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Abstract—Relay selection for cooperative communications
promises significant performance improvements, and is, there-
fore, attracting considerable attention. While several criteria
have been proposed for selecting one or more relays, distributed
mechanisms that perform the selection have received relatively
less attention. In this paper, we develop a novel, yet simple,
asymptotic analysis of a splitting-based multiple access selection
algorithm to find the single best relay. The analysis leads to
simpler and alternate expressions for the average number of slots
required to find the best user. By introducing a new ‘contention
load’ parameter, the analysis shows that the parameter settings
used in the existing literature can be improved upon. New and
simple bounds are also derived. Furthermore, we propose a new
algorithm that addresses the general problem of selecting the
best Q ≥ 1 relays, and analyze and optimize it. Even for a
large number of relays, the scalable algorithm selects the best
two relays within 4.406 slots and the best three within 6.491
slots, on average. We also propose a new and simple scheme for
the practically relevant case of discrete metrics. Altogether, our
results develop a unifying perspective about the general problem
of distributed selection in cooperative systems and several other
multi-node systems.

Index Terms—Relays, cooperative communications, selection,
multiple access, splitting.

I. INTRODUCTION

SELECTION mechanisms arise in many wireless com-
munication schemes that use most suitable candidates

from among a set of many candidates. A pertinent example
is a cooperative communication system that exploits spatial
diversity by selecting the best relay(s) to forward a message
from a source to a destination. Selection makes cooperation
practical because it simplifies the tight synchronization that is
required among many geographically distributed cooperating
relays [1]–[11]. Another example is a cellular system that
schedules in a proportional fair manner to the best mobile
station based on the average data rate and the current state
of the channel between the base station and the mobiles [12].
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QoS requirements can also be incorporated in the selection
metric, as is done, for example, in a wireless local area net-
work (WLAN). In sensor networks, node selection is known
to improve network lifetime.

Several relay selection criteria have been proposed and
analyzed in the literature. For example, [1] showed that for a
decode-and-forward cooperation scheme, best relay selection
achieves full diversity. In [3], criteria for selecting multiple
relays were proposed to minimize data transmission time.
In [10] relay subset selection was considered for rate maxi-
mization. In [6], best two relay selection was used to improve
the diversity-multiplexing tradeoff of an amplify-and-forward
protocol. In [7], multiple relay selection was optimized for
cooperative beamforming. Multiple relay selection for wireless
network coding was considered in [13].

The design of the mechanism that physically selects – as
per the selection or suitability criteria – the best relay or, in
general, the Q best relays is, therefore, an important problem.
Depending on the transmission scheme, the suitability metric
can be a function of both the source-relay and relay-destination
channel gains or just the relay-destination or source-relay
channel gains. It is desirable that the mechanism be distributed
since, typically, the knowledge of the metric is initially
available only locally at the relay. For example, a centralized
polling mechanism for selection is undesirable as the time to
select increases linearly with the number of available relays.
To this end, a decentralized back-off timer-based scheme for
single best relay selection were proposed in [1]. In it, each
node transmits a short message when its timer expires. Making
the timer value inversely proportional to the metric ensures
that the first node that the sink hears from is the best node. A
distributed single relay selection algorithm was also proposed
in [14] to minimize the bit error rate. In [15], the source uses
handshake messages from relays to track the rate that each
candidate relay can support.

An alternate approach considers a time-slotted multiple
access contention based algorithm in which each active node
locally decides whether or not to transmit in a certain time
slot. Recently, variations based on splitting algorithms, which
were extensively researched two decades ago for multiple
access control [16, Chp. 4], have been proposed for single
relay selection [17], [18]. In each step of the splitting-based
selection algorithm proposed in [17], only those nodes whose
metrics lie between two thresholds transmit. The nodes update
the thresholds (independently) in each slot based on the
outcome of the previous slot fed back by the sink.1 It was

1We use the generic term ‘sink’ to refer to the source or access point or
base station, as the case may be, that needs to select the best node/relay.
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shown in [17] for continuous metrics that the best node can
be found, on average, within at most 2.507 slots even for an
infinite number of nodes. This result was obtained by deriving
an upper bound on the average number of slots when the
number of relays tends to infinity. However, the analysis was
quite involved and the upper bound was in the form of an
infinite series.

While distributed selection mechanisms have, thus, been
proposed for single relay selection, several questions remain
open. For example, developing a comprehensive analysis of
the splitting mechanism is an important open problem. A
natural question that such an analysis will answer is how
to optimally choose the thresholds to improve the speed of
selection. In [17], the thresholds are initially set greedily so to
maximize the probability of success per slot. As we show, this
is not optimal. Furthermore, efficient mechanisms are yet to be
developed for multiple relay selection. The only option known
currently is to run the single relay selection algorithm multiple
times, which, as we show in this paper, is inefficient. Finally,
the mechanisms above assume that the selection metric is
continuous, and exploit the fact that, with probability 1, no two
relays have the same metric. The mechanism catastrophically
breaks down when the metrics are discrete, which can often
occur in practice. This occurs, for example, when the esti-
mation inaccuracy renders higher resolution representations
unnecessary, or when quantized metrics for feedback or QoS
are considered [11], [19].

This paper thoroughly examines splitting-based selection
algorithms for both continuous and discrete metrics, and
makes the following significant contributions:

• Analysis of single relay selection: The paper develops a
novel and considerably simpler exact asymptotic analysis
for a general version of the splitting algorithm. It achieves
this by developing a different Poisson process interpreta-
tion of the metric distribution, which has not been used
before to the best of our knowledge. Furthermore, it also
derives a new convex and simple upper bound for the
average number of slots required to select the best relay.

• Optimization of single relay selection: The paper an-
alytically determines the optimal performance of the
splitting algorithm. It also rigorously shows that the
greedy parameter choice of [17] is suboptimal, but is still
very good.

• An alternate Markovian analysis: The Poisson process
interpretation also leads to an alternate and novel Marko-
vian analysis, which among other things yields a new
alternate asymptotic expression for the average number
of slots. As we shall see, while the two new expressions
derived in this paper are equivalent, they exhibit differ-
ent behaviors when truncated for numerical computation
purposes.

