
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Multiple Time Scaling of a Multi-Output
Observer Form

Yebin Wang, Alan Lynch

TR2010-017 May 2010

Abstract
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transformation and the change of state coordinates to time-scaled observer form are provided.
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Multiple Time Scalings of a Multi-Output
Observer Form

Yebin Wang and Alan F. Lynch

Abstract— Time scalings in the multi-output observer form for
uncontrolled nonlinear continuous-time systems are considered in
this paper. It is the multi-output version of an existing single-
input result. Time scaling broadens the class of systems which
admits an exact error linearization observer design by including
time scaling transformations. The existence conditions ofthe time
scaling transformation and the change of state coordinatesto
time-scaled observer form are provided.

I. I NTRODUCTION

We consider observer design for uncontrolled multi-output
systems in state space form

ẋ = f(x), y = h(x) (1)

where ẋ denotesdx/dt, x ∈ R
n is the state,f : R

n →
R
n is a C∞ vector field, andh : R

n → R
p is a C∞

output function. The well-established exact error linearization
nonlinear observer design method uses an Observer Form
(OF) to obtain stable LTI state estimate error dynamics in
OF coordinates [1], [2]. Significant effort has been placed
on extending this original work for single-output continuous-
time systems, e.g. [3], [4], [5], [6], [7]. Recent work [8], [9]
considers a generalization of exact error linearization which
incorporates output dependent time scaling transformations for
single-output nonlinear systems. Time scaling transformations
lead to an additional degree of freedom when transforming
the system to OF. Given the wide array of nonlinear observer
design methods that have been developed, it is important
to establish the useful properties of any approach. OF-based
methods benefit from a relatively straightforward design pro-
cedure which exploits the target normal form and potentially
larger regions of attraction with relatively low observer gains.
Although other approaches such as [6], [10] consider different
system classes, these properties of OF-based designs can make
them attractive alternatives.

This paper considers a multi-output version of work in [8],
[9]. In Section II we introduce the time-scaled multi-output
observer form (TOF), and state the problem to be solved. In
Section III we discuss the single and multiple time scaling
transformation cases, propose the existence conditions ofthe
TOF, compare the time scalings to output transformations, and
investigate the design, implementation, and robustness ofa
TOF-based observers. Two numerical examples are given in
Section IV to illustrate the construction of TOF coordinates,
time scaling transformations, and the implementation of the
proposed observer.
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II. PROBLEM STATEMENT

Early work on time scaling for control design [11], [12],
[13] enlarged the class of state feedback linearizable systems.
To generalize the class of single-output systems which admits
an OF, an output dependent time scaling transformation was
introduced in [8]:τ̇ = s(y(t)) > 0, τ(t0) = τ0, wheres(y(t))
is a non-vanishing positive smooth function, called a time scale
function (TSF). For multi-output systems, existence conditions
for the multi-output observer form (OF) have been established
in [4], [3]. This OF has the form

ż = Az + γ(y), y = Cz,

where A = Blockdiag{A1, · · · , Ap}, C =

Blockdiag{C1, · · · , Cp}, and Ai =

(

0 Iλi−1

0 0

)

, Ci =

(1,0)T with Ik a k × k identity matrix.
Given time scaling transformations for each subsystem

τ̇i = si(y(t)) > 0, τi(t0) = τi0, (2)

we define the TOF as an OF in the timeτ

dzi
dτi

= Aizi + γi(y), yi = Cizi, 1 ≤ i ≤ p, (3)

where zi = (zi,1, · · · , zi,λi
)T , γi(y) =

(γi,1(y), · · · , γi,λi
(y))T , and λi are the observability

indices of system (1) [14]. The TOF for the entire system in
time t is

ż = S(y)(Az + γ(y)), y = Cz, (4)

wherez = (zT1 , . . . , z
T
p )T , γ(y) = (γT1 (y), . . . , γTp (y))T , and

S(y) = Blockdiag{s1(y)Iλ1
, . . . , sp(y)Iλp

}.

We remark that the difference between multi-output and
single-output TOF is in the matrixS(y). This difference leads
to a different approach to derive the TOF existence conditions.
Given TSF (2) and TOF (3), we have the following definition.

