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Abstract—Joint carrier frequency offset (CFO) and channel
estimation for uplink MIMO-OFDMA systems over time-varying
channels is investigated. To cope with the prohibitive compu-
tational complexity involved in estimating multiple CFOs and
channels, pilot-assisted and semi-blind schemes comprised of
parallel Schmidt Extended Kalman filters (SEKFs) and Schmidt-
Kalman Approximate Particle Filters (SK-APF) are proposed.
In the SK-APF, a Rao-Blackwellized particle filter (RBPF) is
developed to first estimate the nonlinear state variable, i.e. the de-
sired user’s CFO, through the sampling-importance-resampling
(SIRS) technique. The individual user channel responses are then
updated via a bank of Kalman filters conditioned on the CFO
sample trajectories. Simulation results indicate that the proposed
schemes can achieve highly accurate CFO/channel estimates, and
that the particle filtering approach in the SK-APF outperforms
the more conventional Schmidt Extended Kalman Filter.

Index Terms—Orthogonal frequency division multiple access
(OFDMA), multiple-input multiple-output (MIMO), channel es-
timation, frequency synchronization, Schmidt extended Kalman
filter (SEKF), Rao-Blackwellized particle filter (RBPF).

I. INTRODUCTION

ORTHOGONAL Frequency Division Multiple Access
(OFDMA) is a leading technology for broadband wire-

less networks[1]. In addition to its robustness to multipath
fading and high spectral efficiency, OFDMA offers flexibility
in allocating subcarriers to different users based on quality
of service (QoS) requirements and channel conditions [2].
Advances in multiple-input multiple-output (MIMO) tech-
niques have led to considerable interest in MIMO-OFDMA
in which substreams of a broadband source are transmitted
over multiple antennas and subcarriers.

In this paper we consider an uplink MIMO-OFDMA system
over time-varying Rayleigh fading channels. In the uplink,
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the MIMO-OFDMA system requires that active users must be
synchronized in frequency in order to maintain orthogonality.1

Furthermore, accurate channel estimation is required when
coherent data detection is employed. Several schemes have
been proposed to perform joint synchronization and channel
estimation for uplink OFDMA systems, e.g. [4]–[8]. De-
spite their good performance, these existing schemes assume
that channels experience block-fading and CFOs are time-
invariant. However, such approaches may not be suitable for
outdoor channels with high user mobility where large Doppler
shifts are present. In [9], an extended Kalman filter (EKF)-
based scheme has been proposed to track the time variations
of CFOs and channels for single-user MIMO-OFDM systems
impaired by multiple CFOs. By exploiting a set of pilots, [9]
can provide accurate estimation of CFOs and channels. In
[10], parallel EKFs are proposed to perform CFO estimation
for uplink OFDMA systems as well as multiple access inter-
ference (MAI) cancellation. However, in addition to its high
complexity required in computing the Kalman gain, the EKF
approach in [9] suffers from potential divergence caused by
the highly nonlinear dependence of the received signal on the
CFOs [11]. To circumvent this problem, [11] has proposed a
particle filtering (PF)-based scheme [12] to track a single time-
varying CFO for OFDM systems, assuming perfect channel
information is available. Recently, joint frequency offset and
channel estimation has been proposed in [13] using Gauss-
Hermite integration. Unfortunately, this approach is only valid
for single-user systems.

In this work, both pilot-aided and semi-blind schemes are
proposed to jointly estimate time-varying frequency offsets
and channels for multiuser uplink MIMO-OFDMA systems.
The challenge in the uplink MIMO-OFDMA case can be
appreciated by comparing with the simpler SISO-OFDMA
case. For instance, consider user separation techniques. For
SISO-OFDMA systems it has been shown that iterative direct
compensation of one user’s CFO while treating other users’
signals as interference can provide effective user separation
[14]. However, for MIMO-OFDMA with each user distorted
by multiple CFOs, direct compensation of only one CFO may
not lead to signal improvement due to the existence of other
CFOs of the same user. To circumvent this problem, two

1Interested readers should refer to [3] for a comprehensive tutorial on
OFDMA synchronization.
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techniques are proposed here. First, to achieve user separation
at low computational complexity, pilot-aided methods employ
the Schmidt-Kalman filters to break down the multiuser CFO
and channel estimation problem into separable sub-problems
by exploiting a few training blocks [15]. Each estimation sub-
problem is then solved by a Rao-Blackwellized particle filter
where the desired user’s CFO is estimated through sampling-
importance-resampling (SIRS) and the channel response is
updated via a EKF conditioned on the CFO samples generated
by SIRS. By using the SIRS technique, the divergence problem
due to non-linearity introduced by the CFOs is reduced.
Finally, since training blocks are usually only available at
the beginning of each data frame, a semi-blind approach
exploiting the tentatively detected data symbols is developed to
improve estimation accuracy. Specifically a QR decomposition
(QRD)-based detector is incorporated into the receivers to
provide reliable tentative data decisions. Simulation results
confirm the effectiveness of the proposed joint estimators for
MIMO-OFDMA.

The rest of the paper is organized as follows. Section II
presents the signal model for the MIMO-OFDMA system,
followed by the suboptimal parallel Schmidt extended Kalman
filter (SEKF) in Section III. Based on the parallel SEKF, a
parallel Schmidt-Kalman approximate-Rao-Blackwellized par-
ticle filter (SK-APF) is proposed in Section IV. The QRD-M
detector semi-blind approach is given in Section V. Simulation
results are presented in Section VI and conclusions are given
in Section VII.

Notation: Vectors and matrices are denoted by boldface
letters. ∥⋅∥ represents the Euclidean norm of the enclosed
vector and ∣⋅∣ denotes the amplitude of the enclosed complex-
valued quantity. Finally, we use E {⋅}, (⋅)∗, (⋅)𝑇 and (⋅)𝐻 for
expectation, complex conjugation, transposition and Hermitian
transposition.

II. SIGNAL AND CHANNEL MODELS FOR UPLINK

MIMO-OFDMA SYSTEMS

We consider an uplink OFDMA system with 𝑁 subcarriers
and 𝐾 active users. The base station (BS) and each active user
are equipped with 𝑀𝑟 and 𝑀𝑡 antennas, respectively. Each
user is assigned 𝑁𝑘 exclusive subcarriers, where

∑𝐾
𝑘=1𝑁𝑘 ≤

𝑁 . We denote the index set of carriers assigned to the 𝑘-

th user as ℐ𝑘△={𝑖1, 𝑖2, . . . , 𝑖𝑁𝑘
} where 1 ≤ 𝑖𝑙 ≤ 𝑁 for

𝑙 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑘. The proposed algorithms are applicable to
any carrier assignment scheme (CAS). Note that even though
we are using orthogonal subcarriers, self-interference and MAI
are inevitable due to CFOs [16]. Denote by 𝒅𝑝𝑘(𝑛) ∈ ℂ𝑁

the data symbols transmitted by the 𝑘-th user from the 𝑝-
th transmit antenna over the 𝑛-th OFDMA block. For con-
venience, we assume that the data symbols are taken from
the same complex-valued finite alphabet and independently
identically distributed (i.i.d). The 𝑖-th entry of 𝒅𝑝𝑘(𝑛), 𝑑

𝑝
𝑘,𝑖(𝑛),

is non-zero if and only if 𝑖 ∈ ℐ𝑘. Next, 𝒅𝑝𝑘(𝑛) is converted to
the corresponding time-domain vector by an 𝑁 -point inverse
discrete Fourier transform (IDFT):

𝒅𝑝𝑘(𝑛) = 𝑾𝐻𝒅𝑝𝑘(𝑛), (1)

where 𝑾𝐻 is the IDFT matrix. To prevent inter-symbol
interference (ISI), a cyclic prefix (CP) of 𝑁𝑔 symbols is

appended in front of each IDFT output block. The resulting
vector of length 𝑁𝑔𝑑 = 𝑁 +𝑁𝑔 is digital-to-analog converted
by a pulse-shaping filter with a finite support on [0, 𝑇𝑑) where
𝑇𝑑 = 𝑁𝑔𝑑𝑇𝑠 with 1/(𝑁𝑇𝑠) being the subcarrier spacing.
Finally, the analog signal from the pulse-shaping filter is
transmitted from the 𝑝-th antenna over the channel.

The channel between the 𝑝-th transmit antenna of the 𝑘-
th user and the 𝑞-th receive antenna of the BS during the
𝑛-th block, {ℎ𝑝,𝑞𝑘,𝑙 (𝑛), 0 ≤ 𝑙 ≤ 𝐿𝑝,𝑞𝑘 − 1}, is modeled as a
tapped delay line with 𝐿𝑝,𝑞𝑘 being the channel order. Since
𝐿𝑝,𝑞𝑘 is generally unknown, in practice we replace 𝐿𝑝,𝑞𝑘 with
𝐿𝑓 for all users and antenna pairs. For the widely accepted
ITU channel model, an upper bound for 𝐿𝑓 can be specified.
We assume that the length of the CP is sufficient to comprise
the maximum path delay, i.e., 𝐿𝑓 ≤ 𝑁𝑔 . Furthermore, we
assume that {ℎ𝑝,𝑞𝑘,𝑙 (𝑛)} is constant over a OFDMA block 𝑛 of
length 𝑁𝑔𝑑𝑇𝑠 s but varies between blocks.