• New mechanism for multiple relay selection, including
its analysis and optimization: The paper proposes a novel
scalable, fast, and decentralized algorithm for the general
problem of selecting not just the single best but the best
Q ≥ 1 relays. To the best of our knowledge, this is the
fastest family of Q relay selection algorithms proposed to
date. We develop an asymptotic analysis of the general
Q relay selection algorithm, and determine its optimal
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Fig. 1. A relay selection system consisting of a sink and n nodes, with a
node i possessing a real-valued suitability metric ui.

parameters. We show that as Q increases, the greedy
parameter choice becomes more suboptimal. In effect, as
Q increases, the optimal splitting algorithm prefers that
more nodes collide since it is faster to resolve a collision
than to avoid one.

• Unifying perspective on splitting-based selection algo-
rithms: The paper shows that the optimized best relay
selection algorithm, the proposed multiple relay selec-
tion mechanism, and Gallager’s First Come First Serve
(FCFS) multiple access control algorithm [16] are inti-
mately related.

• A new scalable algorithm for discrete metrics: Finally,
the paper proposes a novel, scalable, and an intuitive
distributed scheme called Proportional Expansion, which
enables the single and multiple relay selection algorithms
to be applied to the practical case of discrete metrics.

The rest of the paper is organized as follows. The analysis
and results for single best node selection is developed in
Sec. II. The new algorithm for Q ≥ 1 node selection is
proposed, analyzed, and simulated in Sec. III. We conclude
in Sec. IV. Several mathematical proofs are relegated to the
Appendix.

II. SINGLE RELAY SELECTION

A. System Setup

Consider a time-slotted system with n active nodes and a
sink, as shown in Fig. 1. Each node i has a suitability metric
ui, which is known only to that specific node. In this section,
the goal is to select the node with the highest metric. The
metrics are continuous and i.i.d. with complementary CDF
(CCDF) denoted by Fc(u) = Pr(ui > u). Therefore, the
Fc(.) is monotonically decreasing and invertible. (The discrete
metric case, where this is not so, is tackled in Sec. III-F.)

B. Splitting Algorithm: Brief Review and Notation

We now formally define the splitting algorithm for sin-
gle relay selection. To keep the treatment concise, we first
define the state variables maintained by the algorithm and
their initialization. Thereafter, we describe how the algorithm
controls the transmissions of the nodes, how the sink generates
feedback based on these transmissions, and how the state
variables get autonomously updated based on the feedback.

Definitions: The generalized best relay selection algo-
rithm is specified using three variables HL(k), HH(k), and
Hmin(k); the notation being consistent with that in [17].
HL(k) and HH(k) are the lower and upper metric thresholds,
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respectively, such that a node i transmits at time slot k if and
only if its metric ui satisfies HL(k) < ui < HH(k). Hmin(k)
tracks the largest value of the metric known up to slot k above
which the best metric surely lies.

Initialization: In the first slot (k = 1), the parameters are
initialized as follows: HL(1) = F−1

c (pe/n), HH(1) = ∞,
and Hmin(1) = 0. Here, pe is a system parameter, and shall
henceforth be referred to as the Contention load parameter.

Transmission rule: At the beginning of each slot, each node
locally decides to transmit. As mentioned, it transmits if and
only if its metric lies between HL(k) and HH(k).

Feedback generation: At the end of each slot, the sink
broadcasts to all nodes a two-bit feedback: (i) 0 if the slot
was idle (when no node transmitted), (ii) 1 if the outcome
was a success (when exactly one node transmitted), or (iii) e
if the outcome was a collision (when at least two nodes
transmitted).2

Response to feedback: We first define the split func-
tion [17] to facilitate the specification of the algorithm3: Let
split (a, b) = F−1

c

(
Fc(a)+Fc(b)

2

)
. Then, depending on the

feedback, the following possibilities occur:

1) If the feedback (of the kth slot) is an idle (0) and no col-
lisions has occurred so far, then set HH(k+1) = HL(k),
HL(k + 1) = F−1

c (k+1
n pe), and Hmin(k + 1) = 0.

2) If the feedback is a collision (e), then set
HL(k + 1) = split (HL(k), HH(k)), HH(k + 1) =
HH(k), and Hmin(k + 1) = HL(k)

3) If the feedback is an idle (0) and a collision has occurred
in the past, then set HH(k +1) = HL(k), HL(k +1) =
split (Hmin(k), HL(k)), and Hmin(k + 1) = Hmin(k).

Termination: The algorithm terminates when the outcome is
a success (1).

We shall call the durations before and after the first non-
idle slot as the idle and collision phases, respectively. Thus,
the contention load parameter, pe, is the average number of
users that transmit in a slot in the idle phase. The Qin-Berry
algorithm [17] uses pe = 1, which is the value that maximizes
the probability of a success outcome in an idle phase slot.

C. Main Analytical Results

The floor and ceil operations are denoted by �.� and �.�,
respectively. E [Z] will denote the expected value of a random
variable Z .

We now develop a new analysis of the average time taken,
mn(pe), by the splitting algorithm to select the single best
relay. The following lemma gives an exact expression for
mn(pe).

Lemma 1: Let Xk be the number of slots required to
resolve a collision among k nodes. Let q =

⌈
n
pe

⌉
− 1 denote

the idle phase duration in slots. The average number of slots,

2The sink can distinguish between these outcomes using, for example, the
strength of the total received power [18].

3The split function makes sure that, on average, half of the nodes involved
in the last collision transmit in the next slot. Splitting can be made faster
along the lines of [20]. However, doing so requires each node to numerically
calculate thresholds in each slot that are solutions of degree n− 1 equations.
Also, the improvement due to this scheme turns out to be less than 0.5%.

mn(pe), required to find the best node is given by,

mn(pe) =
q∑

i=1

n∑
k=1

(
n

k

)(pe

n

)k
(

1 − ipe

n

)n−k

(E [Xk] + i)

+
(
1 − qpe

n

)n

(E [Xn] + q + 1), (1)

where E [Xk] follows the recursion given by

E [Xk] =
0.5k

(∑k−1
l=2

(
k
l

)
E [Xl]

)
+ 1

1 − 0.5k−1
, for all k ≥ 2, (2)

and E [X1] = 0.
Proof: The proof is given in Appendix A.