Definition 2.1: System (1) is said to be locally (globally)
transformable to TOF (3) if there exists a local (global)
diffeomorphismz = Φ(x) and time scaling transformations
(2) such that the system can be represented as

ż =
∂Φ(x)

∂x
f(x)

∣

∣

∣

∣

x=Φ−1(z)

= S(y)(Az + γ(y)), y = Cz. (5)

Since TSFs are non-vanishing, we can multiplyS−1(y) to
both sides of (5) and obtain

dz

dτ
= Az + γ(y), y = Cz,

wheredz/dτ = (dz1/dτ1, · · · , dzp/dτp)
T .

III. E XISTENCE CONDITIONS

We first introduce some notation, then present the existence
conditions for a TOF. Next, the necessary and sufficient con-
ditions for a TOF where the same time scaling transformation
is used for all subsystems are given; these conditions can be
specified in a concise form and are similar to the established
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result for an OF. Following [4] we define two co-distributions
Qi, Q:

Qi = span{dLkfhr(x), 0 ≤ k ≤ λi − 1, 1 ≤ r ≤ p}

\{dLλi−1
f hi(x)}, 1 ≤ i ≤ p,

Q = span{dLkfhr(x), 0 ≤ k ≤ λr − 1, 1 ≤ r ≤ p}.

For system (1), it has been shown in [4, Thm. 2.3] that
Qi = Qi ∩ Q guarantees the existence of the starting vector
gi satisfying

Lgi
Lkfhr(x) = δk,λi−1δi,r, 0 ≤ k ≤ λi − 1, 1 ≤ r ≤ p. (6)

The starting vectorgi is generally not uniquely defined. When
system (1) is in observable form [10], a typical solution of (6)
is gi = ∂/∂xi,λi

.

A. Multiple Time Scaling Transformation Case

Theorem 3.1:System (1) is locally transformable to TOF
(5) if and only if, locally for1 ≤ i ≤ p,

1) The TSFsi(y) of the ith subsystem satisfies the partial
differential equations

dLgi
Lλi

f hi(x) =
1

si(y)

(

lλi

∂si(y)

∂yi
dLfhi(x)

+ (lλi
− 1)

p
∑

j=1,j 6=i

∂si(y)

∂yj
dLfhj(x)

)

mod {dy},
(7)

with lk = k(k−1)
2 + 1, 1 ≤ k ≤ λi, andgi given by (6).

2) Qi=Qi ∩Q.
3) Given the starting vector fields̄gi

Lḡi
Lkfhl(x) = sλi−1

i (h(x))δk,λi−1δl,i, (8)

for 0 ≤ k ≤ λi − 1; 1 ≤ l ≤ p, and the vector fields
ηi,1 = ḡi, ηi,j = s−1

i (h(x))ad−fηi,j−1, 2 ≤ j ≤ λi,

[ηi,r, ηl,s] = 0, 1 ≤ r ≤ λi; 1 ≤ s ≤ λl; 1 ≤ i, l ≤ p. (9)

The transformationz = Φ(x) is the solution of the system of
n2 partial differential equations

∂Φ

∂x

[

η1,λ1
, · · · , η1,1, · · · , ηp,λp

, · · · , ηp,1
]

= In. (10)
Remark 3.2:We expresssi in terms ofy to emphasize its

dependence on the output. The formulas(h(x)) is required
to compute the starting vectors̄gi and vector fieldsηi,j , and
verify Lie bracket conditions. We abbreviatesi(h(x)) or si(y)
assi, γ(y) asγ, andS(y) asS, . Note that all the conditions
of Theorem 3.1 are independent of the choice of coordinates.
However, observable form coordinates are useful to simplify
the calculation ofsi sincegi andLfhi(x) = xi,2 have simple
expressions in these coordinates.

Remark 3.3:The TOF coordinates are globally defined if
system (1) is globally observable, the conditions in Theorem
3.1 are satisfied globally, and the vector fieldsηi,j , 1 ≤ j ≤
λi, 1 ≤ i ≤ p are complete. This is because the transformation
Φ(x) can be constructed from the composition of flows of
vector fieldsηi,j , which is globally defined if the vector fields
are complete.