A. Signal Model in the Presence of CFOs

Due to the Doppler effect and oscillator mismatch between
transmitter and receiver pairs, the received signal is usually
distorted by carrier frequency offsets [17]. Since the antenna
separation on each user’s mobile terminal is generally much
smaller than that on the BS, it can be reasonably assumed
that the CFO between transmit antennas of the same user
and a specific receive antenna on the BS is identical. That is,

{𝛿𝑓 𝑞𝑘 = 𝛿𝑓𝑝,𝑞𝑘 , ∀𝑝}. Let 𝜀𝑞𝑘
△
=𝛿𝑓 𝑞𝑘𝑁𝑇𝑠 be the normalized carrier

frequency offset with respect to (w.r.t.) the carrier spacing
1/(𝑁𝑇𝑠) between transmit antennas of the 𝑘-th user and the
𝑞-th receive antenna of the BS. In the presence of CFOs,
the received vector signal after removing the guard interval
becomes [6], [14], [17], [18]

𝒓𝑞(𝑛) =

𝐾∑
𝑘=1

Δ(𝜀𝑞𝑘(𝑛))

𝑀𝑡∑
𝑝=1

𝑫𝑝𝑘(𝑛)𝒉
𝑝,𝑞
𝑘 (𝑛) + 𝒗𝑞(𝑛),

=

𝐾∑
𝑘=1

𝑫̃𝑞𝜀,𝑘(𝑛)𝒉
𝑞
𝑘(𝑛) + 𝒗𝑞(𝑛), (2)

where

𝒉𝑝,𝑞𝑘 (𝑛)
△
=
[
ℎ𝑝,𝑞𝑘,0(𝑛), ℎ

𝑝,𝑞
𝑘,1(𝑛), . . . , ℎ

𝑝,𝑞
𝑘,𝐿𝑓−1(𝑛)

]𝑇
,

𝑫𝑝𝑘(𝑛)
△
=

⎡
⎢⎢⎢⎣

𝑑𝑝𝑘,0(𝑛) 𝑑𝑝𝑘,𝑁−1(𝑛) . . . 𝑑𝑝𝑘,𝑁−𝐿𝑓+1(𝑛)

𝑑𝑝𝑘,1(𝑛) 𝑑𝑝𝑘,0(𝑛) . . . 𝑑𝑝𝑘,𝑁−𝐿𝑓+2(𝑛)
...

... . . . . . .
𝑑𝑝𝑘,𝑁−1(𝑛) 𝑑𝑝𝑘,𝑁−2(𝑛) . . . 𝑑𝑝𝑘,𝑁−𝐿𝑓

(𝑛)

⎤
⎥⎥⎥⎦ ,

Δ(𝜀𝑞𝑘(𝑛))
△
=𝑒𝑗𝜃

𝑞
𝑘(𝑛)diag(1, 𝑒𝑗

2𝜋𝜀
𝑞
𝑘
(𝑛)

𝑁 , .., 𝑒𝑗
2𝜋(𝑁−1)𝜀

𝑞
𝑘
(𝑛)

𝑁 ),

𝜃𝑞𝑘(𝑛)
△
=2𝜋

𝑛−1∑
𝑙=0

𝜀𝑞𝑘(𝑙),

𝒉𝑞𝑘(𝑛)
△
=
[
𝒉1,𝑞
𝑘 (𝑛)𝑇 ,𝒉2,𝑞

𝑘 (𝑛)𝑇 , ..,𝒉𝑀𝑡,𝑞
𝑘 (𝑛)𝑇

]𝑇
,

𝑫̃𝑞𝜀,𝑘(𝑛)
△
=
[
Δ(𝜀𝑞𝑘(𝑛))𝑫

1
𝑘(𝑛), ..,Δ(𝜀𝑞𝑘(𝑛))𝑫

𝑀𝑡

𝑘 (𝑛)
]
.

(3)

Recall that the CP length equals the channel length plus timing
offset. Under such an assumption, the timing errors do not
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explicitly appear in the received signal model [14]. Thus, we
have suppressed the timing errors in (2).

Several approaches have been proposed to model the
time-varying channels and frequency offsets in mobile en-
vironments. Since we assume a normalized Doppler spread
𝑓𝐷𝑇𝑑 ≪ 1,we adopt the following first-order autoregressive
(AR) parametric model widely used in [10], [13], [18]–[20]
to characterize the time-varying frequency offset and channel
responses.

𝜀𝑞𝑘(𝑛) = 𝛼𝑞𝑘,𝜀𝜀
𝑞
𝑘(𝑛− 1) + 𝑤𝑞𝑘,𝜀(𝑛),

𝒉𝑞𝑘(𝑛) = 𝛼𝑞𝑘,ℎ𝒉
𝑞
𝑘(𝑛− 1) +𝒘𝑞𝑘,ℎ(𝑛), (4)

where 𝑤𝑞𝑘,𝜀(𝑛) ∼ 𝒩 (𝑤𝑞𝑘,𝜀(𝑛); 0, 𝜂
𝑞
𝑘,𝜀) and 𝒘𝑞𝑘,ℎ(𝑛) ∼

𝒞𝒩 (𝒘𝑞𝑘,ℎ(𝑛);0, 𝜂
𝑞
𝑘,ℎ𝑰𝑀𝑡𝐿𝑓

). Furthermore, we assume that∣∣∣𝛼𝑞𝑘,𝜀
∣∣∣ < 1 and

∣∣∣𝛼𝑞𝑘,ℎ
∣∣∣ < 1. Note that we assume independent

fading across transmit antennas and multipaths. The time-
variation in CFO in (4) arises from (a) local oscillator insta-
bility due to temperature/voltage variations and (b) changes
in relative platform Doppler velocity. In the next section, we
propose a pilot-aided parallel Schmidt extended Kalman filter
approach to estimate 𝜀𝑞𝑘(𝑛) and 𝒉𝑞𝑘(𝑛) based on the received

signal 𝒓𝑞(𝑛), assuming exact knowledge of {𝑫𝑝𝑘(𝑛)},
{
𝛼𝑞𝑘,𝜀

}
,

and
{
𝛼𝑞𝑘,ℎ

}
in the BS.

III. PARALLEL SCHMIDT KALMAN FILTER FOR JOINT

CHANNEL AND CFO ESTIMATION

A. Kalman Filter Formulation
To facilitate the derivation of the Schmidt Kalman filter,

we need to convert the complex signal model developed in
the previous section into a real-valued form. We begin by
defining the following real-valued quantities.

ℍ(𝜀(𝑛))
△
=ℍ

𝑞
𝑘(𝜀

𝑞
𝑘(𝑛))

=

[
Re{𝑫̃𝑞

𝜀,𝑘(𝑛)} −Im{𝑫̃𝑞
𝜀,𝑘(𝑛)}

Im{𝑫̃𝑞
𝜀,𝑘(𝑛)} Re{𝑫̃𝑞

𝜀,𝑘(𝑛)}

]
,

𝒇(𝑛)
△
=𝒇𝑞

𝑘 (𝑛) = [Re{𝒉𝑞
𝑘(𝑛)}𝑇 , Im{𝒉𝑞

𝑘(𝑛)}𝑇 ]𝑇 ,
ℍ∖𝑘(𝜀∖𝑘(𝑛)) =[
ℍ

𝑞
1(𝜀1(𝑛)), ..,ℍ

𝑞
𝑘−1(𝜀𝑘−1(𝑛)),ℍ

𝑞
𝑘+1(𝜀𝑘+1(𝑛)), ..ℍ

𝑞
𝐾(𝜀𝐾(𝑛))

]
,

𝒇∖𝑘(𝑛) = [𝒇𝑞
1 (𝑛)

𝑇 , .., 𝒇𝑞
𝑘−1(𝑛)

𝑇 ,𝒇𝑞
𝑘+1(𝑛)

𝑇 , .., 𝒇𝑞
𝐾(𝑛)𝑇 ]𝑇 ,

𝒛(𝑛)
△
=𝒛𝑞

𝑘(𝑛) ∼ 𝒩 (𝒛𝑞
𝑘(𝑛);0, 𝑁0/𝑇𝑠𝑰2𝑁 ),

(5)

where the subscript ∖𝑘 stands for the exclusion of the parame-
ters associated with the 𝑘-th user. For example, 𝜀∖𝑘(𝑛) denotes
all 𝜀𝑖(𝑛)s except 𝜀𝑘(𝑛).

Utilizing the real-valued quantities defined above, (2) can be
rewritten as the following real-valued system and observation
equations:

𝒚(𝑛) = ℍ(𝜀(𝑛))𝒇(𝑛) +ℍ∖𝑘(𝜀∖𝑘(𝑛))𝒇∖𝑘(𝑛) + 𝒛(𝑛),

𝒇(𝑛) = 𝑨𝑞𝑘,ℎ𝒇(𝑛− 1) +𝒘𝑟𝑘,ℎ(𝑛),

𝜀(𝑛) = 𝛼𝑞𝑘,𝜀𝜀(𝑛− 1) + 𝑤𝑞𝑘,𝜀(𝑛), (6)

where 𝑨𝑞𝑘,ℎ = [𝑰2 ⊗ 𝛼𝑞𝑘,ℎ𝑰𝑀𝑡𝐿𝑓
], and 𝒘𝑟𝑘,ℎ(𝑛) is similarly

the real/imaginary partitioned version of the process noise
in (4). Note that 𝒚(𝑛) in (6) corresponds to the received
vector only from the 𝑞-th antenna and 𝒇(𝑛) and ℍ(𝜀(𝑛))

are quantities related to the 𝑘-th user as received at antenna
𝑞. It should be emphasized that although the 𝑘-th user uses
orthogonal sets of subcarriers in ℐ𝑘, self-interference and MAI
occur due to CFOs [16]. Thus, vectors ℍ(𝜀(𝑛))𝒇(𝑛) and
ℍ∖𝑘(𝜀∖𝑘(𝑛))𝒇∖𝑘(𝑛) cannot remain orthogonal. The EKF can
be employed to jointly estimate 𝒇𝑞𝑘 (𝑛) and 𝜖𝑞𝑘(𝑛) by concate-
nating all those vectors for 𝑘 = 1, 2, . . .𝐾 . However, such
EKF approaches are susceptible to divergence problems due
to the nonlinear nature of CFO [9], [10]. Furthermore, direct
computation of the Kalman gain for (6) using the concatenated
state vector of all users is highly inefficient. In the following,
we propose to use the suboptimal parallel Schmidt extended
Kalman filters to develop a feasible estimator.