The above expression is complex and does not directly
reveal the scalable nature of the algorithm. The theorem
below provides two equivalent and new expressions for the
asymptotic case (n → ∞).

Theorem 1: The average number of slots required to find
the best node as n → ∞ is given by the following two
different, yet equivalent, expressions.

1) Recursive expression:

m∞(pe) =
1

epe − 1

∞∑
k=1

E [Xk] pk
e

k!
+

1
1 − e−pe

. (3)

2) Non-recursive expression:

m∞(pe) =
1

1 − e−pe
+

∞∑
i=1

p(i), (4)

where p(i) = (1 − P0)
∏i−1

j=1(1 − Pj), P0 = pee−pe

1−e−pe ,

and Pi = 2−ipee−2−ipe (1−e−2−ipe )

1−(1+2−(i−1)pe)e−2−(i−1)pe
, ∀ i ≥ 1.

Proof: We show the proof for the recursive expression
in (3) below as it leads to a powerful new Poisson point
process interpretation that will be useful throughout this paper.
For example, it will lead to the derivation of the non-recursive
expression in (4), whose proof is relegated to Appendix B. The
physical meaning of p(i) and Pj will become clear after the
proof.

Let node i have metric ui with CCDF Fc(u). Let
yi = nFc(ui). Then, yi are i.i.d. and are uniformly dis-
tributed in [0, n]. Note that selecting the node with the
highest ui is equivalent to selecting the node with the
lowest yi because the CCDF is a monotonically decreas-
ing function. Sorting {yi}n

i=1 in ascending order, we get
y[1] ≤ y[2] ≤ y[3] · · · ≤ y[n], where [i] is the index of the relay
with the ith largest metric.

Given yi, we can define a point process [21] M(t) as
M(t) = max

{
k ≥ 1 : y[k] ≤ t

}
. Thus, M(t) is the number of

points that have occurred up to time t. Since {yi}n
i=1 are i.i.d.

and uniformly distributed, M(t) is binomially distributed. As
n → ∞, it can be shown that M(t) forms a Poisson process
with rate 1 [21]. Now, the probability that the first non-idle
slot is the ith slot and k ≥ 1 nodes transmit is equal to the
probability that y[1], . . . , y[k] lie between (i − 1)pe and ipe,
and y[j] > ipe, for k + 1 ≤ j ≤ n. It also implies that no
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points lie between 0 and (i − 1)pe. Therefore,

Pr
(
x[1] > (i − 1)

pe

n
, (i − 1)

pe

n
< x[k] < i

pe

n
, x[k+1] > i

pe

n

)
= Pr (M((i − 1)pe) = 0, M(ipe) = k) ,

= Pr (M((i − 1)pe) = 0) Pr (M(ipe)=k |M((i−1)pe)=0).
(5)

As n → ∞, from the memoryless property of the Poisson
process [21], (5) simplifes to

Pr
(
x[1] > (i − 1)

pe

n
, (i − 1)

pe

n
< x[k] < i

pe

n
, x[k+1] > i

pe

n

)
= e−(i−1)pe e−pe

pk
e

k!
,

= e−ipe
pk

e

k!
. (6)

Recall that E [Xk] is the expected number of slots required to
resolve a collision among k nodes. Thus, if the first non-idle
slot is the ith slot and k ≥ 1 nodes are involved, then
E [Xk] + i slots are required to find the best node. Hence,

we get m∞(pe) =
∑∞

i=1

∑∞
k=1 e−ipe pk

e

k! (E [Xk] + i).
Simplifying further, we get m∞(pe) =∑∞

k=1
pk

e

k!

(
E [Xk]

∑∞
i=1 e−ipe +

∑∞
i=1 ie−ipe

)
. The desired

result follows with the help of combinatorial identities [22].

The main theorem readily gives rises to the following upper
bound expression that does not involve an infinite series.

Corollary 1: For any real k0 ≥ e/2,

m∞(pe) ≤ pe

k0 loge(2)
+ log2

(
2k0

e

)
+

1
1 − e−pe

. (7)

Proof: The proof is given in Appendix C.
Alternatively, since both the expressions derived in The-

orem 1 involve only positive terms in the series summation,
considering only the first few terms of the infinite series in (3)
and (4) results in tight lower bounds near the optimal con-
tention parameter value. These simplified expressions allow
system designers to quickly compute the necessary parameters
for system optimization. As we shall see, their behavior turns
out to be quite different and sheds light on the differences
between the two equivalent expressions derived in Theorem 1.

D. Results for Single Relay Selection

Figure 2 plots the average number of slots required to select
the best node as a function of pe for the two expressions
and verifies them using Monte Carlo simulations. It can be
seen that the asymptotic expression is accurate even when the
number of relays is small (e.g., 10). Furthermore, the optimal
value of m∞(pe) is 2.467, and occurs at pe = 1.088. As
expected, the optimal pe does not exceed 2. This is because
having more than two nodes on average to transmit and collide
in a slot is suboptimal. We also observe that m∞(pe) at pe = 1
is quite close to the optimal value.

Figure 3 plots the upper bound using k0 = 2. As expected,
it has a unique minimum and follows the behavior of the exact
expression well in the region of interest of pe. The same figure
also compares the lower bounds obtained using the first 4
terms of both the expressions of Theorem 1. For higher values
of pe, the lower bound obtained by truncating the recursive
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Fig. 2. Average number of slots required to select the best node (m∞(pe))
as a function of pe
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Fig. 3. Upper and lower bounds for the average number of slots required
to select the best node.

expression in (3) does not capture the behavior of the exact
expression well. This is because of the truncation, on account
of which the possibility that a large number of nodes collide
in the first non-idle slot is not accounted for. This probability
is not negligible for larger pe. However, the lower bound
obtained by truncating the non-recursive expression in (4) does
better at larger pe because the summation in the series is over
the number of slots required after the first non-idle slot and
not over the number of nodes that collided in the first non-idle
slot.

