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Abstract. Mathematical formulation of certain natural phenomena ex-
hibits group structure on topological spaces that resemble the Euclidean
space only on a small enough scale, which prevents incorporation of
conventional inference methods that require global vector norms. More
specifically in computer vision, such underlying notions emerge in dif-
ferentiable parameter spaces. Here, two Riemannian manifolds including
the set of affine transformations and covariance matrices are elaborated
and their favorable applications in distance computation, motion estima-
tion, object detection and recognition problems are demonstrated after
reviewing some of the fundamental preliminaries.
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1 Topological Spaces

A group G is a set that is endowed with a binary operation and satisfies the
closure, associativity, identity, and invertibility properties. A simple example
of a group is the set of integers ℤ under addition where the identity is 0 and
the inverse of any integer is its negative, which is still in ℤ. Note that, if the
binary operation is chosen to be multiplication the set of integers is no longer
a group because the inverse may not be an integer. A subset of G is called as a
subgroup if it satisfies all the group properties of being a group under the same
binary operation. For example the set of positive rational numbers ℚ+ forms
a subgroup of rational numbers under multiplication. Yet, the set of negative
rational numbers ℚ− is not a subgroup since it does not contain the identity
and it is not closed under multiplication.

A topological space is a set S together with a family of subsets T if the
empty set ∅ ∈ T and S ∈ T , the union of any family of sets in T also lies in T ,
and the intersection of any finite number of sets in T belongs to T . The family
T is said to be the a topology of S and the sets in T are called open sets of
the topological space. A given set may have many different topologies. Any open
set U ∈ T which contains point X ∈ S is called the neighborhood of the point.
A Hausdorff space is a topological space in which distinct points have disjoint

★ Throughout this paper, learning on manifolds refers to the family of supervised and
unsupervised methods to search, cluster, classify, and recognize given observations
on smooth manifolds without flattening, charting, or dimensionality reducing them.
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neighborhoods, such that, X,Y ∈ S and there exists UX ,UY ∈ T , X ∈ UX ,
Y ∈ UY and UX ∩UY = ∅. For instance, the real numbers constitute a Hausdorff
space.

For functions defined on Hausdorff spaces it is possible to introduce notions
such as continuity by saying that as we move towards a point X, the value
of the function gets closer to the value of the function at the point. The idea
of being ‘close’ to a particular point is captured by its neighborhood and the
continuity of a function is defined by how it maps open sets of the topology.
A mapping between two topological spaces is called continuous if the inverse
image of any open set with respect to the mapping is again an open set. A
bijective (one-to-one and onto) mapping that is continuous in both directions
is called a homeomorphism. Such mappings preserve the topological properties
of a given space. Two spaces with a homeomorphism between them are called
homeomorphic, and from a topological viewpoint, they are the same, e.g. a square
and a circle are homeomorphic to each other, but a sphere and a torus are not.

A manifoldℳ of dimension d is a connected Hausdorff space for which every
point has a neighborhood that is homeomorphic to an open subset U of ℝd.
In other words, a manifold corresponds to a topological space which is locally
similar to an Euclidean space. For any point X ∈ ℳ, there exists an open
neighborhood U ⊂ℳ containing the point and homeomorphism � mapping the
neighborhood to an open set V ⊂ ℝd, such that � : U 7→ V. The pair (U , �) is
called as a coordinate chart. An atlas is a family of charts for which the open
sets constitute an open covering of the manifold. Every topological manifold has
an atlas.

Let (UX , �X) and (UY , �Y ) be two coordinate charts, such that, UX ∩ UY is
nonempty. The transition map �X ∘ �−1

Y is a mapping between two open sets
�X(UX ∩ UY ) and �Y (UX ∩ UY ). In other words, the transition maps relate
the coordinates defined by the various charts to one another. A differentiable
manifold Ck is a topological manifold equipped with an equivalence class of
atlas whose transition maps are k-times continuously differentiable. In case all
the transition maps of a differentiable manifold are smooth, i.e. all its partial
derivatives exist, then it is a smooth manifold C∞.

It is possible to define the derivatives of the curves on a differentiable man-
ifold and attach to every point X a tangent space TX , a real vector space that
intuitively contains the possible directions in which one can tangentially pass
through X. Suppose two curves with 
1(0) = 
2(0) = X are equivalent, that is
the ordinary derivatives of � ∘ 
1 and � ∘ 
2 at 0 coincide for all charts (U , �)
where X ∈ U . A tangent vector at X is defined by the equivalence class of the
smooth curves 
(0) = X. Tangent vectors are the tangents to the smooth curves
lying on the manifold. The tangent space TX is the set of all tangent vectors at
X. The tangent space is a vector space, thereby it is closed under addition and
scalar multiplication.