B. Parallel Schmidt Extended Kalman Filter (SEKF)

Following the notation in [15], we propose a parallel bank
of 𝐾 Schmidt extended Kalman filters (SEKFs) with each
SEKF related to one desired user. Without loss of generality,
we assume that the 𝑘-th user is the desired user for the 𝑘-th
SEKF. In the 𝑘-th SEKF, we divide the state vector into the
essential state vector (ESV) related to the 𝑞-th antenna of the
𝑘-th user,

𝒙(𝑛)
△
= [𝜀(𝑛),𝒇(𝑛)𝑇 ]𝑇 , (7)

and the nuisance state vector (NSV) 𝒙∖𝑘(𝑛) for the interfering
users. Note that 𝒙(𝑛) in (7) is understood to represent 𝒙𝑞𝑘(𝑛).

Substituting (7) and 𝒙∖𝑘(𝑛) into (6) and applying a first-
order approximation, we can obtain the following new pair of
linearized system and observation equations as

𝒚(𝑛) ≈ ℍ(𝜀(𝑛∣𝑛− 1))𝒇(𝑛∣𝑛− 1)

+ℍ∖𝑘(𝜀∖𝑘(𝑛∣𝑛− 1))𝒇∖𝑘(𝑛∣𝑛− 1)

+
[
𝑱(𝑛) 𝑱∖𝑘(𝑛)

] [ 𝒙(𝑛)− 𝒙̂(𝑛∣𝑛− 1)
𝒙∖𝑘(𝑛)− 𝒙̂∖𝑘(𝑛∣𝑛− 1)

]
+ 𝒛(𝑛),

𝒙(𝑛) = 𝑨𝒙(𝑛− 1) +𝒘(𝑛),

𝒙∖𝑘(𝑛) = 𝑨∖𝑘𝒙∖𝑘(𝑛− 1) +𝒘∖𝑘(𝑛),

(8)

where 𝑨 = blkdiag
(
𝛼𝑞𝑘,𝜀,𝑨

𝑞
𝑘,ℎ

)
and 𝒙∖𝑘(𝑛) denotes all

state vectors excluding 𝒙𝑘(𝑛) of the desired user. The noise
term in (8) is given as 𝒘(𝑛) ∼ 𝒩 (𝒘(𝑛);0,𝑸) with 𝑸 =

blkdiag
(
𝜂𝑞𝑘,𝜀, 𝑰2 ⊗ 𝜂𝑞𝑘,ℎ𝑰𝑀𝑡𝐿𝑓

/2
)
. Similarly we can compute

𝑨∖𝑘, 𝒘∖𝑘(𝑛) ∼ 𝒩 (𝒘∖𝑘(𝑛);0,𝑸∖𝑘) and 𝑸∖𝑘. Furthermore,
the Jacobian matrix 𝑱(𝑛) in (8) is the gradient w.r.t. the state
vector of the nonlinear measurement function and equals

𝑱(𝑛)
△
= [𝑱𝜀(𝑛) 𝑱ℎ(𝑛)] ∈ ℝ

2𝑁×(2𝑀𝑡𝐿𝑓+1), (9)

See (10) at the top of the next page.
The Jacobian 𝑱∖𝑘(𝑛) can be similarly obtained and reads

𝑱∖𝑘(𝑛) = [𝑱1(𝑛), ..,𝑱𝑘−1(𝑛),𝑱𝑘+1(𝑛), ..,𝑱𝐾(𝑛)]

∈ ℝ
2𝑁×(𝐾−1)(2𝑀𝑡𝐿𝑓+1).

(11)

For the conventional EKF, the covariance matrix 𝑷 (𝑛∣𝑛−1)



2700 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 9, SEPTEMBER 2010

𝑱𝜀(𝑛) =

[ −Im{ΛΔ(𝜀(𝑛∣𝑛− 1))𝑫𝑞𝜀,𝑘(𝑛)},−Re{ΛΔ(𝜀(𝑛∣𝑛− 1))𝑫𝑞𝜀,𝑘(𝑛)}
Re{ΛΔ(𝜀(𝑛∣𝑛− 1))𝑫𝑞𝜀,𝑘(𝑛)},−Im{ΛΔ(𝜀(𝑛∣𝑛− 1))𝑫𝑞𝜀,𝑘(𝑛)}

]
× 𝒇(𝑛∣𝑛− 1),

𝑱ℎ(𝑛) = ℍ(𝜀(𝑛∣𝑛− 1)),Λ
△
=
2𝜋

𝑁
diag (0, 1/𝑁, ..(𝑁 − 1)/𝑁) .

(10)

and the Kalman gain matrix 𝑲(𝑛) take the following forms.

𝑷 (𝑛∣𝑛− 1) =[
𝑷𝑘,𝑘(𝑛∣𝑛− 1) 𝑷𝑘,∖𝑘(𝑛∣𝑛− 1)
𝑷∖𝑘,𝑘(𝑛∣𝑛− 1) 𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1)

]
,

𝑲(𝑛) =

[
𝑲𝑘(𝑛)
𝑲∖𝑘(𝑛)

]
=

[
𝑷𝑘,𝑘(𝑛∣𝑛− 1)𝑱(𝑛)𝑇 + 𝑷𝑘,∖𝑘(𝑛∣𝑛− 1)𝑱∖𝑘(𝑛)𝑇 ,
𝑷∖𝑘,𝑘(𝑛∣𝑛− 1)𝑱(𝑛)𝑇 + 𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1)𝑱∖𝑘(𝑛)𝑇

]
𝒜,
(12)

where

(𝒜)−1 =

𝑱(𝑛)𝑷𝑘,𝑘(𝑛∣𝑛− 1)𝑱(𝑛)𝑇 + 𝑱(𝑛)𝑷𝑘,∖𝑘(𝑛∣𝑛− 1)𝑱∖𝑘(𝑛)𝑇+

𝑱∖𝑘(𝑛)𝑷∖𝑘,𝑘(𝑛∣𝑛− 1)𝑱(𝑛)𝑇+

𝑱∖𝑘(𝑛)𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1)𝑱∖𝑘(𝑛)𝑇 +𝑁0/𝑇𝑠𝑰.
(13)

In (12), 𝑲(𝑛) is the total EKF Kalman gain for joint tracking
of all uplink users.

In lieu of computing the composite 𝑲(𝑛) in (12), the SEKF
sets the NSV part of the Kalman gain 𝑲∖𝑘(𝑛) to zero, which
results in

𝑲̂(𝑛) = [𝑲𝑘,SKF(𝑛)
𝑇 ,0𝑇 ]𝑇 . (14)

Approximation (14) is exact when estimation errors between
the 𝑘-th user and its interfering users are uncorrelated and
the error covariance of the interfering users is zero, i.e.
𝑷∖𝑘,𝑘(𝑛∣𝑛− 1) = 0 and 𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1) = 0.

Now the estimate for the ESV becomes

𝑲𝑘,SKF(𝑛) =(
𝑷𝑘,𝑘(𝑛∣𝑛− 1)𝑱(𝑛)𝑇 +𝑷𝑘,∖𝑘(𝑛∣𝑛− 1)𝑱∖𝑘(𝑛)

𝑇
)
𝒜,

𝒙̂(𝑛∣𝑛) = 𝒙̂(𝑛∣𝑛− 1) +𝑲𝑘,SKF(𝑛) (𝒚(𝑛)−
ℍ(𝜀(𝑛∣𝑛− 1))𝒇 (𝑛∣𝑛− 1) −ℍ∖𝑘(𝜀∖𝑘(𝑛∣𝑛− 1))𝒇∖𝑘(𝑛∣𝑛− 1)

)
,

(15)

where the predicted estimate 𝒙̂(𝑛+1∣𝑛) and the corresponding
error covariance matrix 𝑷𝑘,𝑘(𝑛+1∣𝑛) for the desired user are
computed as follows.

𝒙̂(𝑛+ 1∣𝑛) = 𝑨𝒙̂(𝑛∣𝑛),
𝑷𝑘,𝑘(𝑛+ 1∣𝑛) = 𝑨𝑷𝑘,𝑘(𝑛∣𝑛)(𝑨)𝑇 +𝑸. (16)

To evaluate (16), we need to compute the joint NSV and
ESV error covariance matrix based on (15), 𝑷 (𝑛∣𝑛) which
following [15] is

𝑷 (𝑛∣𝑛) =

[
𝑷𝑘,𝑘(𝑛∣𝑛) 𝑷𝑘,∖𝑘(𝑛∣𝑛)
𝑷∖𝑘,𝑘(𝑛∣𝑛) 𝑷∖𝑘,∖𝑘(𝑛∣𝑛)

]
, (17)

with each sub-matrix given by

𝑷𝑘,𝑘(𝑛∣𝑛) =
ℬ𝑷𝑘,𝑘(𝑛∣𝑛− 1)(ℬ)𝑇 − ℬ𝑷𝑘,∖𝑘(𝑛∣𝑛)(𝒞)𝑇 − 𝒞𝑷∖𝑘,𝑘(𝑛∣𝑛)(ℬ)𝑇+
𝒞𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1)(𝒞)𝑇 +

𝑁0

𝑇𝑠
𝑲𝑘,SKF(𝑛)𝑲𝑘,SKF(𝑛)

𝑇 ,

𝑷𝑘,∖𝑘(𝑛∣𝑛) = 𝑷∖𝑘,𝑘(𝑛∣𝑛)𝑇
= ℬ𝑷𝑘,∖𝑘(𝑛∣𝑛− 1)− 𝒞𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1),

𝑷∖𝑘,∖𝑘(𝑛∣𝑛) = 𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1),
(18)

where ℬ△
=(𝑰 − 𝑲𝑘,SKF(𝑛)𝑱(𝑛)) and 𝒞△

=𝑲𝑘,SKF(𝑛)𝑱∖𝑘(𝑛).
Note that the error covariance for the interfering users
𝑷∖𝑘,∖𝑘(𝑛∣𝑛) is not updated by the 𝑘-th SEKF.