III. Q-RELAY SELECTION ALGORITHM

We now develop a new family of splitting algorithms for
selecting the relays with the Q best (highest) metrics, where Q
is a pre-specified system parameter. The value of Q depends on
the system under consideration. For example, in [13], M − 1
relays need to be selected to forward the transmissions by
M sources. The choice of Q, which is beyond the scope of
this paper, is ultimately governed by the end-to-end system
performance and practical constraints such as the synchroniza-
tion requirements across the selected relays. In some systems,
using more relays is beneficial [7], while in some, this might
not be the case [13]. Also, selecting multiple relays will also
require the system to expend additional resources. The reader
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is referred to [3], [7], [10], [23] for a detailed discussion on
this aspect.

A. Algorithm Motivation and Definition

When we revisit the asymptotic regime considered in the
previous section, we observe the following. The single node
selection algorithm, in effect, runs the FCFS algorithm [16]
on the Poisson point process M(t) defined in Theorem 1, with
t being interpreted as time. However, unlike FCFS, the single
relay selection algorithm stops as soon as it finds the first
(best) node. In this context, the parameter pe is analogous to
FCFS’s initial contention interval.

Based on the above insight, we now formally state the new
multi-relay selection algorithm given any Q. We then explain
the logic behind it and fully analyze it. For this, we adopt the
notation used for FCFS in [16], as it turns out to be more
convenient.

As in Sec. II, let yi = nFc(ui). The goal of the selection
algorithm will be to find the nodes with indices [1], . . . , [Q],
where, as before, y[1] ≤ · · · ≤ y[Q] ≤ · · · ≤ y[n]. The algo-
rithm specifies four state variables S(k), T (k), α(k), and σ(k)
for each slot k. S(k) is the number of nodes selected before
slot k. (T (k), T (k) + α(k)) represents the threshold interval
for slot k, i .e., all the nodes with yi ∈ (T (k), T (k) + α(k))
transmit in slot k. (Equivalently, HH(k) = F−1

c (T (k)/n) and
HL(k) = F−1

c ((T (k) + α(k)) /n). σ(k) ∈ {L, R} indicates
whether the kth slot interval is the left half or the right half
of the previously split interval. During initial slots, when no
collision is to be resolved, σ(k) = R by convention. Thus,
for k = 1, we have S(1) = 0, T (1) = 0, α(1) = pe, and
σ(1) = R.

In the (k + 1)th slot (k ≥ 1):
1) If feedback is a collision (e), then T (k + 1) = T (k),

α(k + 1) = α(k)/2, and σ(k + 1) = L.
2) If feedback is a success (1) and σ(k) = L, then

T (k + 1) = T (k) + α(k), α(k + 1) = α(k), and
σ(k + 1) = R.

3) If feedback is an idle (0) and σ(k) = L, then
T (k + 1) = T (k) + α(k), α(k + 1) = α(k)/2, and
σ(k + 1) = L.

4) If feedback is an idle (0) or a success (1), and σ(k) = R,
then T (k + 1) = T (k) + α(k), α(k + 1) = pe, and
σ(k + 1) = R.

5) Increment S(k + 1) by 1 if feedback is a success (1).
Terminate if S(k + 1) = Q.

B. Brief Explanation

The logic behind the algorithm is as follows: (i) When a
collision occurs, the threshold interval for the next slot is the
left (L) half of that of the present slot. (ii) When a collision
occurs, the threshold interval must have at least 2 nodes. Thus,
when a success follows a collision, the threshold interval for
the next slot is the right (higher) half (R) of the previous slot,
since it is known to have at least one node. (iii) When an
idle follows a collision, it implies that all the nodes involved
in collision lie in the right half of the previous split interval.
Thus, it is further split into two equal halves, and the threshold
interval for the next slot is the left half of this split interval.

(iv) When there is no collision to be resolved, the algorithm
moves to the adjacent threshold interval (which we call as
collision resolution interval) of size pe.4 As mentioned above,
the algorithm terminates after the Q successes.

Comments: The proposed algorithm is equivalent to the
algorithm of Sec. II when Q = 1. It is similar to FCFS,
except that it stops after the Qth success. There is one
subtle difference, however, between the algorithm and FCFS.
In FCFS, the contention resolution interval can be smaller
than pe if the difference between the current time and the
time of the last resolved interval is small. However, this
does not happen in our algorithm (Step 4) because all the
nodes know their individual metrics a priori. Notice that the
algorithm is greedy in that it does not account for possible
interactions between metrics of the relays; the relays do not
update the metrics based on the subset of relays that have
been selected thus far as S(k) increases from 1 to Q. While
greedy approaches have shown promise and are used given
their inherent distributability [8], their benefit depends on the
specifics of the system that uses such selection.5

C. Algorithm Analysis: Best Two Nodes Selection

First, we analyze the algorithm for selecting the best two
nodes using the Poisson point approach that came out of
Sec. II. This will lead to an analysis for the general Q > 2
node selection case. The Q = 2 analysis is shown separately
as it turns out to be richer.

Let m
(Q)
∞ (pe) represent the average number of slots required

to select the best Q nodes. Thus, the symbol m∞(pe), which
was used in the previous section on single relay selection,
is equivalent to m

(1)
∞ (pe). The following theorem gives two

different but equivalent and exact expressions for m
(2)
∞ (pe).

Theorem 2: Let E
[
X

(Q)
k

]
denote the average number of

slots required to select the best Q nodes after k nodes collide.
As n → ∞, m

(2)
∞ (pe) is given by

m(2)
∞ (pe) =

1
epe − 1

∞∑
k=1

E
[
X

(2)
k

]
pk

e

k!
+

1
1 − e−pe

, (8)

where

E
[
X

(2)
k

]
=
(
2k − 2

)−1

(( k−1∑
i=2

(
k

i

)
E
[
X

(2)
i

]

+ k
(
1 + E

[
X

(1)
k−1

]))
+ 2k

)
, ∀ k ≥ 3, (9)

E
[
X

(2)
2

]
= 3, and E

[
X

(2)
1

]
= m

(1)
∞ (pe).

4We can relax the restriction that each collision resolution interval is of
length pe. However, it can be shown that doing this leads to a negligible
improvement.

5A more general version of the algorithm would allow for the metrics
to be modified on the basis of the relays that have already been selected.
Developing such an algorithm is an interesting avenue for future work, and
would find several applications, such as in the time-sharing proportional fair
solution of [24].