A Riemannian manifold (ℳ, g) is a differentiable manifold in which each
tangent space has an inner product g metric, which varies smoothly from point
to point. It is possible to define different metrics on the same manifold to obtain



Lecture Notes in Computer Science 3

different Riemannian manifolds. In practice this metric is chosen by requiring it
to be invariant to some class of geometric transformations. The inner product g
induces a norm for the tangent vectors on the tangent space ∥X∥2 =< X,X >=
g(X). A detailed description of these concepts can be found in [1].

A Lie group is a group G with the structure of a differentiable manifold such
that the group operations, multiplication and inverse, are differentiable maps.
The tangent space to the identity element of the group forms a Lie algebra.
The group operation provides Lie groups with additional algebraic structure.
Let X ∈ G. Left multiplication by the inverse of the group element X−1 : G → G
maps the neighborhood of X to neighborhood of identity. The inverse mapping
is defined by left multiplication by X.

Fig. 1. Manifold and tangent space.

2 Distance on Riemannian Manifolds

A geodesic is a smooth curve that locally joins their points along the shortest
path. Suppose 
(r) : [r0, r1] 7→ ℳ be a smooth curve on ℳ. The length of the
curve L(
) is defined as

L(
) =

∫ r1

r0

∥
′(r)∥dr. (1)

A smooth curve is called geodesic if and only if its velocity vector is constant
along the curve ∥
′(r)∥ = const. Suppose X and Y be two points on ℳ. The
distance between the points d(X,Y ), is the infimum of the length of the curves,
such that, 
(r0) = X and 
(r1) = Y . All the shortest length curves between the
points are geodesics but not vice-versa. However, for nearby points the definition
of geodesic and the shortest length curve coincide. For each tangent vector x ∈
TX , there exists a unique geodesic 
 starting at 
(0) = X having initial velocity

′(0) = x.

The exponential map, expX : TX 7→ ℳ, maps the vector y in the tangent
space to the point reached by the geodesic after unit time expX(y) = 1. Since the
velocity along the geodesic is constant, the length of the geodesic is given by the
norm of the initial velocity d(X, expX(y)) = ∥y∥X . An illustration is shown in
Figure 1. Under the exponential map, the image of the zero tangent vector is the



4 Fatih Porikli

point itself expX(0) = X. For each point on the manifold, the exponential map
is a diffeomorphism (one-to-one, onto and continuously differentiable mapping
in both directions) from a neighborhood of the origin of the tangent space TX
onto a neighborhood of the point X. In general, the exponential map expX is
onto but only one-to-one in a neighborhood of X. Therefore, the inverse mapping
logX :ℳ 7→ TX is uniquely defined only around the neighborhood of the point
X. If for any Y ∈ ℳ, there exists several y ∈ TX such that Y = expX(y), then
logX(Y ) is given by the tangent vector with the smallest norm. Notice that both
operators are point dependent. For certain manifolds the neighborhoods can be
extended to the whole tangent space and manifold hence the exponential map
is a global diffeomorphism. From the definition of geodesic and the exponential
map, the distance between the points on manifold can be computed by

d(X,Y ) = d(X, expX(y)) =< logX(Y ), logX(Y ) >X= ∥ logX(Y )∥X = ∥y∥X .
(2)

For Riemannian manifolds endowing an inverse mapping, the geodesic dis-
tance between two group elements can be written as

d(X,Y ) = ∥ log(X−1Y )∥. (3)

The exponential identity exp(X) exp(Y ) = exp(X+Y ) does not hold for noncom-
mutative matrix Lie groups. The identity is expressed through Baker-Campbell-
Hausdorff formula [2] exp(X) exp(Y ) = exp(BCH(X,Y )) as

BCH(X,Y ) = X + Y +
1

2
[X,Y ] +O(∣(X,Y )∣3). (4)

where [X,Y ] = XY − Y X is the Lie bracket operation for nonsingular matrix
group.