To summarize the SEKF, the 𝑘-th filter produces {𝒙̂𝑘(𝑛+
1∣𝑛),𝑷𝑘,𝑘(𝑛+1∣𝑛)} by exploiting the predictions {𝒙̂𝑘(𝑛∣𝑛−
1), 𝒙̂∖𝑘(𝑛∣𝑛−1),𝑷𝑘,𝑘(𝑛∣𝑛−1),𝑷∖𝑘,∖𝑘(𝑛∣𝑛−1)}. If the cross
error covariance is zero, i.e. 𝑷𝑘,∖𝑘(𝑛∣𝑛 − 1) = 0, then we
have the so-called inflated covariance system [21]. It is worth
noting that 𝑷𝑘,∖𝑘(𝑛∣𝑛) = 0 only when 𝑷𝑘,∖𝑘(𝑛∣𝑛 − 1) = 0
and 𝑷∖𝑘,∖𝑘(𝑛∣𝑛−1) = 0. In general, we have 𝑷𝑘,∖𝑘(𝑛∣𝑛) ∕= 0
due to the error covariance of the interfering users.

IV. PARALLEL APPROXIMATE-RAO-BLACKWELLIZED

PARTICLE FILTER

A Rao-Blackwellized particle filter using the first-order
approximation to the observation is proposed for each SEKF
with structure suggested in [12], [22]–[24]. The state vector
is factorized into two terms related to the channel coefficients
𝒇(𝑛) and the CFO state variable 𝜀(𝑛), respectively.

Let 𝒇(𝑛) be the channel vector and 𝜖𝑛𝑖 = {𝜖𝑖(𝑛), 𝜖𝑖(𝑛 −
1) . . . 𝜖𝑖(0)} be the 𝑖-th trajectory of frequency offset particles
for the 𝑘-th user and the 𝑞-th receive antenna with 𝑘 and
𝑞 again suppressed for clarity. We define the cumulative

observation sequences as 𝒚𝑛
△
={𝒚(𝑛),𝒚(𝑛 − 1), ⋅ ⋅ ⋅ ,𝒚(0)}.

The importance sampling estimate of 𝑝(𝒇(𝑛)∣𝒚𝑛) is given by
[24]

𝑝(𝒇(𝑛)∣𝒚𝑛) =
𝑁𝑝∑
𝑖=1

𝛽𝑖(𝑛)𝑝(𝒇(𝑛)∣𝒚𝑛, 𝜖𝑛𝑖 ). (19)

We assume 𝑁𝑝 particles in the Rao-Blackwellization. In [24],
the importance sampling weight for unbiased estimation is
given by

𝛽𝑖(𝑛) =
𝑝(𝜖𝑛𝑖 ∣𝒚𝑛)

𝜋(𝜖𝑖(𝑛)∣𝒚𝑛, 𝜖𝑛−1
𝑖 )𝜋(𝜖𝑛−1

𝑖 ∣𝒚𝑛−1)
, (20)

where 𝜋 (⋅) denotes the sampling density. Note that the
prior sampling density 𝜋(𝜖𝑛−1

𝑖 ∣𝒚𝑛−1) is a causal function
of measurements up to time 𝑛 − 1. The minimum variance
choice [25] for the sample density of current sample 𝜖𝑖(𝑛) is
𝜋(𝜖𝑖(𝑛)∣𝒚𝑛, 𝜖𝑛−1

𝑖 ) = 𝑝(𝜖𝑖(𝑛)∣𝒚𝑛, 𝜖𝑛−1
𝑖 ), i.e. the true density

function of the CFO given the past trajectory 𝜖𝑛−1
𝑖 and
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cumulative measurements 𝒚𝑛. The conditional distribution
under this Rao-Blackwellization of 𝒇(𝑛) is thus given by :

𝑝(𝒇(𝑛)∣𝒚𝑛, 𝜖𝑛𝑖 ) = 𝒩 (𝒇(𝑛);𝒇𝑖(𝑛∣𝑛),𝑷𝑘,𝑘,𝑖(𝑛∣𝑛)), (21)

where 𝒇𝑖(𝑛∣𝑛),𝑷𝑘,𝑘,𝑖(𝑛∣𝑛) are the Kalman filter estimate and
covariance using the particular CFO trajectory 𝜖𝑛𝑖 , respectively.
These quantities will be approximated using the Schmidt-
Kalman filter for the multi-user case.

To utilize Rao-Blackwellization, we rewrite the linearized
system in (8) by removing the terms related to 𝑱(𝑛), i.e. only
the first-order linearization w.r.t. NSV is employed.

𝒚(𝑛) ≈ ℍ(𝜀(𝑛))𝒇(𝑛)+

ℍ∖𝑘(𝜀∖𝑘(𝑛∣𝑛− 1))𝒇∖𝑘(𝑛∣𝑛− 1)+

𝑱∖𝑘(𝑛)
[
𝒙∖𝑘(𝑛)− 𝒙̂∖𝑘(𝑛∣𝑛− 1)

]
+ 𝒛′(𝑛).

(22)

Using the Kalman filter quantities yields

𝜋(𝜖𝑖(𝑛)∣𝒚𝑛, 𝜖𝑛−1
𝑖 ) ∝ 𝑝(𝒚(𝑛)∣𝒚𝑛−1, 𝜖𝑛𝑖 )𝑝(𝜖𝑖(𝑛)∣𝜖𝑖(𝑛− 1)) =

𝒩 (𝒚(𝑛);𝒚𝑖(𝑛∣𝑛− 1),Σ𝑖(𝑛∣𝑛− 1))𝒩 (𝜖𝑖(𝑛);𝛼
𝑞
𝑘,𝜖𝜖𝑖(𝑛− 1), 𝜂𝑞

𝑘,𝜖),
(23)

where

𝒚𝑖(𝑛∣𝑛− 1) =

ℍ(𝜖𝑖(𝑛))𝒇𝑖(𝑛∣𝑛− 1) +ℍ∖𝑘(𝜀∖𝑘(𝑛∣𝑛− 1))𝒇∖𝑘(𝑛∣𝑛− 1),

Σ𝑖(𝑛∣𝑛− 1) =

𝑁0/𝑇𝑠𝑰 +ℍ(𝜖𝑖(𝑛))𝑷𝑘,𝑘,𝑖(𝑛∣𝑛− 1)ℍ(𝜖𝑖(𝑛))
𝑇+

𝑱∖𝑘(𝑛)𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1)𝑱∖𝑘(𝑛)𝑇 .
(24)

The importance weight corresponding to the minimum-
variance sampling distribution is [25]

𝛽𝑖(𝑛) =
1

𝑐1
𝑝(𝒚(𝑛)∣𝜖𝑛−1

𝑖 ,𝒚𝑛−1)𝛽𝑖(𝑛− 1), (25)

where 𝑐1 is a constant. The density function in (25) can be
approximated using the samples 𝜖𝑗(𝑛) as

𝑝(𝒚(𝑛)∣𝜖𝑛−1
𝑖 ,𝒚𝑛−1) =∫

𝑝(𝒚(𝑛)∣𝜀(𝑛), 𝜖𝑛−1
𝑖 ,𝒚𝑛−1)𝑝(𝜀(𝑛)∣𝜖𝑛−1

𝑖 ,𝒚𝑛−1)𝑑𝜀(𝑛) ≈

1

𝑐2

𝑁𝑝∑
𝑗=1

𝒩
(
𝒚(𝑛);ℍ(𝜖𝑗(𝑛))𝒇𝑖(𝑛∣𝑛− 1)+

ℍ∖𝑘(𝜀∖𝑘(𝑛∣𝑛− 1) 𝒇∖𝑘(𝑛∣𝑛− 1),Σ𝑖(𝑛∣𝑛− 1)
)
×

𝒩
(
𝜖𝑗(𝑛);𝛼

𝑞
𝑘,𝜖𝜖𝑖(𝑛− 1), 𝜂𝑞𝑘,𝜖

)
,

(26)

where the constant 1/𝑐2 normalizes (26) to a valid probability
density function. The weight 𝛽𝑖(𝑛) is independent of the
current sample 𝜖𝑖(𝑛), but dependent on the past trajectory
𝜖𝑛−1
𝑖 .

A. Sampling With M-Statistics

To generate the frequency offset sample {𝜖𝑖(𝑛)}, we assume
in the following that we have 𝜖𝑛−1

𝑖 , {𝒇𝑖(𝑛 − 1∣𝑛 − 1)}, and
{𝑷𝑘,𝑘,𝑖(𝑛−1∣𝑛−1)}. Using the dynamic model, we generate

a tentative sample that will be updated later after the sampling
process :

𝜖𝑖(𝑛) = 𝛼
𝑞
𝑘,𝜖𝜖𝑖(𝑛− 1) + 𝑤𝑞𝑘,𝜖. (27)

Conditioned on 𝜖𝑖(𝑛), we compute 𝒇𝑖(𝑛∣𝑛 − 1) and
𝑷𝑘,𝑘,𝑖(𝑛∣𝑛− 1) via (16) with 𝒇𝑖(𝑛− 1∣𝑛− 1) and 𝑷𝑘,𝑘,𝑖(𝑛−
1∣𝑛− 1) computed from the trajectory 𝜖𝑛−1

𝑖 .
The CFO uncertainty region is approximated by a 2𝑀 + 1

point grid on the interval [−𝑀Δ𝜖,𝑀Δ𝜖) with 𝛿𝑚 = 𝑚Δ𝜖,
where𝑚 = −𝑀,−𝑀+1, ⋅ ⋅ ⋅ ,𝑀 . Next, we compute the sam-
pling distributions at the grid points using a new measurement
𝒚(𝑛) as follows :

𝜋𝑖(𝑚)
△
=𝒩 (𝒚(𝑛);𝒚(𝑖,𝑚)(𝑛∣𝑛− 1),Σ(𝑖,𝑚)(𝑛∣𝑛− 1))×

𝒩 (𝛿𝑚;𝛼
𝑞
𝑘,𝜖𝜖𝑖(𝑛− 1), 𝜂𝑞𝑘,𝜖),

(28)

where

𝒚(𝑖,𝑚)(𝑛∣𝑛− 1) = ℍ(𝛿𝑚)𝒇𝑖(𝑛∣𝑛− 1)

+ ℍ∖𝑘(𝜀∖𝑘(𝑛∣𝑛− 1))𝒇∖𝑘(𝑛∣𝑛− 1)

and

Σ(𝑖,𝑚)(𝑛∣𝑛− 1) = 𝑁0/𝑇𝑠𝑰

+ ℍ(𝛿𝑚)𝑷𝑘,𝑘,(𝑖,𝑚)(𝑛∣𝑛− 1)ℍ(𝛿𝑚)
𝑇

+ 𝑱∖𝑘(𝑛)𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1)𝑱∖𝑘(𝑛)𝑇 .