Remark 3.4:Given system (1) in observable form, we know
yi = xi,1, Lfhi = xi,2, andLλi

f hi = ϕi(x) for 1 ≤ i ≤ p.
Taking gi = ∂/∂xi,λi

, we reformulate Condition (7) as

∂2ϕi(x)

∂xi,2∂xi,λi

=
lλi

si

∂si
∂yi

,

∂2ϕi(x)

∂xk,2∂xi,λi

=
lλi

− 1

si

∂si
∂yk

, 1 ≤ k ≤ p; k 6= i.

Sincesi > 0, we introduce the change of variableκi = ln(si)
and have

∂κi
∂yk

=

{

1
lλi

−1ϕ
i
k,i(x), k 6= i,

1
lλi

ϕii,i(x), k = i,

whereϕik,i = ∂2ϕi(x)/∂xk,2∂xi,λi
. A solution ofκi exists if

and only if ∂2κi

∂yj∂yk
= ∂2κi

∂yk∂yj
, which imposes conditions on

ϕi(x):

∂ϕik,i(x)

∂yj
=
∂ϕij,i(x)

∂yk
, j 6= i, k 6= i,

1

lλi

∂ϕii,i(x)

∂yj
=

1

lλi
− 1

∂ϕij,i(x)

∂yi
, k = i, j 6= i.

Remark 3.5:The necessary Condition (7) forsi has the ad-
vantage of being relatively easy to present and verify. Indeed,
as discussed in the previous remark, we can reexpress (7)
into conditions involving only the system dynamics. Since
Condition (7) is implied by Condition (9), we can expand
Condition (9) to obtain necessary and sufficient conditionson
si. The resulting differential equations would be more directly
related to the system dynamics but would be complicated
in general. A similar issue arises with feedback linearization
in [11, Eqn. (22)] where a significant number of necessary
conditions are given for the TSF. However, the solvability of
these differential equations is difficult to discuss.

Remark 3.6:From Definition (8), we know̄gi = sλi−1
i gi

and its existence is guaranteed by Condition 2) [4]. We note
the following fact which is useful to show Theorem 3.1. Given
(5), we can verify

dhi(Φ
−1(z))

∂S(y)

∂yi
(Az + γ(y))

= dhi(Φ
−1(z))

∂S(y)

∂yi
S−1(y)S(y)(Az + γ(y))

=
∂si(y)

∂yi

1

si(y)
Lfhi(Φ

−1(z)).

Proof: ⇐: The proof of necessity is to derive conditions
of Theorem 3.1 inz-coordinates, which implies the conditions
in the original coordinates since they are independent of
coordinates. The computation is therefore carried out inz-
coordinates. To simplify the notation, we denoteh(z) as the
expression ofh(x) in z-coordinates instead ofh(Φ−1(z)).
Takingηi,1 = ∂/∂zi,λi

, 1 ≤ i ≤ p and following the definition
of ηi,k, 2 ≤ k ≤ λi, we haveηi,k = ∂/∂zi,λi−k+1. Clearly,
ηi,k, 1 ≤ k ≤ λi, 1 ≤ i ≤ p are unit vector fields inz-
coordinates, i.e., Condition (9) is necessary. Next we derive the
definition of the starting vector̄gi (8). Sinceḡi = ηi,1, 1 ≤ i ≤
p, we have∂hl(z)/∂zi,λi

= 0 ⇒ Lḡi
hl(z) = 0 for 1 ≤ l ≤ p.
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Further computation gives

0 =
∂hl(z)

∂zi,λi−1
= 〈dhl(z), ηi,2〉

=

〈

dhl(z),
1

si
[−f, ḡi]

〉

=
1

si
Lḡi

Lfhl(z)

for 1 ≤ l ≤ p. By induction, one can show for1 ≤ l ≤ p,

Lḡi
Lkfhl(z) =

{

ski
∂hl(z)
∂zi,λi−k

= 0, 0 ≤ k ≤ λi − 2,

sλi−1
i

∂hl(z)
∂zi,1

= sλi−1
i , k = λi − 1.

Hence, the starting vector̄gi satisfies (8). For the necessity of
Condition 2), one can refer to [4] and the references therein.