2.1 Space of Nonsingular Covariance Matrices

The d×d dimensional symmetric positive definite matrices S+
d , can be formulated

as a Riemannian manifold. Let points on this manifold are covariance matrices
X,Y. An invariant Riemannian metric on the tangent space of S+

d is given by [4]

< y, z >X= tr
(

X−
1
2 yX−1zX−

1
2

)
. (5)

The exponential map associated to the Riemannian metric

expX(y) = X
1
2 exp

(
X−

1
2 yX−

1
2

)
X

1
2 (6)

is a global diffeomorphism. Therefore, the logarithm is uniquely defined at all
the points on the manifold

logX(Y) = X
1
2 log

(
X−

1
2 YX−

1
2

)
X

1
2 . (7)
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Above,the exp and log are the ordinary matrix exponential and logarithm oper-
ators. Not to be confused, expX and logX are manifold specific operators which
are also point dependent, X ∈ S+

d . The tangent space of S+
d is the space of d× d

symmetric matrices and both the manifold and the tangent spaces are d(d+1)/2
dimensional.

For symmetric matrices, the ordinary matrix exponential and logarithm op-
erators can be computed easily. Let Σ = UDUT be the eigenvalue decomposition
of a symmetric matrix. The exponential series is

exp(Σ) =

∞∑
k=0

Σk

k!
= U exp(D)UT (8)

where exp(D) is the diagonal matrix of the eigenvalue exponentials. Similarly,
the logarithm is given by

log(Σ) =

∞∑
k=1

(−1)k−1

k
(Σ− I)k = U log(D)UT . (9)

The exponential operator is always defined, whereas the logarithms only exist
for symmetric matrices with positive eigenvalues, S+

d . From the definition of the
geodesic given in the previous section, the distance between two points on S+

d is
measured by substituting (7) into (5)

d2(X,Y) = < logX(Y), logX(Y) >X

= tr
(

log2(X−
1
2 YX−

1
2 )
)
. (10)

An equivalent form of the affine invariant distance metric was first given in [3],
in terms of joint eigenvalues of X and Y as

d(X,Y) =

(
d∑

k=1

(ln�k(X,Y))2

) 1
2

(11)

where �k(X,Y) are the generalized eigenvalues of X and Y, computed from

�kXvk −Yvk = 0 k = 1 . . . d (12)

and vk are the generalized eigenvectors. This distance measure satisfies the met-
ric axioms, positivity, symmetry, triangle inequality, for positive definite sym-
metric matrices.

An orthogonal coordinate system on the tangent space can be defined by the
vector operation. The orthogonal coordinates of a vector y on the tangent space
at point X is given by

vecX(y) = upper(X−
1
2 yX−

1
2 ) (13)

where upper refers to the vector form of the upper triangular part of the matrix.
The mapping vecX, relates the Riemannian metric (5) on the tangent space to
the canonical metric defined in ℝd.
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2.2 Region Covariance Descriptor and Pattern Search

Suppose � be a feature map extracted from a given image I comprising pixel coor-
dinates, color values, pixel-wise derivatives, oriented gradients, filter responses,
etc. of appearance and spatial attributes �m,n = [m,n, I, Im, ...]

T
m,n. Different

functions of coordinates enables imposing of different spatial structures e.g. ro-
tational invariance, symmetry, etc.

A region covariance matrix X for any image region is defined as

X =
1

N

N∑
m,n∈R

(�m,n − �̄)(�m,n − �̄)T (14)

where N is the number of pixels and �̄ is the mean vector of the corresponding
features within the region R. Note that, this is not the computation of the
covariance of two image regions, but the covariance of image features of a region.
Refer to [5] for more details. Such a descriptor provides a natural way of fusing
multiple features without a weighted average. Instead of evaluating the first order
statistics of feature distributions through histograms, it embodies the second
order characteristics. The noise corrupting individual samples are largely filtered
out by the multitude of pixels. It endows spatial scale and feature shift invariance.
It is possible to compute covariance matrix from feature images in a very fast
way using integral image representation [6]. After constructing d(d+1)/2 tensors
of integral images corresponding to each feature dimension and multiplication of
any two feature dimensions, the covariance matrix of any arbitrary rectangular
region can be computed in O(d2) time independent of the region size.

The space of region covariance descriptors is not a vector space. For example,
it is not closed under multiplication with negative scalars. They constitute the
space of positive semi-definite matrices S0,+

d . By adding a small diagonal matrix
(or guaranteeing no features in the feature vectors would be exactly identical),
they can be transformed into S+

d , which is a Riemannian manifold, in order to
apply the Riemannian metrics (10, 11).

Fig. 2. Object representation by multiple covariance matrices of subregions.

A first example using the covariance region descriptor is pattern search to
locate a given object of interest in an arbitrary image. To find the most similar re-
gion in the image, distances between the descriptors of the object and candidate
regions are computed. Each pixel of the image is converted to a 9-dimensional
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feature vector �m,n =
[
m,n, Ir, Ig, Ib, ∣Im∣, ∣In∣, ∣Imm∣, ∣Inn∣

]T
m,n

where Ir,g,b are

the RGB color values, and Im,n are spatial derivatives. An object is represented
by a collection of partial region covariance matrices as shown in Figure 2.