In this equation, 𝑷𝑘,𝑘,(𝑖,𝑚)(𝑛∣𝑛− 1) is the corresponding co-
variance for particle 𝑖 and grid point 𝛿𝑚. Upon computing all
𝜋𝑖(𝑚), we choose a random value 𝑚̃ satisfying the following
inequality:

𝑚̃∑
𝑙=−𝑀

𝜋𝑖(𝑙)∑𝑀
𝑙′=−𝑀 𝜋𝑖(𝑙′)

> 𝑢 >

𝑚̃−1∑
𝑙=−𝑀

𝜋𝑖(𝑙)∑𝑀
𝑙′=−𝑀 𝜋𝑖(𝑙′)

, (29)

where 𝑢 is a uniform r.v. on [0, 1]. With 𝑚̃ obtained above,
we select 𝜖𝑖(𝑛) = 𝛿𝑚̃ and update 𝜖𝑛𝑖 = {𝜖𝑖(𝑛), 𝜖𝑛−1

𝑖 }.
Finally, the resulting conditional distribution given in (21)

can be computed as

𝑝(𝒇(𝑛)∣𝒚𝑛, 𝜖𝑛𝑖 ) = 𝒩 (𝒇(𝑛);𝒇𝑖(𝑛∣𝑛),𝑷𝑘,𝑘,𝑖(𝑛∣𝑛)), (30)

where

𝒇𝑖(𝑛∣𝑛) = 𝒇𝑖(𝑛∣𝑛− 1) +𝑲𝑖(𝑛)(𝒚(𝑛) − 𝒚𝑖(𝑛∣𝑛− 1)),

𝑲𝑖(𝑛) =(
𝑷𝑘,𝑘,𝑖(𝑛∣𝑛− 1)𝑱𝑖(𝑛)

𝑇 + 𝑷(𝑘,𝑖),∖𝑘(𝑛∣𝑛− 1)𝑱∖𝑘(𝑛)𝑇
)𝒜𝑖(31)

The matrices 𝑷(𝑘,𝑖),∖𝑘(𝑛∣𝑛 − 1), 𝑱𝑖(𝑛), and 𝒜𝑖 correspond
to 𝑷𝑘,∖𝑘(𝑛∣𝑛 − 1), 𝑱(𝑛), and 𝒜 for the 𝑖-th particle. These
terms are defined in equations (18),(9), and (13). However, the
Jacobian 𝑱𝑖(𝑛) reduces to ℍ(𝜖𝑖(𝑛)) for the particle filter case.
These particle dependent terms are updated independently by
the 𝑘 users. Thus, the unconditional distribution is given by

𝑝(𝒇(𝑛)∣𝒚𝑛) =
𝑁𝑝∑
𝑖=1

𝛽𝑖(𝑛)𝒩 (𝒇(𝑛);𝒇𝑖(𝑛∣𝑛),𝑷𝑘,𝑘,𝑖(𝑛∣𝑛)).
(32)

Since the proposed scheme consists of suboptimal parallel
filters, it is referred to as the Schmidt-Kalman approximate-
Rao-Blackwellized particle filter (SK-APF) in the sequel. SK-
APF is summarized in Algorithm 1.
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Algorithm 1 Parallel Schmidt-Kalman Approximate-Rao-
Blackwellized Particle Filter

1. Given 𝜖𝑛−1
𝑖 , 𝒇𝑖(𝑛− 1∣𝑛− 1),𝑷𝑘,𝑘,𝑖(𝑛− 1∣𝑛− 1) for the 𝑘-th user

(a) Generate a sample 𝜖𝑖(𝑛) = 𝛼𝑞
𝑘,𝜀𝜖𝑖(𝑛− 1) + 𝑤𝑞

𝑘,𝜀.

(b) Compute interfering channel prediction 𝒇∖𝑘(𝑛∣𝑛− 1) and covariance
𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1), ∀𝑘.

𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1) = 𝑨∖𝑘𝑷∖𝑘,∖𝑘(𝑛− 1∣𝑛− 1)𝑨𝑇
∖𝑘 +𝑸∖𝑘

𝑷∖𝑘,∖𝑘(𝑛∣𝑛) = 𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1)
(33)

3. Receive next measurement 𝒚(𝑛).
4. Compute Jacobian matrix 𝑱∖𝑘(𝑛) for interfering users.
for 𝑖 = 1 to 𝑁𝑝 do

(c) Compute the conditional channel estimate 𝒇𝑖(𝑛∣𝑛−1) with covari-
ance 𝑷𝑘,𝑘,𝑖(𝑛∣𝑛− 1) conditioned on 𝜖𝑛−1

𝑖 .
for 𝑚 = 1 to 2𝑀 + 1 do

(d) Define a grid: 𝛿𝑚 = Δ𝜖(−𝑀 +𝑚− 1).
(e) Compute 𝜋𝑖(𝑚) ∝ 𝒩 (𝒚(𝑛);𝒚(𝑖,𝑚)(𝑛∣𝑛 − 1),Σ(𝑖,𝑚)(𝑛∣𝑛 −
1))𝒩 (𝛿𝑚;𝛼𝑞

𝑘,𝜖𝜖𝑖(𝑛− 1), 𝜂𝑞𝑘,𝜖) according to (28).
end for
(f) Find 𝑚̃ with a random variable 𝑢 = 𝑟𝑎𝑛𝑑 satisfying

𝑚̃∑

𝑙=−𝑀

𝜋𝑖(𝑙)∑𝑀
𝑙′=−𝑀 𝜋𝑖(𝑙′)

> 𝑢 >

𝑚̃−1∑

𝑙=−𝑀

𝜋𝑖(𝑙)∑𝑀
𝑙′=−𝑀 𝜋𝑖(𝑙′)

. (34)

(g) Update a trajectory 𝜖𝑛𝑖 = {𝛿𝑚̃, 𝜖𝑛−1
𝑖 }.

(h) Update 𝑷∖𝑘,𝑘(𝑛∣𝑛) using eq. (18).
(i) Compute channel estimate and its error covariance matrix

𝑷𝑘,𝑘,𝑖(𝑛∣𝑛) = ℬ𝑖𝑷𝑘,𝑘,𝑖(𝑛∣𝑛− 1)(ℬ𝑖)
𝑇 −ℬ𝑖𝑷𝑘,∖𝑘(𝑛∣𝑛)(𝒞𝑖)𝑇

−𝒞𝑖𝑷∖𝑘,𝑘(𝑛∣𝑛)(ℬ𝑖)
𝑇 + 𝒞𝑖𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1)(𝒞𝑖)𝑇

+
𝑁0

𝑇𝑠
𝑲𝑖(𝑛)𝑲𝑖(𝑛)

𝑇 ,

𝒇𝑖(𝑛∣𝑛) = 𝒇𝑖(𝑛∣𝑛− 1) +𝑲𝑖(𝑛)(𝒚(𝑛) − 𝒚𝑖(𝑛∣𝑛− 1)),

ℬ𝑖 = 𝑰 −𝑲𝑖(𝑛)ℍ(𝜖𝑖(𝑛)),

𝒞𝑖 = 𝑲𝑖(𝑛)𝑱∖𝑘(𝑛), (35)

where the Kalman gain is defined in (31).
(j) Compute importance weight 𝛽𝑖(𝑛) according to (25) and (26).

end for
5. Compute the unconditional channel and frequency offset estimates.

𝒇(𝑛∣𝑛) =
𝑁𝑝∑

𝑖=1

𝛽𝑖(𝑛)𝒇𝑖(𝑛∣𝑛) and 𝜀(𝑛) ≈
𝑁𝑝∑

𝑖=1

𝛽𝑖(𝑛)𝜖𝑖(𝑛). (36)

6. Compute the unconditional error covariance for user 𝑘

𝑷𝑘,𝑘(𝑛∣𝑛) =
𝑁𝑝∑

𝑖=1

𝛽𝑖(𝑛)[(𝒇𝑖(𝑛∣𝑛)𝒇𝑖(𝑛∣𝑛)𝑇

+𝑷𝑘,𝑘,𝑖(𝑛∣𝑛)]− 𝒇(𝑛∣𝑛)𝒇(𝑛∣𝑛)𝑇 . (37)

V. JOINT DATA DETECTION AND PARAMETER

ESTIMATION

To this point, we have assumed that an entire training
block is employed for joint channel and frequency offset
estimation. In practical OFDMA systems, such training blocks
are only available in the beginning of each frame, and only
𝑁𝑠𝑝 < 𝑁 pilot symbols are embedded into each data block
to track the time-variations of CFOs and channels. However,
for high-mobility applications, the pilots in each data block
may not provide satisfactory tracking performance. Recently,
an EM-based iterative joint data detection and channel/CFO
estimation approach has been proposed in [14], where tentative
data decisions are exploited to improve the channel/CFO
estimates in an iterative manner. We next similarly combine

joint data detection based on QRD-M [26], [27] with the SK-
APF channel/CFO estimator.