To derive the condition on the TSFs, we first state the
equations ensuring the existence of state transformationΦ(x),
for 1 ≤ i ≤ p

si
∂W

∂zi,j−1
= ad−f

∂W

∂zi,j
, 2 ≤ j ≤ λi, (11a)

∂W

∂z

∂

∂zi,1
(S(Az + γ)) = ad−f

∂W

∂zi,1
, j = 1, (11b)

dhr
∂W

∂zi,j
= δj,1δr,i, 1 ≤ j ≤ λi; 1 ≤ r ≤ p, (11c)

whereW = Φ−1(z), and∂W/∂zi,λi
is the starting vector̄gi.

One can see from (11a) that∂W/∂zi,j = ηi,λi−j+1, 1 ≤ j ≤
λi, 1 ≤ i ≤ p.

The left hand side of (11b) is

∂W

∂z

∂(S(Az + γ))

∂zi,1
=
∂W

∂z

(

∂S

∂zi,1
(Az + γ) + S

∂γ

∂zi,1

)

.

Given the right hand side of (11b) in Remark 3.7, (11b)
multiplied by dhi(z)(∂W/∂z)

−1 is

dhi(z)
∂S

∂zi,1
(Az + γ) + dhi(z)S

∂γ

∂zi,1

= dhi(z)
adλi

−f ḡi

sλi−1
i

+ dhi(z)

∑λi−1
j=1 j

sλi

i

Lf (si)adλi−1
−f ḡi.

(12)

According to Remark 3.6, (12) is modified into

∂si
∂zi,1

1

si
Lfhi(z) + ρ(y)

=
L

ad
λi
−f
ḡi
hi(z)

sλi−1
i

+

∑λi−1
j=1 j

sλi

i

Lf(si)Lad
λi−1

−f
ḡi
hi(z).

(13)

From [15, Lem. 4.1.2], [16, Thm. A.3.1], we have
L

ad
λi−1

−f
ḡi
hi(z) = Lḡi

Lλi−1
f hi(z) = sλi−1

i , and

L
ad

λi
−f
ḡi
hi(z) = Lḡi

Lλi

f hi(z). Sincehi(z) = hi(x) = yi, (13)

is rearranged as

∂si
∂yi

Lfhi
si

+ ρ(y) =
Lḡi

Lλi

f hi

sλi−1
i

−
λi(λi − 1)

2

1

si
Lf (si). (14)

Collecting the terms of (14) and taking the differential, we
have

dLḡi
Lλi

f hi = lλi
sλi−2
i

∂si
∂yi

dLfhi

+ (lλi
− 1)sλi−2

i

p
∑

j=1,j 6=i

∂si
∂yj

dLfhj mod {dy}.
(15)

Since ḡi = sλi−1
i gi, we havedLḡi

Lλi

f hi = sλi−1dLgi
Lλi

f hi
mod {dy}. Hence, we have Condition (7) by plugging the
above equation into (15).
⇒: Given the TSFs of each subsystemsi solved from (7),

it is readily shown conditions 2)–3) are sufficient to guarantee
the existence of state coordinatez = Φ(x) which puts system
(1) into TOF (4) by following the proof in [1], [4], [16].

Remark 3.7:Given (11a), one can compute∂W/∂zi,j , 1 ≤
j ≤ λi − 1 iteratively and have

∂W

∂zi,λi−k

=
1

ski
adk−f ḡi +

∑k−1
j=1 j

sk+1
i

Lf (si)adk−1
−f ḡi

span{adj−f ḡi, 0 ≤ j ≤ k − 2}, 1 ≤ k ≤ λi − 1.

Further calculation yields the right hand side of (11b)

ad−f

∂W

∂zi,1
=

1

sλi−1
i

adλi

−f ḡi +

∑λi−1
j=1 j

sλi

i

Lf(si)adλi−1
−f ḡi

span{adj−f ḡi, 0 ≤ j ≤ λi − 2}.
Remark 3.8:The multiple time scaling transformation case

has a different TSF for each subsystem. This can be general-
ized by employing a TSF for each state, i.e.,

S(y) = Blockdiag{s1(y), . . . , sn(y)},

which leads to the multi-output extension of the output de-
pendent observability linear normal form in [17]. Allowing
distinct time scaling transformation for each state further
enlarges the class of admissible systems transformable to OF.
A similar procedure can be followed to obtain the existence
conditions of the corresponding TOF.