At the first phase, only the covariance matrix of the whole region from the
source image is computed. The target image is searched for a region having simi-
lar covariance matrix at all the locations and different scales. A brute force search
can be performed since the covariance of an arbitrary region can be obtained
efficiently. Instead of scaling the target image, the size of the search window is
changes. Keeping the best matching locations and scales, the search for initial
detections is repeated using the covariance matrices of NR partially occluded
subregions at the second phase. The distance of the object model O and a can-
didate region R is computed as

∣O −R∣ = minj

[
NR∑
i=0

d(XR
i ,X

O
i )− d(XR

j ,X
O
j )

]
(15)

where the worst match is dismissed to provide robustness towards possible oc-
clusions and changes. The region with the smallest distance is selected as the
matching region. Sample matching results are presented in Figure 3 where the
manifold search using the Riemannian metrics is compared to the histogram
features using the Bhattacharyya distance.

Fig. 3. Regions found via region covariance descriptor and feature histograms.

Region covariance descriptor can be used for texture recognition within a k-
NN framework. Each texture class in the training dataset is represented by a bag
of region covariance descriptors of the randomly sampled subregions with random
sizes between 16 × 16 and 128 × 128. Given a test image, a certain number of
subregions are extracted and their descriptors are computed. For each covariance
matrix, the distances from matrices in the training set are calculated. The label
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is predicted according to the majority voting among the k nearest neighbors.
Votes are accumulated for all images in the dataset and the class having the
maximum vote is assigned as the matching class.

Fig. 4. Samples from 6 classes that are all correctly classified 109 classes out of 112.

A multi-class classifier on Brodatz texture database that consists of 112 gray
scale textures (Figure 4) is also tested. Image intensities and norms of first and
second order derivatives in both x and y direction are incorporated into the pixel
feature vector. Each pixel is mapped to a d = 5 dimensional feature space (only
15 independent coefficients). Due to the nonhomogeneous nature, recognition on
this dataset is a challenging task. Each 640× 640 texture image is divided into
four 320 × 320 subimages and half of the images are used for training and half
for testing. The k-NN on manifold is compared with the results reported in [7].
Even though the best performing conventional approach utilizes computationally
very expensive texton histograms of 560 coefficients, its performance is limited
to 97.32%. Experiments with 100 random covariances from each texture image,
k = 5 for the k-NN algorithm shows 97.77% recognition with a fraction of the
load.

3 Computing Mean on Riemannian Manifolds

Similar to Euclidean spaces, the Karcher mean [8] of points on Riemannian
manifold, is the point on ℳ which minimizes the sum of squared distances

X̄ = arg min
X∈ℳ

K∑
k=1

d2(Xk, X) (16)

where the distance metric is defined by (10,11).
Differentiating the error function with respect to X and setting it equal to

zero gives the following gradient descent procedure [4]

X̄j+1 = expX̄j

[
1

K

K∑
k=1

logX̄j (Xk)

]
(17)

which finds a local minimum of the error function. The method iterates by
computing the first order approximations to the mean on the tangent space.
The weighted mean computation is similar to arithmetic mean. Replacing the
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Fig. 5. Mean computation is achieved by transforming points on manifold to the neigh-
borhood of I on the manifold by X−1Xi, mapping them to the tangent space of X,
finding the mean in the tangents space, back projecting the tangent space mean onto
the manifold, and repeating these steps until the dislocation between the successive
iterations becomes negligible.

inside of the exponential, the mean of the tangent vectors with the weighted
mean can be obtained as

X̄j+1 = expX̄j

[
1∑
wk

K∑
k=1

wk logX̄j (Xk)

]
. (18)

3.1 Object Model Update

Finding the correspondences of the previously detected objects in the current
frame, called as tracking, is an essential task in many computer vision applica-
tions.

For a given object region, the covariance matrix of the features can be com-
puted as the model of the object. within all possible locations of the current
frame, the region that has the minimum covariance distance from the model can
be searched and assigned as the estimated location. Note that such an exhaustive
search is performed to highlight the discriminant power of the region descriptor
and the distance metric on manifold. Often search is constrained by a predictive
prior. In order to adapt to variations in object appearance, a set of previous
covariance matrices are stored and a mean covariance matrix is computed on
the manifold as the object representative. Sample tracking results are shown in
Figure 6 below.