Without loss of generality, we focus on data detection
for the 𝑘-th user in the sequel. Furthermore, ℐ𝑘,𝑑 and ℐ𝑘,𝑝
denote the data and pilot carrier index sets for the 𝑘-th user,
respectively. The DFT of the received signal at antenna 𝑞 is

𝒓𝑞(𝑛) = 𝑾Δ(𝜀𝑞𝑘(𝑛))

𝑀𝑡∑
𝑝=1

𝑫𝑝𝑘(𝑛)𝒉
𝑝,𝑞
𝑘 (𝑛)+

𝑾

𝐾∑
𝑘′=1,𝑘′ ∕=𝑘

Δ(𝜀𝑞𝑘′(𝑛))

𝑀𝑡∑
𝑝=1

𝑫𝑝𝑘′(𝑛)𝒉
𝑝,𝑞
𝑘′ (𝑛) + 𝒗𝑞(𝑛).

(38)

Consider detection of the 𝑚-th data carrier assigned to the
𝑘-th user. In the presence of CFO, the corresponding received
signal distorted by ICI can be expressed as

𝑟𝑞𝑘,𝑚∣ℐ𝑘,𝑑
(𝑛) = 𝑟𝑞𝑘,𝑠,𝑚∣ℐ𝑘,𝑑

(𝑛) + 𝑟𝑞𝑘,𝑖𝑐𝑖,𝑚(𝑛)

+ 𝑣𝑞𝑘,𝑚∣ℐ𝑘,𝑑
(𝑛), (39)

where 𝑟𝑞𝑘,𝑠,𝑚∣ℐ𝑘,𝑑
(𝑛) and 𝑟𝑞𝑘,𝑖𝑐𝑖,𝑚(𝑛) are the desired signal and

the ICI signal from other subcarriers, respectively. These terms
can be explicitly written as

𝑟𝑞𝑘,𝑠,𝑚∣ℐ𝑘,𝑑
(𝑛) =

𝑒𝑗𝜃
𝑞
𝑘(𝑛)𝜇(𝜀𝑞𝑘(𝑛))

𝑀𝑡∑
𝑝=1

𝐻𝑝,𝑞𝑘,𝑚∣ℐ𝑘,𝑑
(𝑛)𝑑𝑝𝑘,𝑚∣ℐ𝑘,𝑑

(𝑛),

𝑟𝑞𝑘,𝑖𝑐𝑖,𝑚(𝑛) =

𝐾∑
𝑘′=1

𝑒−𝑗𝜃
𝑞

𝑘′(𝑛)
𝑁−1∑
𝑚′=0
𝑚′ ∕=𝑚

𝜇(𝜀𝑞𝑘′ (𝑛) +𝑚
′ −𝑚)×

𝑀𝑡∑
𝑝=1

𝐻𝑝,𝑞𝑘′,𝑚′(𝑛)𝑑
𝑝
𝑘′,𝑚′(𝑛),

(40)

where 𝜇(𝜃)
△
= 1
𝑁 𝑒
𝑗𝜋𝜃(𝑁−1)/𝑁 𝑠𝑖𝑛(𝜋𝜃)

𝑠𝑖𝑛(𝜋𝜃/𝑁) and

𝐻𝑝,𝑞𝑘,𝑚(𝑛)
△
=(𝑾 )(𝑚,1:𝐿𝑓 )𝒉

𝑝,𝑞
𝑘 (𝑛)

△
=(𝑾𝐿𝑓

)𝑚𝒉
𝑝,𝑞
𝑘 (𝑛). Note that

in (40), 𝑟𝑞𝑘,𝑖𝑐𝑖,𝑚(𝑛) includes CFO-induced self-interference
and MAI [16].

Since the channel and CFO are unknown to the receiver,
they are approximated by their predictions. Furthermore, some
subcarriers are employed to modulate pilot symbols for all
users. The estimate of the received signal using the chan-
nel/offset predictions to be employed for detection is

𝑟𝑞𝑘,𝑚∣ℐ𝑘,𝑑
(𝑛∣𝑛− 1) =

𝑒−𝑗𝜃
𝑞
𝑘(𝑛)

𝜇(𝜖𝑞𝑘(𝑛∣𝑛− 1))
𝑟𝑞𝑘,𝑠,𝑚∣𝐼𝑘,𝑑

(𝑛) ≈

𝑟𝑞𝑘,𝑠,𝑚∣ℐ𝑘,𝑑
(𝑛∣𝑛− 1) + 𝑛𝑞𝑘,𝑚∣ℐ𝑘

(𝑛∣𝑛− 1),

(41)

where the desired signal, interferers and noise are modeled as
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𝑟𝑞𝑘,𝑠,𝑚∣ℐ𝑘,𝑑
(𝑛∣𝑛− 1) =

𝑀𝑡∑
𝑝=1

𝐻̂𝑝,𝑞𝑘,𝑚∣ℐ𝑘,𝑑
(𝑛∣𝑛− 1)𝑑𝑝𝑘,𝑚∣ℐ𝑘,𝑑

(𝑛),

𝑛𝑞𝑘,𝑚∣ℐ𝑘
(𝑛∣𝑛− 1) =

𝑒−𝑗𝜃
𝑞
𝑘(𝑛∣𝑛−1)

𝜇(𝜀𝑞𝑘(𝑛∣𝑛− 1))

(
𝑟𝑞𝑘,𝑖𝑐𝑖,𝑚(𝑛∣𝑛− 1) + 𝑣𝑞𝑘,𝑚∣ℐ𝑘,𝑑

(𝑛)
)

,

𝑟𝑞𝑘,𝑖𝑐𝑖,𝑚(𝑛∣𝑛− 1) =

𝐾∑
𝑘′=1

𝑒−𝑗𝜃
𝑞

𝑘′ (𝑛∣𝑛−1)
𝑁−1∑
𝑚′=0
𝑚′ ∕=𝑚

𝜇(𝜀𝑞𝑘′ (𝑛∣𝑛− 1) +𝑚′ −𝑚)×

𝑀𝑡∑
𝑝=1

𝐻̂𝑝,𝑞𝑘′,𝑚′(𝑛∣𝑛− 1)𝑑𝑝𝑘′,𝑚′(𝑛).

(42)

In (42), 𝜃𝑞𝑘(𝑛∣𝑛−1) = 2𝜋
∑𝑛−1
𝑙=0 𝜀

𝑞
𝑘(𝑙∣𝑙−1) with 𝜖𝑞𝑘(0∣−1) =

𝜖𝑞𝑘(0). Using time updated samples 𝜖𝑖(𝑛∣𝑛 − 1), we approxi-
mate the prediction by 𝜀𝑞𝑘(𝑛∣𝑛−1) ≈ ∑𝑁𝑝

𝑖=1 𝛽𝑖(𝑛)𝜖𝑖(𝑛∣𝑛−1),
with indices 𝑞, 𝑘 suppressed in 𝜖𝑖(𝑛∣𝑛− 1).

Proposition 1: The covariance of 𝑛𝑞𝑘,𝑚∣ℐ𝑘
(𝑛∣𝑛−1) is given

by

𝜎2
𝑛𝑞,𝑘

(𝑛∣𝑛− 1)
△
=𝐸{∣𝑛𝑞

𝑘,𝑚∣ℐ𝑘
(𝑛∣𝑛− 1)∣2} =

2𝑁0

𝑇𝑠∣𝜇(𝜀𝑞𝑘(𝑛∣𝑛− 1))∣2+

1

𝑀𝑡∣𝜇(𝜀𝑞𝑘(𝑛∣𝑛− 1))∣2
𝐾∑

𝑘′=1

𝑁−1∑
𝑚′=0,
𝑚′ ∕=𝑚

∣𝜇(𝜀𝑞𝑘′(𝑛∣𝑛− 1) +𝑚′ −𝑚)∣2×

Tr{(𝑰𝑀𝑡 ⊗ (𝑿𝑊 )𝑚′) 𝒉̂𝑞
𝑘′(𝑛∣𝑛− 1)𝒉̂𝑞

𝑘′(𝑛∣𝑛− 1)𝐻},
(43)

where (𝑿𝑊 )𝑚
△
=(𝑾𝐿𝑓

)𝐻𝑚(𝑾𝐿𝑓
)𝑚.

The derivation of Proposition 1 is given in the Appendix.
Let 𝑚 ∈ ℐ𝑘,𝑑. According to (41), we have

𝒓𝑘∣𝑚(𝑛∣𝑛− 1)
△
=

[𝑟1𝑘∣𝑚(𝑛∣𝑛− 1), 𝑟2𝑘∣𝑚(𝑛∣𝑛− 1), . . . , 𝑟𝑀𝑟
𝑘∣𝑚(𝑛∣𝑛− 1)]𝑇 ,≈⎡

⎢⎢⎣
𝐻̂1,1

𝑘∣𝑚(𝑛∣𝑛− 1) . . . 𝐻̂𝑀𝑡,1
𝑘∣𝑚 (𝑛∣𝑛− 1)

... . . .
...

𝐻̂1,𝑀𝑟

𝑘∣𝑚 (𝑛∣𝑛− 1) . . . 𝐻̂𝑀𝑡,𝑀𝑟

𝑘∣𝑚 (𝑛∣𝑛− 1)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

𝑑1𝑘∣𝑚(𝑛)
...

𝑑𝑀𝑡
𝑘∣𝑚(𝑛)

⎤
⎥⎥⎦+

⎡
⎢⎣

𝑛1
𝑘,𝑚∣ℐ𝑘

(𝑛∣𝑛− 1)
...