B. Single Time Scaling Transformation Case

The existence conditions is given in the following theorem
without proof.

Theorem 3.9:System (1) is locally transformable to TOF
(5) if and only if, locally for1 ≤ i ≤ p

1) Condition 1) in Theorem 3.1 withs(y) = si(y) holds.
2) Qi = Qi ∩Q.
3) the following Lie brackets conditions hold, i.e.,

[

adk−f̄ ḡr, adl−f̄ ḡq

]

= 0,











0 ≤ k ≤ λr − 1;

0 ≤ l ≤ λq − 1;

1 ≤ r, q ≤ p,

(16)

where f̄(x) = f(x)/s(h(x)), and ḡi is the starting
vector field in timeτ and defined by

Lḡi
Lk
f̄
hr= δk,λi−1δi,r, 0 ≤ k ≤ λi−1; 1 ≤ r ≤ p. (17)

The transformationz = Φ(x) is the solution of the system of
n2 partial differential equations

∂Φ

∂x

[

adλ1−1
−f̄

ḡ1, · · · , ḡ1, · · · , ad
λp−1

−f̄
ḡp, · · · , ḡp

]

= In. (18)
Remark 3.10:The difference between Theorem 3.9 and [4,

Thm. 3.4] is the additional Condition 1) ons(y). Provided the
existence of a TSF, the necessity and sufficiency of Conditions
2) – 3) have been shown in [4]. Condition 1) is a special case
of Condition 1) in Theorem 3.1.
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Remark 3.11:Assuming for system (1), the starting vectors
gi, 1 ≤ i ≤ p can be solved from (6), we have the starting
vectors defined by (17)̄gi = sλi−1gi. This is because by
induction, we derive that for a fixedi and anyr, 1 ≤ r ≤ p,

dLk
f̄
hr =s−1dLfhr mod {dhr}, k = 0,

dLk
f̄
hr =s−kdLkfhr mod {dLjfhr, 0 ≤ j ≤ k − 1}

1 ≤ k ≤ λi − 1.
Remark 3.12:The multiple time scaling transformations are

a generalization of the single time scaling transformationcase.
If we replaceS(y) with s(y), Theorem 3.1 is equivalent to
Theorem 3.9. We can verify thēgi solved from (8) is the
same as̄gi solved from (17), andadk−1

−f̄
ḡi = ηi,k, 1 ≤ k ≤

λi, 1 ≤ i ≤ p. Thus the Lie bracket conditions are equivalent.
Whenp = 1, Theorem 3.9 and Theorem 3.1 lead to the same
existence conditions as [8, Thm. 1].

C. OF, TOF, and OF with Output Transformation

We discuss differences between TOF and OF with output
transformation [3]. Our discussion relies on a system (1) being
in observable form with indicesλi, 1 ≤ i ≤ p. Given gi =
∂/∂xi,λi

andLλi

f hi = ϕi(x), Condition (7) is

d
∂ϕi(x)

∂xi,λi

=
1

si



lλi

∂si
∂yi

dxi,2 + (lλi
− 1)

p
∑

j=1,j 6=i

dxj,2





mod {dy}, 1 ≤ i ≤ p.

Performing coefficient matching of the above equation, we can
solvesi only if ϕi is affine inxi,λi

and the coefficients ofxi,λi

in ϕi are of the formα1(y)xj,2 or α2(y). However, without
the time scale transformation, the necessary condition forOF
requires no terms of the formα1(y)xj,2xi,λi

in ϕi. This illus-
trates a benefit of introducing a time scaling transformation. If
λi = 1 andϕi(x) has dependence onxj,k, k ≥ 2, no TOF can
be solved. On the other hand, ifϕi has linear dependence
on xj,2, introducing the output transformation leads to the
transformability to OF.