4 Computing Kernel Density

The mean-shift is a nonparametric clustering technique which does not require
prior knowledge of the number of clusters, and does not constrain the shape
of the clusters. Data points are assumed to be originated from an unknown
distribution which is approximated by kernel density estimation in vector spaces

f(x) =
1

N

N∑
i=1

H (x− xi) =
�

N

N∑
i=1

ℎ
(
∥x− xi∥2

)
(19)
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Fig. 6. Montages of the detection results (middle) without model update: detection rate
is 47.7%, (right) with weighted mean based update mechanism on manifold: detection
rate is 100%.

where H(x) = �ℎ(∥x∥2) is a radially symmetric kernel with unit radius. The
cluster centers are located by the mean-shift procedure and the data points
associated with the same modes produce a partitioning of the feature space. By
taking the gradient of the above equation, the stationary points of the density
function can be found iteratively via

x̄ =

∑
i xi ⋅ k

(
∥x− xi∥2

)∑
i k (∥x− xi∥2)

(20)

where k(x) = −ℎ′(x). At each step, a local weighted mean is computed, and
the computation is repeated centered on the previous estimate. The difference
between the current and the previous location estimates is called the mean-shift
vector

m(x) = x̄− x. (21)

Starting at each data point, mean-shift iterations convergence to a local mode
of the distribution, i.e. a basin of attraction.

A generalization of the mean-shift procedure for parameter spaces having ma-
trix Lie group structure where the mean-shift algorithm runs on a Lie group by
iteratively transforming points between the Lie group (on Riemannian manifold)
and Lie algebra (on tangent space). Using the intrinsic distance, the multivariate
kernel density estimate at X is given by

f(X) =
�

N

N∑
i=1

ℎ
(
∥ log(X−1Xi)∥2

)
(22)

where xi = log(X−1Xi).
The group operation maps the neighborhood of X to the neighborhood of I

and the tangent space at X to the Lie algebra g. The approximation error can
be expressed in terms of the higher order terms in BCH formula (4). The error
is minimal around I and the mapping assures that the error is minimized. The
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point X is mapped to 0, thus the second term in the mean-shift vector does not
exists. The mean-shift vector on the tangent space can be transferred to the Lie
group as

m(X) = exp

(∑
i log(X−1Xi) ⋅ k

(
∥ log(X−1Xi)∥2

)∑
i k (∥ log(X−1Xi)∥2)

)
(23)

and the location of X can be updated as

X̄ = X exp(m(X)). (24)

An invariant estimator on the linear group of non-singular matrices with positive
determinant can be found in [11].

4.1 Motion Detection

Several parameter spaces which commonly occur in computer vision problems
do not form a vector space. For instance, the set of all affine transformations
forms a matrix Lie group. Two-dimensional affine transformation A(2) is given
by the set of matrices in the following form

X =

[
A b
0 1

]
3×3

(25)

where A is a nonsingular 2 × 2 matrix. By selecting each of the entries as an
orthonormal basis, X constitutes a d = 6 dimensional manifold.

One application of the mean-shift on manifolds is multiple rigid motion es-
timation from noisy point correspondences in presence of large amount of out-
liers [9]. Given two images, local feature points such as corner points are found.
These points are paired via a descriptor matching algorithm. Due to occlusions
and errors in the point matching process most of the point correspondences are
outliers. For each set of randomly selected 3-point correspondences a 2D rigid
affine transformation (A,b) is estimated. These transformations constitute the
set of X. Then the above mean-shift procedure is applied to find the local modes
that represent rigid objects having distinct affine motions. A sample result is
given in Figure 7.

5 Linear Regression on Riemannian Manifolds

Regression refers to understand the relationship between multiple variables. Lin-
ear regression assumes the relationship depends linearly on a model in which the
conditional mean of a scalar variable given the other variables is an affine func-
tion of those variables. Numerous procedures have been developed for parameter
estimation and inference in linear regression. Here a least squares estimator is
described.
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Fig. 7. (Left) 2D images with 83 points are detected via corner detection algorithm.
Less than 50% of the point correspondences are accurate. (Right) The boundaries of
the bodies and transformed boundaries with the estimated motion parameters. The
estimation is almost perfect. Courtesy O. Tuzel

Suppose (�i, Xi) are the pairs of observed data � ∈ ℝd in vector space and the
corresponding points on the manifold X ∈ ℳ. The regression function ' maps
the vector space data onto the manifold ' : ℝd 7→ ℳ. An objective function is
defined as the sum of the squared geodesic distances between the estimations
'(�i) and the points Xi