𝑛𝑀𝑟
𝑘,𝑚∣ℐ𝑘

(𝑛∣𝑛− 1)

⎤
⎥⎦ ,

△
=𝑯̂𝑘∣𝑚(𝑛∣𝑛− 1)𝒅𝑘∣𝑚(𝑛) +𝒏𝑘,𝑚∣ℐ𝑘

(𝑛∣𝑛− 1).
(44)

In (44), 𝒏𝑘,𝑚∣ℐ𝑘
(𝑛) ∼ 𝒩 (𝒏𝑘∣𝑚(𝑛);0, Σ̂𝑘∣𝑚(𝑛∣𝑛−1)) with

Σ̂𝑘,𝑚∣ℐ𝑘
(𝑛∣𝑛−1)

△
=diag{𝜎2𝑛1,𝑘(𝑛∣𝑛−1), . . . , 𝜎2𝑛𝑀𝑟,𝑘

(𝑛∣𝑛−1)}.
This form of the covariance approximates the ICI at different
receive antennas as independent, and is similar to that of
[26] in the detection problem. The main difference is that the
noise terms in (44) no longer have equal variances. To take
advantage of QRD-M [26], we employ a a diagonal scaling of
the received/corrected vector 𝒓𝑘∣𝑚(𝑛∣𝑛−1) for better detection
performance [29]. Let 𝑳̂𝑘∣𝑚(𝑛∣𝑛− 1) be the diagonal square

root of Σ̂𝑘∣𝑚(𝑛∣𝑛 − 1). Premultiplying 𝒓𝑘∣𝑚(𝑛∣𝑛 − 1) by
𝑳̂−1
𝑘∣𝑚(𝑛∣𝑛− 1) yields

𝒓𝑘∣𝑚(𝑛∣𝑛− 1)† ≈
𝑳̂−1
𝑘∣𝑚(𝑛∣𝑛− 1)𝑯̂𝑘∣𝑚(𝑛∣𝑛− 1)𝒅𝑘∣𝑚(𝑛) + 𝒆𝑘∣𝑚(𝑛∣𝑛− 1),

(45)

where 𝐸{𝒆𝑘∣𝑚(𝑛∣𝑛− 1)𝒆𝑘∣𝑚(𝑛∣𝑛− 1)𝐻} ≈ 𝑰.
Data detection of {𝒅𝑘∣𝑚(𝑛)} can be performed based on

(45) by employing QRD-M. The QRD-M detector approxi-
mates the maximum-likelihood decision.

𝒅𝑘∣𝑚(𝑛) = arg min
𝒅𝑘∣𝑚(𝑛)∈∣𝑆∣𝑀𝑡∥∥∥𝒓𝑘∣𝑚(𝑛∣𝑛− 1)† − 𝑳̂𝑘∣𝑚(𝑛∣𝑛− 1)−1𝑯̂𝑘∣𝑚(𝑛∣𝑛− 1)𝒅𝑘∣𝑚(𝑛)

∥∥∥2

,

(46)
where 𝒮 denotes the signal constellation. For QRD-M, the
condition 𝑀𝑟 ≥𝑀𝑡 is required, which can be easily satisfied
in practical uplink MIMO-OFDMA systems.

Now let

𝑳̂𝑘∣𝑚(𝑛∣𝑛−1)−1𝑯̂𝑘∣𝑚(𝑛∣𝑛−1) = 𝑸̂QR(𝑛∣𝑛−1)𝑹̂QR(𝑛∣𝑛−1)

be the QR decomposition, where 𝑸̂QR(𝑛∣𝑛 − 1) is a unitary
matrix and 𝑹̂QR(𝑛∣𝑛 − 1) is an upper triangular matrix.
Substituting 𝑳̂𝑘∣𝑚(𝑛∣𝑛 − 1)−1𝑯̂𝑘∣𝑚(𝑛∣𝑛 − 1) = 𝑸̂QR(𝑛∣𝑛 −
1)𝑹̂QR(𝑛∣𝑛− 1) into (46), we have

𝒅𝑘∣𝑚(𝑛)QRD-M ≈
arg min

𝒅𝑘∣𝑚(𝑛)∈∣𝑆∣𝑀𝑡

∥∥∥𝒓𝑘∣𝑚(𝑛∣𝑛− 1)†QR − 𝑹̂QR(𝑛∣𝑛− 1)𝒅𝑘∣𝑚(𝑛)
∥∥∥2

,

(47)
where 𝒓𝑘∣𝑚(𝑛∣𝑛 − 1)†QR = 𝑸̂QR(𝑛∣𝑛 − 1)𝐻𝒓𝑘∣𝑚(𝑛∣𝑛 − 1)†.
Using the upper-triangular property of 𝑹̂QR(𝑛∣𝑛 − 1) and
combining the M-algorithm, we can detect MIMO user data
efficiently. The details of the QRD-M algorithm can be found
in [26] and the references therein.

VI. SIMULATION RESULTS

In this section, computer simulations are performed to
confirm the performance of the proposed schemes. The sim-
ulated system has 𝑁 = 128 subcarriers. Unless otherwise
specified, information bits are mapped onto uncoded QPSK
symbols through a Gray map and all users experience the same
normalized Doppler shift of 𝐹𝑑𝑇𝑑 = 0.001. Furthermore, we
set 𝛼𝑞𝑘,𝜀 = 0.9999 and 𝜂𝑞𝑘,𝜀 = 10−5 ∀𝑘, 𝑞 in (4). The SEKF

is initialized with 𝒇𝑞𝑘 (1∣0) = 0 and 𝑷 𝑞𝑘 (1∣0) = 𝑰, ∀𝑘, 𝑞
whereas the SK-APF is initialized with 𝒇𝑞𝑘,𝑖(1∣0) = 0 and
𝑷 𝑞𝑘,𝑖(1∣0) = 𝑰, ∀𝑘, 𝑖, 𝑞. In the following, four examples will
be presented. In the first two examples, we focus on the pilot-
aided schemes to exploit training blocks only whereas the last
examples investigate the semi-blind schemes.

Example 1: Pilot-Aided Estimation With Equal User Power

In this example, we consider a system with 𝑀𝑡 =𝑀𝑟 = 4
and 𝐾 = 5 users. Each user has equal user power and
occupies 𝑁𝑘 = 12 subcarriers. Figs. 1 and 2 show the channel
estimation mean-squared error (MSE) and the average absolute
(ABS) CFO estimation error over all users at 𝐸𝑠/𝑁0 of
20 dB, respectively. For the proposed pilot-aided SK-APF,
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Fig. 1. Channel estimation performance of the proposed pilot-aided schemes
as a function of 𝐸𝑠/𝑁0 in a system with equal-power users.
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Fig. 2. CFO estimation performance of the proposed pilot-aided schemes as
a function of 𝐸𝑠/𝑁0 in a system with equal-power users.

𝑁𝑝 = 4, 12 particles are employed. Furthermore, we use
2𝑀 + 1 = 21 points to approximate the CFO in the first
symbol interval. In the remaining symbol intervals, we use
2𝑀 +1 = 11 points. Finally, the multipath intensity profile is
𝐸{∣(𝒉𝑝,𝑞𝑘 ∣)𝑙∣2} = {0.6, 0.4} ∀𝑝, 𝑞, 𝑘 with 𝑙 = 1, 2 = 𝐿𝑓 .

Inspection of Figs. 1 and 2 indicates that the SK-APF
substantially outperforms the pilot-aided SEKF in terms of
CFO estimation errors but has similar channel estimation
performance as the SEKF. Furthermore, it is evident from
Fig. 2 that the SK-APF provides more accurate CFO estimates
as the number of particles employed, 𝑁𝑝, increases from 4 to
12.

Example 2: Pilot-Aided Estimation With Unequal User Power

Next, we consider the same system in Example 1, except
that users have unequal signal powers due to the near-far effect
with the first user 10 log(𝐾) dB stronger than the others.
Figs. 3 and 4 show the channel estimation MSE and the
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Fig. 3. Channel estimation performance of the proposed pilot-aided schemes
for weaker users as a function of 𝐸𝑠/𝑁0 in a system with unequal-power
users.
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Fig. 4. CFO estimation performance of the proposed pilot-aided schemes
for weaker users as a function of 𝐸𝑠/𝑁0 in a system with unequal-power
users.

average ABS CFO estimation error over all weaker users
(excluding the first user) at 𝐸𝑠/𝑁0 of 20 dB, respectively.
Comparison of Figs. 3-4 and Figs.1-2 suggests that the near-far
effect has only marginal impact on the estimation performance
of the proposed schemes.

Example 3: Semi-Blind Estimation With Equal User Power

The semi-blind SK-APF is now employed with one train-
ing block followed by data blocks consisting of both pi-
lots and data symbols. To approximate the CFO uncertainty
region, we generate 2𝑀 + 1 = 101 and 11 grid points
for the first symbol interval and remaining symbol inter-
vals, respectively. Furthermore, 𝑀𝑡 = 𝑀𝑟 = 2, 𝐾 = 2
users and 𝑁𝑘 = 32 subcarriers are employed in the sim-
ulation. The multipath intensity profile is 𝐸{∣(𝒉𝑝,𝑞𝑘 )𝑙∣2} =
{0.5610, 0.2520, 0.1132, 0.0509, 0.0229} for ∀𝑝, 𝑞, 𝑘 with
𝑙 = 1, . . . , 5 = 𝐿𝑓 .
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Fig. 5. Uncoded BER performance of the proposed semi-blind SK-APF as
a function of 𝐸𝑠/𝑁0 with 𝑁𝑠𝑝 scattered pilots and 𝑁𝑝 particles.