We perform the comparison between a time scaling trans-
formation and an output transformation by considering ap-
output system with observability indicesλk = 2, 1 ≤ k ≤ p.
Assuming the system is in observable form,ḡi, 1 ≤ i ≤ p are
unit vectors and therefore commute. We check[ηi,2, ηk,1] =
[

s−1
i ad−f ḡi, ḡk

]

= 0 to derive necessary conditions for a TOF
[

s−1
i ad−f ḡi, ḡk

]

=
[

ad−fgi − s−1
i Lf(si)gi, skgk

]

= sk
[

ad−fgi, gk
]

+ Lad
−f
gi

(sk)gk +
[

−s−1
i Lf(si)gi, skgk

]

= sk

p
∑

l=1

∂2ϕl
∂ẏi∂ẏk

∂

∂ẏl
+
∂sk
∂yi

∂

∂ẏk
+
sk
si

∂si
∂yk

∂

∂ẏi
,

which yields the partial differential equations

∂2ϕi
∂ẏ2

i

+
2

si

∂si
∂yi

= 0, (19a)

∂2ϕk
∂ẏi∂ẏk

+
1

sk

∂sk
∂yi

= 0, k 6= i, (19b)

∂2ϕl
∂ẏi∂ẏk

= 0, l 6= k; l 6= i, (19c)

for 1 ≤ l, i, k ≤ p. For the output transformation case, we
define the output transformation̄y = ψ(y) = (ψ1, · · · , ψp)

T

and computeL2
f ȳi =

∑p

l=1
∂ψi

∂yl
ϕl +

∑p

k=1

∑p

i=1
∂2ψi

∂yk∂yi
ẏiẏk.

Transformability to OF with output transformation requires
p

∑

l=1

∂ψi
∂yl

∂2ϕl
∂ẏk∂ẏi

+
∂2ψi
∂yi∂yk

= 0, i 6= k,

p
∑

l=1

∂ψi
∂yl

∂2ϕl
∂ẏ2

i

+ 2
∂2ψi
∂y2

i

= 0, i = k,

(20)

for 1 ≤ i, k, l ≤ p. Comparing Conditions (19) and (20),
we recover the result in [8] that an output transformation is
equivalent to a time scale transformation. This is because when
p = 1, n = 2, i = k = l, (19) and (20) are not only sufficient
but also equivalent. We next present examples, which violate
either (19) or (20), to show that an output transformation is
in general not equivalent to a time scale transformation.

Consider the example system with indices(2, 2, 2) which
does not satisfy (19c), i.e., no TOF exists, but it is trans-
formable to OF with output transformation:

ẋ1 = (x12 + γ11(y2))
∂

∂x11
+ γ12(y)

∂

∂x12
, y1 = x11,

ẋ2 = (x22 + γ21(y1))
∂

∂x21
+ γ22(y)

∂

∂x22
, y2 = x21,

ẋ3 = x32
∂

∂x31
+ (x12x22 + x32)

∂

∂x32
, y3 = x31,

wherex1 = (x11, x12)
T , x2 = (x21, x22)

T , x3 = (x31, x32)
T .

This system is not transformable to OF without output trans-
formation sincex12x22 appears inϕ3 = ẋ32. Solving for the
output transformationψ3 = y1y2 − 2y3, the system with new
outputy = (x11, x21, ψ3)

T is transformable to OF.
Consider a system in observable form with indices(2, 2)

ẋ1 =x12
∂

∂x11
+ (x11x12x22 + x21x

2
12)

∂

∂x12
, y1 = x11,

ẋ2 =x22
∂

∂x21
+ (x12x21x22 + x11x

2
22)

∂

∂x22
, y2 = x21.

(21)

System (21) is not transformable to OF sincex2
12, x12x22, and

x2
22 are present inϕ1 andϕ2, respectively. We apply Theorem

3.1 to investigate whether system (21) admits a TOF. The
starting vectors areg1 = ∂/∂x12, g2 = ∂/∂x22 and we have

Lg1L
2
fh1 = x11x22 + 2x21x12,

Lg2L
2
fh2 = x21x12 + 2x11x22.

With Lfhk = xk2, k = 1, 2, Condition (7) in Theorem 3.1
yields partial differential equations

2y2 =
1

s1

∂s1
∂y1

, y1 =
1

s1

∂s1
∂y2

,

2y1 =
1

s2

∂s2
∂y2

, y2 =
1

s2

∂s2
∂y1

.