J =
∑
i

d2 ['(�i), Xi] . (26)

Assuming a Lie algebra on the manifold can be defined, the objective function
can be written using the Baker-Campbell-Hausdorff approximation (4) as

J =
∑
i

∥∥log
[
'−1(�i)Xi

]∥∥2 ≈
∑
i

∥log ['(�i)]− log [Xi]∥2 (27)

up to the first order terms. The regression function ' can be written as

'(�i) = exp
(
�T
i 

)

(28)

to learn the function 
 : ℝd 7→ ℝn which estimates the tangent vectors log (Xi)
on the Lie algebra where 
 is the d× n matrix of regression coefficients. Thus,
the objective function (27) becomes

J =
∑
i

∥∥�T
i 
 − log [Xi]

∥∥2
(29)

Let X be the k × d matrix of initial observations and Y be the k × n matrix of
mappings to the Lie algebra

X =

⎡⎢⎣ [�1]T

...

[�k]
T

⎤⎥⎦ Y =

⎡⎢⎣ [log(X1)]
T

...

[log(Xk)]
T

⎤⎥⎦ (30)

Substituting (30) into (29), one can obtain

J = tr[(X
 −Y)T (X
 −Y)] (31)
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where the trace replaces the summation in (27). Differentiating the objective
function J with respect to 
, the minimum is achieved at 
 = (XTX)−1XTY.
To avoid overfitting, additional constraints on the size of the regression coeffi-
cients can be introduced

J = tr[(X
 −Y)T (X
 −Y)] + �∥
∥2 (32)

which is called the ridge regression [10]. The minimizer of the cost function J
is given by 
 = (XTX + �I)−1XTY where I is an d × d identity matrix. The
regularization coefficient � determines the degree of shrinkage on the regression
coefficients.

5.1 Affine Motion Tracking

At the initialization of the object, the affine motion tracker estimates a regres-
sion function that maps the region feature vectors to the hypothesized affine
motion vectors by first hypothesizing a set of random motion vectors within the
given bounds, determining the transformed regions for these motions, and then
computing the corresponding features within each warped region. In the tracking
time, it extracts the feature vector only for the previous object region location
and applies the learned regression function.

Fig. 8. Random transformations are applied in object coordinates to generate the
training features for regression function estimation.

Let M transforms a unit square at the origin to the affine region enclosing the
target object [x y 1]TI = M[x y 1]TO where the subscripts indicate the image and
object coordinates respectively. The inverse M−1 is an affine motion matrix and
transforms the image coordinates to the object coordinates. The aim of tracking
is to estimate the transformation matrix Mi, given the previous images and the
initial transformation M0. The transformations are modeled incrementally

Mi = Mi−1.�Mi (33)
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and estimate the increments �Mi at each time. The transformation �Mi corre-
sponds to motion of target from time i− 1 to i in the object coordinates.

Suppose the target region is represented with orientation histograms com-
puted at a regular grid inside the unit square in object coordinates, i.e with
�(I(M−1

i )) ∈ ℝd where d is the dimension of the descriptor. Given the previous
location of the object Mi−1 and the current observation Ii, the new transforma-
tion �Mi by the regression function is estimated as

�Mi = '(�i(M
−1
i−1)). (34)

The problem reduces to learning and updating the regression function '.
During the learning step, a training set of K random affine transformation

matrices {�Mj}j=1...K are generated around the identity matrix (Figure 8). The
approximation is good enough since the transformations are in a small neigh-
borhood of the identity. The object coordinates are transformed by multiplying
on the left with �M−1

j and the descriptor �j is computed at �M−1
j .M−1

i . The

transformation M−1
i moves the object back to the unit square. The training set

consists of samples {�j , �Mj}j=1...K . The size of the training set is kept rela-
tively small K = 200. Since number of samples is smaller than the dimension
of the feature space, K < d, the system is underdetermined. To relieve this, the
ridge regression is applied to estimate the regression coefficients.

Fig. 9. Regression tracking on manifold for a given region. Note that the tracking is
still valid even the region undergoes out-of-plane rotations.

Since objects can undergo appearance changes in time, it is necessary to
adapt to these variations. The model update achieves reestimating the regression
function. During tracking, a set of random observations are generated at each
frame with the same method described above. The observations stored for most
recent frames constitute the update training set. More details and an importance
sampling based adaptation can be found in [12].