6 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, MONTH 2010

Alternately, m
(2)
∞ (pe) also equals

m(2)
∞ (pe) =

1
1 − e−pe

+ P0m
(1)
∞ (pe)

+
∞∑

i=1

(p(i) + p′(i) + p′′(i + 1)) , (10)

where

p(i) = (1 − P0)
i−1∏
j=1

(1 − PL,j), ∀ i ≥ 1, (11)

p′(i) = p(i)PL,i, ∀ i ≥ 1, (12)

p′′(2) = p′(1)(1 − PR,1), and (13)

p′′(i) = p′(i − 1)(1 − PR,i−1) + p′′(i − 1)(1 − PL,i−1),
∀ i > 2. (14)

Here, P0 = pee−pe

1−e−pe , PL,i = 2−ipee−2−ipe (1−e−2−ipe )

1−(1+2−(i−1)pe)e−2−(i−1)pe
,

∀ i ≥ 1, and PR,i = 2−ipee−2−ipe

1−e−2−ipe
, ∀ i ≥ 1.

Proof: The proof is given in Appendix D. It also gives a
physical meaning for p(i), p′(i), p′′(i), PL,i, and PR,i.

D. Algorithm Analysis: Best Q > 2 Nodes Selection

We now derive a general expression for m
(Q)
∞ (pe) for any

Q > 2. This generalizes the first result of Theorem 2.
Theorem 3: As n → ∞, the average number of slots

required to select the best Q > 2 nodes is

m(Q)
∞ (pe) =

1
epe − 1

∞∑
k=1

E
[
X

(Q)
k

]
pk

e

k!
+

1
1 − e−pe

, (15)

where

E
[
X

(Q)
k

]
=
(
2k − 2

)−1

(( k−1∑
i=2

(
k

i

)
E
[
X

(Q)
i

]

+ k
(
1 + E

[
X

(Q−1)
k−1

]))
+ 2k

)
, ∀ k ≥ 3, (16)

E
[
X

(Q)
2

]
= m

(Q−2)
∞ (pe) + 3, ∀ Q > 2, E

[
X

(2)
2

]
= 3, and

E
[
X

(Q)
1

]
=m

(Q−1)
∞ (pe).

Proof: The proof is given in Appendix E.
An expression for m

(Q)
∞ (pe), for Q > 2, along the lines of (4)

of Theorem 1 and (10) of Theorem 2 can be also derived.
However, the Markov chains become more involved.

E. Results for Q Best Relay Selection

Figure 4 plots m
(2)
∞ (pe) as a function of pe using Theorem 2

and verifies it using Monte Carlo simulations. It can be seen
that the asymptotic expressions are accurate even for a small
number of nodes, e.g., n = 20. The lowest average number
of slots required to select two users is 4.406, which occurs at
pe = 1.221. This is 10.7% faster than running the single relay
selection algorithm twice, which requires 2 × 2.467 = 4.934
slots. The increase in the optimal pe from 1.088 slots for Q =
1 to 1.221 slots for Q = 2 occurs because now it is faster to
resolve a collision than to avoid it. Specifically, the time taken
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Fig. 4. Average number of slots required to select the best two
nodes (m

(2)
∞ (pe)) as a function pe.

TABLE I
OPTIMUM pe AND THE AVERAGE NUMBER OF SLOTS REQUIRED TO

SELECT THE BEST Q RELAYS

Q Optimum pe Optimum m
(Q)
∞ (pe) (slots) Improvement

1 1.088 2.467 -
2 1.221 4.406 10.7%
3 1.214 6.491 12.3%
4 1.231 8.537 13.5%
5 1.236 10.592 14.1%
6 1.241 12.645 14.6%

to select two nodes given that they are involved in a collision is
E
[
X

(2)
2

]
= 3.0 slots. Where as, the number of slots required

to select two nodes, given that the previous slot was idle, is
4.4 slots.

Table I provides the optimum values of pe and the average
number of slots as a function of the number of relays that
need to be selected. We can see that selecting the best three
nodes takes 6.491 slots, on average, and is achieved when
pe = 1.214.6 As Q → ∞, the optimum value of pe in-
creases to 1.266, which is also the optimum value maximizing
the throughput of FCFS [16].7 Also, it can be shown that

Q

m
(Q)
∞ (1.266)

, which represents the average number of users

selected per slot by the algorithm for pe = 1.266, increases
to 0.487 as Q → ∞.

F. Tackling Discrete Metrics Using Proportional Expansion

The thresholding algorithms in Sec. II-A and Sec. III-A
exploit the critical fact that with probability one no two
metrics are equal. However, as mentioned in the Introduction,
when the metric has a discrete probability distribution, the

6The marginal decrease in the optimal value of pe from 1.221 to 1.214
when Q increases from 2 to 3 can be explained as follows. The time taken
to select three nodes after a collision among two nodes is E

[
X

(3)
2

]
= 5.48

slots. However, the number of slots required to select three nodes after an
idle slot is 6.49 slots, which is just 17.8% more than 5.48. Therefore, the
optimum pe decreases since the selection times after an idle and a collision
are not as unequal as for Q = 2.

7The maximum arrival rate of 0.487 is supported when initial colli-
sion interval is capped at 2.6. This implies that there are, on average,
0.487 × 2.6 = 1.266 nodes transmitting. The contention parameter pe is set
using the normalized metric CCDF with an ‘arrival rate’ equal to 1.
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1

10.2 0.70

pdf of ν ui = 1

ρ3 = 0.3ρ2 = 0.5

νi

ui = 2 ui = 3

ρ1 = 0.2

Fig. 5. Illustration of Proportional Expansion for discrete metrics. An
example is shown for the case where the metric takes three values 1, 2,
and 3 with probabilities 0.2, 0.5, and 0.3, respectively.

algorithms break down because the probability that the metrics
of the best two nodes are exactly equal is non-zero. We
now provide a simple and novel distributed solution called
Proportional Expansion to tackle this practical problem.

Proportional Expansion: Let the metric ui be a realiza-
tion of an ω-valued discrete random variable that, without
loss of generality, takes values 1, 2, . . . , ω with probability
ρ1, ρ2, . . . , ρω, respectively. Each node independently maps its
metric ui into a new metric νi as follows: When ui = j, νi

is a realization of a uniformly distributed random variable
in
(∑j−1

�=0 ρ�,
∑j

�=1 ρ�

)
, where ρ0 � 0. In other words,

each node chooses a new random metric νi that is uniformly
distributed over a bin of length proportional to the probability
mass of its original discrete metric ui.