Solving these equations givess1 = s2 = ey2y1 . With s1 = s2,
Theorem 3.9 can be applied. Defininḡf = f/s1, ḡk =
s1gk, k = 1, 2, we verify Condition (16) and conclude that
system (21) is transformable to a TOF. On the other hand,
system (21) cannot be put into an OF with an output transfor-
mation since no output transformation satisfies (20).
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D. Observer Design, Implementation and Robustness Issues

Assuming the existence of a TOF, a Kalman-like observer
design can be performed as in [18, Thm. 3.1]. The resulting
error dynamics is guaranteed to be exponentially stable. How-
ever, using this design would require additional observer states
to compute a time-varying observer gain by numerical integra-
tion. We propose a relatively simple Luenberger observer in
TOF coordinates

˙̂z = S(y)(Aẑ + γ(y) + L(y − Cẑ)). (22)

This proposed observer yields the error dynamics

˙̃z = S(y)(A− LC)z̃. (23)

We have the following result on the stability of (23).
Theorem 3.13:Provided that system (1) is globally trans-

formed to TOF (3) and given the observer (22) withA−LC
Hurwitz, the zero solution of the error dynamics (23) is
uniformly globally exponentially stable if and only if there
exist positive constantsǫ1, ǫ2, such that

∫ t

0

si(y(ξ))dξ ≥ ǫ1t+ ǫ2, ∀t ≥ 0. (24)

Relative to the result in [18] an additional condition (24) is
required to ensure the error dynamics stability. However, the
proposed observer benefits from a simpler observer gain and
implementation.

Proof: We only need to prove the stability of

˙̃zi = si(y(t))(Ai − LiCi)z̃i, t ≥ 0.

⇐: We assume the zero solution of error dynamics is UGES
in both τ and t times, i.e.

b1e
−b2τ ≤ ‖z̃i(τ)‖ ≤ c1e

−c2τ , (25a)

b3e
−b4t ≤ ‖z̃i(t)‖ ≤ c3e

−c4t, (25b)

where ck, bk, 1 ≤ k ≤ 4 are positive constants. Substituting
τ(t) =

∫ t

0 si(y(ξ))dξ into (25a), we have

b1e
−b2

∫

t

0
si(y(ξ))dξ ≤ ‖z̃i ◦ τ(t)‖ ≤ c1e

−c2
∫

t

0
si(y(ξ))dξ.

Combining the last inequality with (25b) gives

b1e
−b2

∫

t

0
si(y(ξ))dξ ≤ c3e

−c4t

which implies condition (24) withǫ1 ≥ c4/b2, ǫ2 ≥ 1
b2

ln b1
c3

.
⇒: Since the zero solution of̃zi in τ time is UGES and

condition (24) holds, we assume‖z̃i(τ)‖ ≤ c1e
−c2τ and

readily conclude that the zero solution of (23) int time is
UGAS. This is because

‖z̃i ◦ τ(t)‖ ≤ c3e
−c4t,

with c3 ≥ c1e
−c2ǫ2 , c4 ≥ c2ǫ1.

Introducing multiple time scales does not lead to any
difficulty in the implementation of the observer. This can
be seen by expressing (22) inx-coordinates and timet. For
simplification, assumingS∂Φ(x)/∂x = ∂Φ(x)/∂xS, we have

˙̂x =
∂x̂

∂ẑ
S(y)(Aẑ + γ(y) + L(y − Cẑ))

= S(y)S−1(ŷ)
∂x̂

∂ẑ
S(ŷ)(Aẑ + γ(y) + L(y − Cẑ))

= S(y)

(

S−1(ŷ)f(x̂)+
∂x̂

∂ẑ
(γ(y) − γ(ŷ) + L(y − ŷ))

)

.

(26)

We consider the robustness of the error dynamics to measure-
ment noise inz-coordinates and timet. With the measurement
noise, e.g.yw = y + w(t), the observer is

˙̂z = S(yw)(Aẑ + γ(yw) + L(yw − Cẑ)),

and the corresponding error dynamics is

˙̃z =S(yw)(A − LC)z̃ + (S(y) − S(yw))Az

+ S(y)γ(y) − S(yw)(γ(yw) + Lw(t)).
(27)

For simplicity, we assume that the zero solution of˙̃z =
S(yw)(A − LC)z̃ is globally exponentially stable, and con-
clude that the solution of (27) evolves in a bounded set. This
is a similar situation to the Luenberger observer based on an
OF which also provides state estimate with bounded errors in
the face of measurement noise.