Fig. 5 shows the uncoded bit error rate (BER) performance
of the proposed methods with different numbers of scattered
pilots, 𝑁𝑠𝑝 = 4, 8 and particles, 𝑁𝑝 = 10, 40. The curve
labeled “Ideal" is obtained with perfect knowledge of channel
and frequency offset. It is evident from Fig. 5 that more
particles result in better BER performance for semi-blind
SK-APF whereas more pilots lead to marginal performance
improvement. Furthermore, inspection of Fig. 5 reveals that
the semi-blind SK-APF with 𝑁𝑠𝑝 = 8 and 𝑁𝑝 = 40 has about
1.5 dB loss w.r.t. the ideal curve at BER of 10−3.

Figs. 6 and 7 show the channel and CFO estimation
performance as a function of OFDM symbol index 𝑛 at
𝐸𝑠/𝑁0 of 20dB, respectively. Figs. 6 and 7 suggest that
increasing the number of particles from 𝑁𝑝 = 10 to 𝑁𝑝 = 40
can provide significantly more accurate CFO and channel
estimation at the cost of higher computational complexity.
Furthermore, inspection of Fig. 6 suggests that the maximum
CFO estimation error occurs at 𝑛 = 2. This is due to the fact
that the first symbol is solely composed of pilots, and hence
the initial CFO estimate is more accurate. On symbol 𝑛 = 2,
the estimator begins to diverge due to data errors, but with
a sufficient number of measurements the CFO error begins
decreasing on symbol 𝑛 = 3.

Example 4 : Semi-Blind Estimation for Systems With More
Users

In this last example, we investigate a system with 𝑀𝑡 =
𝑀𝑟 = 4 using the SK-APF. The same parameters are em-
ployed to generate frequency offset samples as shown in the
previous example. Figs. 8 and 9 show the BER performance
for 𝐾 = 2 and 𝐾 = 4, respectively. Clearly, more MAI is
induced by the presence of more users in the system. As a
result, the system performance degrades as 𝐾 increases from
2 to 4, which is evidenced by comparing the curves in Figs. 8
and 9 obtained with 𝑁𝑠𝑝 = 4 scattered pilots and 𝑁𝑝 = 40
particles. More specifically, Fig. 9 indicates that semi-blind
SK-APF with 𝑁𝑠𝑝 = 4 and 𝑁𝑝 = 40 entails 3.5 dB loss w.r.t.
the ideal curve at BER of 10−4. Furthermore, Fig. 9 shows
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Fig. 6. CFO estimation performance of the proposed semi-blind SK-APF as
a function of symbol index 𝑛 at 𝐸𝑠/𝑁0 = 20 dB.
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Fig. 7. Channel estimation performance of the proposed semi-blind SK-APF
as a function of symbol index 𝑛. at 𝐸𝑠/𝑁0 = 20 dB.

that only marginal performance improvement can be obtained
by increasing the number of particles beyond 𝑁𝑝 = 40.

VII. CONCLUSION

Pilot-aided and semi-blind joint data detection and fre-
quency offset/channel estimation schemes have been pro-
posed for the uplink MIMO-OFDMA systems. The proposed
schemes employ the parallel Schmidt Kalman filter to de-
compose the multiuser estimation problem into more tractable
subproblems, each of which deals with only one desired user.
Following the decomposition, the Schmidt Rao-Blackwellized
particle filter is employed to track the time varying channel
and CFO of the desired user in each subproblem. Simulation
results have shown that the resulting scheme can provide ac-
curate CFO and channel estimates at affordable computational
complexity.

Throughout this work, pilot design has not been taken
into account. However, as shown in [6], [30], [31], optimally
designed pilots can substantially improve the system perfor-
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Fig. 8. Uncoded BER performance of the SK-APF as a function of 𝐸𝑠/𝑁0

with 𝑀𝑡 = 𝑀𝑟 = 4, 𝑁𝑠𝑝 = {4, 8} and 𝐾 = 2.
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Fig. 9. Uncoded BER performance of the SK-APF as a function of 𝐸𝑠/𝑁0

with 𝑀𝑡 = 𝑀𝑟 = 4, 𝑁𝑠𝑝 = 4 and 𝐾 = 4.

mance. It is anticipated that the performance of both SEKF and
SK-APF estimators will improve with such optimized pilots
and this should be investigated in actual system applications.

APPENDIX: PROOF OF PROPOSITION 1

This Appendix summarizes the proof of Proposition 1. For

simplicity, define 𝜆1
△
=𝜀𝑞𝑘(𝑛∣𝑛 − 1) +𝑚′ −𝑚. Recalling that

users’ symbols are assumed i.i.d., we have

𝜎2𝑛𝑞,𝑘,𝑚
(𝑛)

△
=𝐸{∣𝑛𝑞𝑘,𝑚∣ℐ𝑘

(𝑛)∣2} =
1

∣𝜇(𝜀𝑞𝑘(𝑛∣𝑛− 1))∣2×

𝐸

⎧⎨
⎩
𝐾∑
𝑘′=1

𝑁−1∑
𝑚′=0,

𝑚′ ∕=𝑚

∣𝜇(𝜆1)∣2[𝑑1𝑘′,𝑚′(𝑛), . . . , 𝑑𝑀𝑡

𝑘′,𝑚′(𝑛)]𝒂𝑘′×

𝒂𝐻𝑘′ [𝑑
1
𝑘′,𝑚′(𝑛), . . . , 𝑑𝑀𝑡

𝑘′,𝑚′(𝑛)]
𝐻
}
+ 2𝑁0/𝑇𝑠,

(A.1)

where

𝒂𝑘′
△
=

⎡
⎢⎣

(𝑾𝐿𝑓
)𝑚′ 𝒉̂1,𝑞

𝑘′ (𝑛∣𝑛− 1)
...

(𝑾𝐿𝑓
)𝑚′ 𝒉̂𝑀𝑡,𝑞

𝑘′ (𝑛∣𝑛− 1)

⎤
⎥⎦ =

(𝑰𝑀𝑡 ⊗ (𝑾𝐿𝑓
)𝑚′)𝒉̂𝑞𝑘′ (𝑛∣𝑛− 1).

(A.2)

Using (A.2), we have (A.3), see next page, where we have
exploited the following equalities

𝐸{∣∣𝒅𝑝𝑘,𝑚∣ℐ𝑘
(𝑛)∣∣2} = 1/𝑀𝑡, (A.4)

(𝑨⊗𝑩)𝐻(𝑪 ⊗𝑫) = (𝑨𝐻𝑪)⊗ (𝑩𝐻𝑫). (A.5)
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TABLE I
SUMMARY OF SYMBOLS FOR USER 𝑘 AND RECEIVING ANTENNA 𝑞

Symbol Definition
𝑝,𝑞 indices for transmit and receive antennas, respectively

ℐ𝑘, ℐ𝑘,𝑑,ℐ𝑘,𝑝 indices for subcarrier, data symbols and pilot symbols, respectively
𝑾 DFT matrix

𝒉𝑝,𝑞
𝑘 (𝑛) complex-valued channel vectors between transmit antenna 𝑝 and receive antenna 𝑞

𝜀(𝑛)
△
=𝜀𝑞𝑘(𝑛) normalized frequency offset

Δ(𝜀𝑞𝑘(𝑛)) frequency offset matrix for one OFDM symbol
𝒅𝑝
𝑘(𝑛), 𝒅

𝑝
𝑘(𝑛) time- and frequency-domain data symbols from antenna 𝑝, respectively

𝑫𝑝
𝑘(𝑛), 𝑫̃

𝑝
𝜀,𝑘(𝑛) circulant data matrix without and with frequency offset, respectively

𝛼𝑞
𝑘,𝜀, 𝛼

𝑞
𝑘,ℎ first-order dynamic model coefficients

ℍ(𝜀(𝑛))
△
=ℍ

𝑞
𝑘(𝜀

𝑞
𝑘(𝑛)),ℍ∖𝑘(𝜀∖𝑘(𝑛)) real-valued equivalent channel matrix, interfering matrix

𝒇(𝑛), 𝒇∖𝑘(𝑛) real-valued channel vector, interfering channel vector, respectively
𝒙(𝑛),𝒙∖𝑘(𝑛) essential state vector, interfering nuisance state vector

𝑨,𝑨∖𝑘 Kalman dynamic matrix, interfering Kalman dynamic matrix
𝑸,𝑸∖𝑘 Covariance matrix for dynamic equation, interfering covariance matrix

𝑱(𝑛),𝑱∖𝑘(𝑛) Jacobian matrix, interfering Jacobian matrix
𝑷𝑘,𝑘(𝑛∣𝑛− 1),𝑷∖𝑘,𝑘(𝑛∣𝑛− 1),𝑷∖𝑘,∖𝑘(𝑛∣𝑛− 1) Kalman covariance matrices

𝑲(𝑛),𝑲𝑘,SKF(𝑛) Kalman gain matrix, Schmidt-Kalman gain matrix
𝒙̂(𝑛∣𝑛− 1), 𝒙̂(𝑛∣𝑛) Kalman state prediction, Kalman state estimation

𝜖𝑛𝑖 𝑖-th trajectory of the frequency offset particles
𝒚𝑛 cumulative observation sequences

𝜋(.), 𝛽𝑖(𝑛) sampling density, 𝑖-th importance sampling weight
𝛿𝑚 𝑚-th grid point

𝒇𝑖(𝑛− 1∣𝑛− 1) Kalman channel estimation conditioned on 𝜖𝑛−1
𝑖

𝑷𝑘,𝑘,𝑖(𝑛− 1∣𝑛− 1),𝑷𝑘,𝑘,(𝑖,𝑚)(𝑛− 1∣𝑛− 1) Kalman covariance matrices conditioned on 𝜖𝑛−1
𝑖

𝑲𝑖(𝑛) Schmidt-Kalman gain
𝜋𝑖(⋅) sampling density

𝑀𝑡∣𝜇(𝜀𝑞𝑘(𝑛∣𝑛− 1))∣2𝜎2𝑛𝑞,𝑘,𝑚
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