5.2 Pose Invariant Detection

Above method can be used to build an affine invariant object detection algorithm
by incorporating a class specific regression function to an existing pose dependent
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detector. Instead of learning a tracking function of the specific target object, a
regression function of the object class is trained. The learning is performed on the
training set generated by applying a total of K random affine transformations
to multiple samples from the same class, e.g. face images. The training stage is
an offline process and a more complicated model can be learned compared to
tracking applications. However, the learned function should be evaluated fast at
runtime, since the tracker is initiated at several locations for each test image.

On a sparse grid on the test image a sparse scan of the image is performed. At
each grid point the class specific regression function is applied and the region it
converges is determined. This scan finds all the locations in the motion space (e.g.
affine) which resemble the object model. The object detector is then evaluated
only at these locations. The benefits of the approach is two-fold. First, the size of
the search space drastically reduces. Secondly, it performs continuous estimation
of the target pose in contrast to the existing techniques perform search on a
quantized space. Utilizing a pose dependent object detection algorithm (e.g.,
frontal in upright position), the method enables to detect objects in arbitrary
poses.

Fig. 10. (Top) Class specific affine invariant face detection. (Bottom) VJ multi-pose
face detector results for sample images containing non-frontal faces.

In experiments on a face dataset which consists of 803 face images from
CMU, MIT and MERL datasets, the Viola and Jones (VJ) face detector [13]
evaluated at the affine warped face images could detect only 5% of the faces that
are norm 0.5 distant. The Lie algebra based estimation is significantly superior
by achieving 95.6% detection for the same images. Sample detection results for
affine invariant detection of faces are given in Figure 10.
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6 Classifiers on Riemannian Manifolds

Let {(Xi, yi)}i=1...N be the training set with respect to class labels, where Xi ∈
ℳ, yi ∈ {0, 1}. Our task is to find a classifier Z(X) :ℳ 7→ {0, 1}, which divides
the manifold into two sets based on the training samples of labeled points. A
function to divide a manifold is an intricate notion compared to Euclidean spaces.
A linear classifier that is represented by a point and a direction vector on ℝ2

separates the space into two. However, such lines on the 2-torus cannot divide
the manifold. A straightforward approach for classification would be to map the
manifold to a higher dimensional Euclidean space, which can be considered as
flattening or charting the manifold. However, there is no such mapping that
globally preserves the distances between the points on the manifold in general.

6.1 Local Maps and Boosting

One can design an incremental approach by training several weak classifiers on
the tangent space and combining them through boosting. Since the mappings
from neighborhoods on the manifold to the Euclidean space are homeomorphisms
around the neighborhood of the points, the structure of the manifold is preserved
locally in tangent spaces, thus, the classifiers can be trained on the tangent space
at any point on the manifold. The mean of the points (16) minimizes the sum
of squared distances on the manifold, therefore it is a good approximation up to
the first order.

At each iteration, the weighted mean of the points where the weights are
adjusted through boosting are computed. The points to the tangent space are
mapped at the mean and a weak classifier on this vector space is learned. Since
the weights of the samples which are misclassified during earlier stages of boost-
ing increase, the weighted mean moves towards these points producing more
accurate classifiers for these points (Figure 11). The approach minimizes the
approximation error through averaging over several weak classifiers.

Fig. 11. Illustration of successive learning of weak classifiers on tangent spaces.

6.2 LogitBoost on Riemannian Manifolds

The probability of X being in class 1 is represented by
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p(X) =
eZ(X)

eZ(X) + e−Z(X)
Z(X) =

1

2

L∑
l=1

zl(X). (35)

The LogitBoost algorithm learns the set of regression functions {zl(X)}l=1...L

(weak learners) by minimizing the negative binomial log-likelihood of the data

−
N∑
i=1

[yi log(p(Xi)) + (1− yi) log(1− p(Xi))] (36)

through Newton iterations. At the core of the algorithm, LogitBoost fits a
weighted least square regression, zl(X) of training points Xi ∈ ℝd to response
values �i ∈ ℝ with weights wi.

Input: Training set {(Xi, yi)}i=1...N , Xi ∈ℳ, yi ∈ {0, 1}

– Start with weights wi = 1/N , i = 1...N ,
Z(X) = 0 and p(Xi) = 1

2

– Repeat for l = 1...L
∙ Compute the response values and weights

�i = yi−p(Xi)
p(Xi)(1−p(Xi))

wi = p(Xi)(1− p(Xi))
∙ Compute weighted mean of the points
X̄l = arg minY ∈ℳ

∑N
i=1 wid

2(Xi, Y ) (17)
∙ Map the data points to the tangent space at Xl

xi = vecX̄l
(logX̄l

(Xi))
∙ Fit the function vl(x) by weighted least-square regression of �i

to xi using weights wi

∙ Update Z(X) ← Z(X) + 1
2
zl(X) where zl is defined in (37)

and p(X)← eZ(X)

eZ(X)+e−Z(X)

– Output the classifier sign
[Z(X)] = sign [

∑L
l=1 zl(X)]

Fig. 12. LogitBoost on Riemannian Manifolds.