IV. N UMERICAL EXAMPLES

A. Single Time Scaling Transformation Example

We consider a two-output system in observable form with
observability indices(2, 2) corresponding to the outputy =
(y1, y2)

T .

ẋ1 = x12
∂

∂x11
+ (x2

12 + x12x22)
∂

∂x12
, y1 = x11,

ẋ2 = x22
∂

∂x21
+ (x2

22 + x12x22)
∂

∂x22
, y2 = x21,

(28)

where x1 = (x11, x12)
T , x2 = (x21, x22)

T . We can verify
system (28) is not transformable to OF by a change of state co-
ordinates since the Lie bracket condition in [16, Thm. 5.4.1] is
violated. Next, we apply Theorem 3.9 to solve the scalar TSF,
verify the conditions, and compute the state transformation.
We first solvegi from (6) g1 = ∂/∂x12, g2 = ∂/∂x22, and
computeLgi

L2
fhi = 2xi2 + x12x22, dLfhi = xi2, i = 1, 2.

Condition (7) is reduced to

d(2x12 + x22) = s−1(2
∂s

∂y1
dx12 +

∂s

∂y2
dx22) mod {dy},

d(2x22 + x12) = s−1(2
∂s

∂y2
dx22 +

∂s

∂y1
dx12) mod {dy}.

We therefore set up the partial differential equations∂s
∂yk

=

s, k = 1, 2 and solve the scalar TSFs(y) = ey1+y2 . With the
starting vector fields̄gk = sgk, k = 1, 2, Lie bracket condi-
tions (16) hold for0 ≤ k, l ≤ 1; 1 ≤ r, q ≤ 2. The state trans-
formation is computed asΦ(x) = (x11, x12/s, x21, x22/s)

T

by solving (18).

B. Multiple Time Scaling Transformations Example

If we modify the dynamics of system (28) by taking

ẋ12 = x2
12 + x21 − 2x12 − x11,

ẋ22 = x2
22 + x11 − 2x22 − x21,

Theorem 3.1 can be applied to solve the matrix TSF, verify
the conditions, and compute the transformation. Using (6)
we solve the same starting vector fieldsgi, i = 1, 2 as in
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the previous example and haveLgi
L2
fhi = 2xi2, Lfhi(x) =

xi2, i = 1, 2. Condition (7) is reduced to

2dx12 = s−1
1 (2

∂s1
∂y1

dx12 +
∂s1
∂y2

dx22) mod {dy},

2dx22 = s−1
2 (2

∂s2
∂y2

dx22 +
∂s2
∂y1

dx12) mod {dy},

which yields the partial differential equations

∂s1
∂y1

= s1,
∂s1
∂y2

= 0,
∂s2
∂y1

= 0,
∂s2
∂y2

= s2.

Hence, we solve the TSFss1 = ey1 , s2 = ey2 and verify
Lie bracket conditions (9) for1 ≤ r, s, i, l ≤ 2. The change of
coordinates is solved asΦ(x) = (x11, (x12−2)/s1, x21, (x22−
2)/s2)

T , which transforms the system in the form of (5) with
γ(y) = (2e−y1 , e−2y1(y2 − y1), 2e

−y2, e−2y2(y1 − y2))
T . We

implement the observer (22) in the original state coordinates
and time as (26). To ensure TSFs satisfy Condition (24), we
avoid y → ∞. Hence, we choose the initial condition of the
original system to ensure the boundedness of the trajectory
x(t). Taking the initial condition and observer gain asx(0) =
(−0.4, 1,−0.7,−0.5)T , x̂ = 0, L = (l1, l2) with l1 =
(4, 4, 0, 0)T , l2 = (0, 0, 4, 4)T , we have the simulation result
in Figure 1. Simulation demonstrates local error dynamics
stability and the ease of implementation of the observer using
multiple time scales.
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0
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x22

x̂22

Fig. 1. Actual and estimated states of the system

V. CONCLUSION

Time scaling of the multi-output observer form for uncon-
trolled nonlinear continuous-time systems is considered in this
note. Necessary and sufficient existence conditions of a time-
scaled observer form are provided. Numerical examples show
the construction of the state and time scaling transformations,
and the implementation of an observer with multiple time
scaling transformations.
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