The overall distribution of the new metric across all users
is then uniformly distributed in (0, 1). Proportional Expansion
satisfies two key properties:

• It preserves the sorting order of the metrics: if ui > uj ,
then νi > νj . Hence, selecting the best Q nodes with the
highest νis is equivalent to selecting the best Q nodes
with the highest uis.

• The probability that νi = νj , for i �= j, is 0 since νi is a
continuous random variable.

Therefore, the selection algorithm of Sec. III for any Q ≥ 1
can now be run on νi. The following Proposition formally
quantifies the performance of Proportional Expansion. It im-
plies that proportional expansion is scalable, i.e., it takes
at most 2.47 slots for best relay selection, 4.406 slots for
selecting the best 2 relays, and so on, for any number of relays,
n.

Proposition 1: The average number of slots required to
select the best Q relays by Proportional Expansion for the
discrete metrics case is the same as that of the best Q relay
threshold based selection algorithm of Sec. III-A that operates
on continuous metrics.

Proof: The proof is omitted since it directly follows from
the above discussion.

IV. CONCLUSIONS

We developed a new asymptotic analysis for the splitting-
based single relay selection algorithm. The analysis is based
on a new Poisson point process interpretation of the dynamics
of the algorithm. This led to a characterization of the op-
timal parameters of the algorithm, and enabled a rigorous
benchmarking of the greedy parameter setting used in the

literature. We also proposed a new splitting based algorithm
for selecting the best Q relays, which is useful for several
cooperative protocols proposed in the literature that require
the use of multiple relays. The new algorithm is more efficient
than running the single relay selection algorithm multiple
times. Furthermore, we generalized the analysis to handle
multiple relay selection, and derived the exact expressions
for the average number of slots required by it. Interestingly,
the asymptotic expressions were accurate even for a small
number of relays. With the help of proportional expansion,
we showed, for the first time, that splitting algorithms can be
adapted to work for discrete metrics, as well, without any loss
in performance or scalability whatsoever.

The analysis shows that the greedy policy of maximizing
the success probability in the next slot is suboptimal. While
it works well for single relay selection, it becomes more
and more suboptimal as the number of relays to be selected
increases. The analysis also shows that the general single
relay selection algorithm, the proposed multiple relay selection
algorithm, and the FCFS multiple access control algorithm
are intimately related. For example, the optimal value of the
contention load parameter increases as the number of relays to
be selected increases and finally approaches the optimal setting
for FCFS. This is despite the fact that selection and multiple
access control algorithms serve very different purposes, and
are, therefore, evaluated differently. While multiple access
control algorithms attempt to serve all nodes and are evaluated,
for example, by the maximum traffic they can handle with a
finite delay, selection algorithms are evaluated by how fast
they can select the best nodes. We hope that this insight will
help develop better selection algorithms.

An important property about splitting algorithms is that
besides being distributed, they are both extremely fast and
scalable. This suggests that selection based protocols will
deliver improvements in the overall end-to-end system-level
performance even when the time overhead incurred by the
selection algorithm is accounted for. The system-level ben-
efits can be further improved if the multiple relay selection
algorithm proposed in this paper can be modified to allow the
metrics to be updated during the selection process.

APPENDIX

A. Proof of Lemma 1

It can be easily seen that the idle phase consists of at most
q =

⌈
n
pe

⌉
− 1 slots since at this stage the lower threshold

equals the smallest value 0. Given that the first non-idle slot
is the ith slot and k nodes are involved, the average number
of slots required to find the best node is E [Xk] + i. (The
recursive expression for E [Xk] is given in [17, (6)].) The
probability that the first non-idle slot is the ith slot and k

nodes transmit in it equals
(
n
k

) (
pe

n

)k (1 − ipe

n

)n−k
, for i ≤ q.

This constitutes the first term of the right side of (1). The
probability that the (q + 1)th slot is the first non-idle slot is
(1 − qpe

n )n since all nodes’ metrics must lie in the interval
((q + 1)pe, 1]. In the event that this happens, all n nodes will
transmit and collide, which will take E [Xn] slots to resolve.
Hence, the second term on the right side of (1) follows.
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B. Proof of Non-Recursive Expression of Theorem 1

Let the random variable I denote the number of slots
required until (and including) the first non-idle slot, and let
Y denote the number of slots required after that.

Consider the state transition diagram of Figure 6, in which
the state represents the number of slots that have elapsed since
the first non-idle slot. The node goes to state S whenever
success occurs, and the algorithm terminates. Otherwise, in
case of an idle or collision, the node increments its state by
1. By definition, state 0 is the first non-idle slot itself; thus,
an idle outcome cannot occur in it. The following lemma is
crucial in analyzing this transition diagram.

Lemma 2: The state transition diagram of Fig. 6 is a
Markov chain.

Proof: To prove this, it is sufficient to prove that the
transition probability from any state i to S is dependent only
on i. (Having done so, we shall denote this probability by Pi.)

We refer to the interval in M(t) allocated to state i
as its threshold interval. Here, P0 is the probability that
in a threshold interval of size pe only one node transmits
given that at least one node transmits in that slot. Let
N(x) = M(t + x) − M(t). Then, from the memoryless prop-
erty of the Poisson process, Pr (N(x) = i) is independent of
t and is equal to xie−x

i! . Thus,

P0 = Pr
(
N(pe) = 1

∣∣∣N(pe) > 1
)

=
pee

−pe

1 − e−pe
. (17)

P1 is the probability that the second non-idle slot is a success
given that the first non-idle slot (of threshold interval size
pe) is a collision. Due to splitting, the second slot will have
a threshold interval size that is half that of the first one.
Therefore, P1 is the probability that conditioned on N(pe)
having at least 2 nodes (i.e., a collision), N(pe/2) has exactly
one node. Thus,

P1 = Pr
(
N
(pe

2

)
= 1
∣∣∣N(pe) ≥ 2

)
, (18)

=
Pr
(
N
(

pe

2

)
= 1, N(pe) ≥ 2

)
Pr(N(pe) ≥ 2)

. (19)