The LogitBoost algorithm on Riemannian manifolds is similar to original
LogitBoost, except differences at the level of weak learners. In our case, the
domain of the weak learners are in ℳ such that zl(X) : ℳ 7→ ℝ. Following
the discussion of the previous section, the regression functions are learned in the
tangent space at the weighted mean of the points on the manifold. The weak
learners are defined as

zl(X) = vl(vecX̄l
(logX̄l

(X))) (37)

and learn the functions vl(x) : ℝd 7→ ℝ and the weighted mean of the points
X̄l ∈ ℳ. Notice that, the mapping vec (13), gives the orthogonal coordinates
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of the tangent vectors. For functions {vl}l=1...L, it is possible to use any form
of weighted least squares regression such as linear functions, regression stumps,
etc., since the domain of the functions are in ℝd.

6.3 Object Detection

Due to the articulated structure and variable appearance of the human body,
illumination and pose variations, human detection in still images presents a
challenge. For this task, K = 30 LogitBoost classifiers on S+

8 are combined with
rejection cascade, as shown in Figure 13. Weak classifiers {vl}l=1...L are linear
regression functions learned on the tangent space of S+

8[
m n ∣Im∣ ∣In∣

√
I2
m + I2

n ∣Imm∣ ∣Inn∣ arctan
∣Im∣
∣In∣

]T
(38)

The covariance descriptor of a region is an 8 × 8 matrix and due to symmetry
only upper triangular part is stored, which has only 36 different values. The
tangent space is d = 36 dimensional vector space as well.

Fig. 13. Cascade of LogitBoost classifiers. The kth classifier selects normalized region
covariance descriptors of the corresponding subregions.

Let Np and Nn be the number of positive and negative images in the training
set. Since any detection window sampled from a negative image is a negative
sample, it is possible to generate much more negative examples than the number
of negative images. Suppose that the kth cascade level is being trained. All the
possible detection windows on the negative training images are classified with
the cascade of the previous (k−1) LogitBoost classifiers. The samples which are
misclassified form the possible negative set. Since the cardinality of the possible
negative set is very large, examples from this set are sampled as the negative
examples at cascade level k. At every cascade level, all the positive training
images are considered as the positive training set.

A very large number of covariance descriptors can be computed from a single
detection window and it is computationally intractable to test all of them. At
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Fig. 14. Detection examples using cascade of LogitBoost classifiers on manifold. White
dots show all the detection results. Black dots are the modes generated and the ellipses
are average detection window sizes. There are extremely few false detections and misses.

each boosting iteration of kth LogitBoost level, subwindows are sampled, and
normalized region covariance descriptors are constructed. The weak classifiers
representing each subwindow are learned, and the best classifier which minimizes
negative binomial log-likelihood (36) is added to the cascade level k.

Each level of cascade detector is optimized to correctly detect at least 99.8%
of the positive examples, while rejecting at least 35% of the negative examples.
In addition, a margin constraint between the positive samples and the decision
boundary is enforced. Let pk(X) be the probability of a sample being positive
at cascade level k, evaluated through (35). Let Xp be the positive example that
has the (0.998Np)th largest probability among all the positive examples. Let Xn

be the negative example that has the (0.35Nn)th smallest probability among
all the negative examples. Weak classifiers are added to cascade level k until
pk(Xp) − pk(Xn) > � , where � = 0.2. When the constraint is satisfied, a new
sample is classified as positive by cascade level k if pk(X) > pk(Xp)−� > pk(Xn)
or equivalently Zk(X) > Zk(Xn).

Since the sizes of the pedestrians in novel scenes are not known a priori,
the images are searched at multiple scales. Utilizing the classifier trained on the
INRIA dataset, sample detection examples for crowded scenes with pedestrians
having variable illumination, appearance, pose and partial occlusion are shown
in Figure 14.
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7 Conclusions

Several parameter spaces that commonly occur in computer vision problems have
Riemannian manifold structure including invertible affine transformations, non-
zero quaternions with multiplication, general linear group (invertible square real
matrices), real matrices with unit determinant, orientation-preserving isometries,
real orthogonal matrices, and symplectic matrices.

Manifold based methods provide major improvements over the existing Eu-
clidean techniques as demonstrated in this paper.
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