conclude that the zero solution of (23) firtime is 5k = 1,2 and solve the scalar TSiy) = e¥ 2. With the

UGAS. This is because s_tartmg vector fieldg, = sgx, &k = 1,2, Lie bracket condi-
~ et tions (16) hold for0 < k,1 < 1;1 < r,q < 2. The state trans-
1Zi o T(@)]] < eze™ ", formation is computed a®(z) = (z11,12/5, 21, T22/5)T
with ¢35 > cre7°2%2, ¢4 > coey. m by solving (18).

Introducing multiple time scales does not lead to any
difficulty in the implementation of the observer. This ca
be seen by expressing (22) incoordinates and time. For
simplification, assumingd®(z)/dz = 0®(z)/dxS, we have  |f we modify the dynamics of system (28) by taking
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Fig. 1. Actual and estimated states of the system

V. CONCLUSION

Time scaling of the multi-output observer form for uncon-
trolled nonlinear continuous-time systems is considemnettiis
note. Necessary and sufficient existence conditions of a-tim
scaled observer form are provided. Numerical examples show
the construction of the state and time scaling transfoimati
and the implementation of an observer with multiple time
scaling transformations.
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