Therefore,

P1 =
Pr
(
N
(

pe

2

)
= 1, N(pe) − N

(
pe

2

) ≥ 1
)

Pr(N(pe) > 1)
, (20)

=
pe

2 e−
pe
2 (1 − e−

pe
2 )

1 − (1 + pe)e−pe
. (21)

For P2, the following two trajectories can occur: State 2
was reached by a collision in state 1 or by an idle in state
1. In case of a collision, the threshold interval of the second
non-idle slot (of size pe/2) gets split into two halves. Even in
the case of an idle the interval would be split into two halves
and nodes from the left half would contend. Thus, P2 is equal
to the probability that conditioned on an interval of size pe/2
having at least two nodes, half the interval (of size pe/4), has

0 21

S

1−P0

P0 P2

1−P1

P1

Fig. 6. State transition diagram for the number of slots required to select
the best node after the first non-idle slot.

exactly one node. Thus,

P2 = Pr
(
N
(pe

4

)
= 1
∣∣∣N (pe

2

)
≥ 2
)

, (22)

=
Pr
(
N
(

pe

4

)
= 1, N

(
pe

2

) ≥ 2
)

Pr(N(pe) ≥ 2)
, (23)

=
pe

4 e−
pe
4 (1 − e−

pe
4 )

1 − (1 + pe

2

)
e−

pe
2

. (24)

In similar way, we can show that Pi, ∀ i ≥ 1, is equal to the
probability that conditioned on an interval of size 2−(i−1)pe

having at least two nodes, one half of the interval (of size
2−ipe) has exactly one node. Thus,

Pi = Pr
(
N
(pe

2i

)
= 1
∣∣∣N ( pe

2i−1

)
> 1
)

, (25)

=
2−ipee

−2−ipe(1 − e−2−ipe)
1 − (1 + 2−(i−1)pe)e−2−(i−1)pe

. (26)

Now, m∞(pe) = E [I] + E [Y ]. From the Poisson process
interpretation of Theorem 1, we can show that Pr (I = i) =
e−(i−1)pe(1− e−pe). Therefore, E [I] =

∑∞
i=1 ie−(i−1)pe(1−

e−pe) = 1
1−e−pe . The average number of slots required

after the first non-idle slot to select the best node, E [Y ], is
calculated as follows. First, E [Y ] =

∑∞
i=1 i Pr(Y = i), can

be shown to be identically equal to
∑∞

i=1 Pr(Y ≥ i). Second,
since each state in the Markov chain is visited at most once, it
follows that E [Y ] =

∑∞
i=1 p(i), where p(i) is the probability

that the ith state is visited. From the state transition diagram,
it is easy to see that p(i) = (1 − P0)

∏i−1
j=1(1 − Pj) . Hence,

the desired expression for m∞(pe) follows.

C. Proof of Corollary 1

From [17], we have E [Xk] ≤ log2(k) + 1, k ≥ 2, and
E [X1] = 0. Since log2(x) is concave with respect to x, a
tangent to it at any point (k0, log2(k0)) is an upper bound.
Therefore,

log2(k) ≤ k − k0

k0 loge(2)
+ log2(k0). (27)

Consequently, E [Xk] ≤ k
k0 loge(2) + log2(2k0/e), k ≥ 2.

Substituting this in (3), we get

m∞(pe) ≤ log2

(
2k0

e

) ∑∞
k=2

pk
e

k!

epe − 1

+
1

k0(epe − 1) loge(2)

∞∑
k=2

k
pk

e

k!
+

1
1 − e−pe

. (28)
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For k0 ≥ e/2, log2(2k0/e) ≥ 0. Also, since pe > 0, we

have
∑∞

k=2
pk

e

k! = epe − 1 − pe < epe − 1. Therefore, for
k0 ≥ e/2, the first term in the right hand side of (28) is
less than log2

(
2k0
e

)
. Substituting this inequality in (28) and

simplifying leads to the desired result in (7).

D. Proof of Theorem 2

Proof of (8): Given that the first non-idle slot is the ith

slot and k ≥ 1 nodes are involved, the average number of
slots required to select the best 2 nodes is E

[
X

(2)
k

]
+ i. The

probability that the first non-idle slot is the ith slot and k ≥ 1
nodes are involved is e−ipepk

e/k!. Hence, we get

m(2)
∞ (pe) =

∞∑
i=1

∞∑
k=1

e−ipe
pk

e

k!

(
E
[
X

(2)
k

]
+ i
)

, (29)

simplifying which yields (8).
If only one node transmits in the first non-idle slot, then a

success occurs and the node gets selected. Selecting one more
node will take m

(1)
∞ (pe) slots, on average. (This follows from

the memoryless property of the Poisson process [21].) Thus,
E
[
X

(1)
1

]
= m

(1)
∞ (pe). Also, if exactly two nodes transmit in

the first non-idle slot, only one node transmits in the slot just
after the first success. Thus, E

[
X

(2)
2

]
= E

[
X

(2)
1

]
+ 1 = 3

slots. When k > 3 nodes transmit in the first non-idle slot,
the following three cases are possible for the next slot:

1) Collision among i nodes: E
[
X

(2)
i

]
more slots would

then be required, on average.
2) Idle: E

[
X

(2)
k

]
more slots are required, on average.

3) Success: The next slot would then surely involve a col-
lision among k − 1 nodes. E

[
X

(1)
k−1

]
slots, on average,

would be required after that.

The probability that i nodes transmit in the next slot is
(
k
i

)
/2k.

Thus, from the law of total expectation,

E
[
X

(2)
k

]
=

1
2k

(((
k

0

)
+
(

k

k

))(
1 + E

[
X

(2)
k

])

+
(

k

1

)(
1 + E

[
X

(1)
k−1

]
+ 1
)
+

k−1∑
i=2

(
k

i

)(
1 + E

[
X

(2)
i

]))
.

(30)

Simplifying this further using combinatorial identities [22]
results in (9).

Proof of (10): This proof also involves constructing a state
transition diagram that will turn out to be a Markov chain.
Consider the state transition diagram of Figure 7. It is more
involved than that in Figure 6 because we need to also track
how many successes have occurred. State i corresponds to the
ith split before the first success (which takes i slots), state
i′ corresponds to the first success occurring at the ith slot,
and state i′′ corresponds to the first success having already
occurred by the ith slot. The state transition diagram can be
explained in detail as follows.

State 0 corresponds to the first non-idle slot. If the first non-
idle slot is a success, the node moves from state 0 to state S1.
Now, the algorithm starts a new collision resolution to find the

second colliding node. This takes m
(1)
∞ (pe) slots, on average,

an expression for which is derived in Theorem 1. If the first
non-idle slot is a collision, its threshold interval is split and
the node transitions from state 0 to state 1. Each subsequent
idle or collision results in one additional split and the node
moves from state i to i + 1. In case of a success, the node
moves from state i to state i′ as no additional split occurs. A
success in state i′ results in a transition to state S, at which
time the algorithm terminates. In case of a collision in state i′,
the node moves to state (i + 1)′′, as one more split occurs.
In case of a success in state i′′, the node moves to state S,
and the algorithm terminates. Otherwise, an idle or collision
results in a transition from state i′′ to (i + 1)′′. Note that in
each state (i, i′, or i′′) the size of threshold interval is 2−ipe.

The following Lemma shall prove to be crucial in analyzing
this transition diagram.

Lemma 3: The state transition diagram of Fig. 7 is a
Markov chain.

Proof: For this, it is sufficient to prove that transition
probabilities for each state depend only on the i and not on
the path taken to reach that state.

Let P0 be the probability of success in state 0 (the first non-
idle slot). It is equal to the probability that, in a slot of size pe,
only one node transmits given that at least one node transmits
in that slot. Let N(x) = M(t + x) − M(t). Then, from the
memoryless property of a Poisson process, Pr (N(x) = i) is
independent of t and is equal to xie−x

i! . Thus,

P0 = Pr
(
N(pe) = 1

∣∣∣N(pe) > 1
)

=
pee

−pe

1 − e−pe
. (31)

Let PL,i be the probability of success in state i. It is equal
to the probability that the left half of an interval of size 2−ipe

has exactly one node given that the full interval has more than
one node. Thus,

PL,i = Pr
(
N
(pe

2i

)
= 1
∣∣∣N ( pe

2i−1

)
> 1
)

, (32)

=
2−ipee

−2−ipe(1 − e−2−ipe)
1 − (1 + 2−(i−1)pe)e−2−(i−1)pe

. (33)

Let PR,i be the probability of success in state i′. State i′ can
be entered only after success in state i. Thus, the threshold
interval of state i, which is the right half of the interval split
during state i − 1, has at least one node. Thus PR,i is equal
to the probability that exactly one node transmits in the slot
with interval size 2−ipe, given that at least one node lies in
that interval, which equals

PR,i = Pr
(
N
(pe

2i

)
= 1
∣∣∣N (pe

2i

)
> 1
)

=
2−ipee

−2−ipe

1 − e−2−ipe
.

(34)
The probability of success in state i′′ is again equal to

the probability that given that an interval of size 2−ipe has
more than one node, its left half has exactly one node.
This probability equals PL,i. Thus, from (32) and (34), the
transition probabilities PL,i and PR,i only depend on i, which
proves that Fig. 7 is a Markov chain.

Let the random variable I denote the number of slots
required until (and including) the first non-idle slot and
Y denote the number of slots required after that. Then,



10 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, MONTH 2010

1
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. . . .

. . . .
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Before First Success

After First Success
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PL,2

PL,3

PR,1 PR,2 PR,3

PL,4

S

S1

Fig. 7. State transition diagram for the number of slots required to select
the best two nodes after the first non-idle slot.

m
(2)
∞ (pe) = E [I] + E [Y ]. Again, using Poisson point pro-

cess interpretation, Pr (I = i) = e−(i−1)pe(1 − e−pe), which
implies,

E [I] =
∞∑

i=1

ie−(i−1)pe(1 − e−pe) =
1

1 − e−pe
. (35)

E [Y ] can be calculated from Lemma 3 as follows. Let
p(i), p′(i), and p′′(i) be the probability that states i,
i′, and i′′ are visited, respectively. From the state tran-
sition diagram, since state i can be reached only from
state i − 1 and state i′ can be reached only from state i,
we get p(i) = (1 − P0)

∏i−1
j=1(1 − PL,j), ∀ i ≥ 1, and

p′(i) = p(i)PL,i, ∀ i ≥ 1. Also, for i > 2, state i′′ can be
reached from (i − 1)′ and (i − 1)′′. Therefore, we get

p′′(i) = p′(i−1)(1−PR,i−1)+p′′(i−1)(1−PL,i−1), ∀ i > 2,
(36)

and

p′′(2) = p′(1)(1 − PR,i−1). (37)

Now, for state S1 to be visited, m
(1)
∞ (pe) slots are required,

on average. This occurs with probability P0. Else, the average
number of slots is equal to

∑∞
j=1 Pr (Z ≥ j), where Z is the

total number of states visited excluding state 0. This is so
because we are counting the number of slots required after the
first non-idle slot. Since each state is visited at most once, the
average above is equal to

∑∞
i=1 (p(i) + p′(i) + p′′(i)). Thus,

the average number of slots required after the first non-idle
slot is E [Y ] = P0m

(1)
∞ (pe) +

∑∞
i=1 (p(i) + p′(i) + p′′(i)).

E. Proof of Theorem 3

The proof is similar to the proof of (8) in Theorem 2, except
for the following differences:

1) When two nodes transmit in the first non-idle slot,
E
[
X

(2)
2

]
= 3 slots, on average, are required to select

both of them. Selecting the remaining best Q − 2
nodes takes another m

(Q−2)
∞ (pe) slots, on average. Thus,

E
[
X

(Q)
2

]
= E

[
X

(2)
2

]
+ m

(Q−2)
∞ (pe).

2) When k > 3 nodes transmit in the first non-idle slot,

the average number of slots required thereafter is

E
[
X

(Q)
k

]
=

1
2k

[((
k

0

)
+
(

k

k

))(
1 + E

[
X

(Q)
k

])

+
(

k

1

)(
1 + E

[
X

(Q−1)
k−1

]
+ 1
)

+
k−1∑
i=2

(
k

i

)(
1 + E

[
X

(Q)
i

])]
. (38)
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