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Abstract

Distributed opportunistic scheduling (DOS) is studied for wireless ad-hoc networks in which
many links contend for the channel using random access before data transmissions. Simply put,
DOS involves a process of joint channel probing and distributed scheduling for ad-hoc (peer-to-
peer) communications. Since, in practice, link conditions are estimated with noisy observations,
the transmission rate has to be backed off from the estimated rate to avoid transmission outages.
Then, a natural question to ask is whether it is worthwhile for the link with successful contention
to perform further channel probing to mitigate estimation errors, at the cost of additional prob-
ing. Thus motivated, this work investigates DOS with two-level channel probing by optimizing
the tradeoff between the throughput gain from more accurate rate estimation and the resulting
additional delay. Capitalizing on optimal stopping theory with incomplete information, we show
that the optimal scheduling policy is threshold-based and is characterized by either one or two
thresholds, depending on network settings. Necessary and sufficient conditions for both cases
are rigorously established. In particular, our analysis reveals that performing second-level chan-
nel probing is optimal when the first-level estimated channel condition falls in between the two
thresholds. Numerical results are provided to illustrate the effectiveness of the proposed DOS
with two-level channel probing. We also extend our study to the case with limited feedback,
where the feedback from the receiver to its transmitter takes the form of (0,1,).
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Abstract—Distributed opportunistic scheduling (DOS) is stud-
ied for wireless ad-hoc networks in which many links contend
for the channel using random access before data transmissions.
Simply put, DOS involves a process of joint channel probing and
distributed scheduling for ad-hoc (peer-to-peer) communications.
Since, in practice, link conditions are estimated with noisy
observations, the transmission rate has to be backed off from
the estimated rate to avoid transmission outages. Then, a natural
question to ask is whether it is worthwhile for the link with
successful contention to perform further channel probing to
mitigate estimation errors, at the cost of additional probing. Thus
motivated, this work investigates DOS with two-level channel
probing by optimizing the tradeoff between the throughput
gain from more accurate rate estimation and the resulting
additional delay. Capitalizing on optimal stopping theory with
incomplete information, we show that the optimal scheduling
policy is threshold-based and is characterized by either one or
two thresholds, depending on network settings. Necessary and
sufficient conditions for both cases are rigorously established.
In particular, our analysis reveals that performing second-level
channel probing is optimal when the first-level estimated channel
condition falls in between the two thresholds. Numerical results
are provided to illustrate the effectiveness of the proposed DOS
with two-level channel probing. We also extend our study to the
case with limited feedback, where the feedback from the receiver
to its transmitter takes the form of (0, 1, e).

I. INTRODUCTION

Channel-aware scheduling has recently emerged as a
promising technique to harness the rich diversities inherent in
wireless networks. In channel-aware scheduling, a joint phys-
ical layer (PHY)/medium access control (MAC) optimization
is utilized to improve network throughput by scheduling links
with good channel conditions for data transmissions [1], [13],
[18]. While most existing studies in the literature focus on
centralized scheduling (see, e.g., [4], [8], [12], [13], [18]),
some initial steps have been taken by the authors to develop
distributed opportunistic scheduling (DOS) to reap multiuser
diversity and time diversity in wireless ad-hoc networks [22].

The DOS framework considers an ad-hoc network in which
many links contend for the same channel using random
access, e.g., carrier-sense multiple-access (CSMA). However,
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random access protocols provide no guarantee that a successful
channel contention is necessarily attained by a link with good
channel conditions. From a holistic perspective, a successful
link with poor channel conditions should forgo its data trans-
mission and let all links re-contend for the channel. This is
because after further channel probing, it is more likely for
a link with better channel conditions to take the channel,
yielding possibly higher throughput. In this way, multiuser
diversity across links and time diversity across time can be
exploited in a joint manner. However, each channel probing
incurs a cost of contention time. The desired tradeoff between
the throughput gain from better channel conditions and the
cost for further probing reduces to judiciously choosing an
optimal rule for stopping channel probing for throughput
maximization. Using optimal stopping theory (OST), it is
shown in [22] that the optimal scheduling scheme turns out
to be a pure threshold policy: The successful link proceeds to
transmit data only if its supportable rate is higher than the
pre-designed threshold; otherwise, it skips the transmission
opportunity and lets all other links re-contend. In general,
threshold-based scheduling uses local information only and
hence it is amenable to easy distributed implementation in
practical systems.

The initial study of DOS [22] hinges upon a key assumption
that the channel state information (CSI) is perfectly available
at the receiver. In practice, the link rates are estimated with
noisy observations. It is shown in [17] that the signal-to-
noise ratio (SNR) estimated by the minimum mean squared
error (MMSE) method is larger than the “actual SNR” due
to the estimation error noise. Thus, the transmission rate
must be backed off from the estimated rate in order to avoid
transmission outages. Our initial steps in [21] show that the
optimal scheduling policy under noisy channel estimation still
has a threshold structure.

Despite their robust performance under noisy channel es-
timation, the linear backoff schemes proposed in [21] are
reactive in nature and back off the rate by a factor proportional
to the channel estimation errors, which may lead to severe
throughput degradation, especially in the low SNR regime
(where a more conservative rate backoff is needed). Recently,
wideband communications (e.g., ultra-wideband), has attracted
significant attention [19], owing to its low-power operation
and the ability to co-exist with other legacy networks, etc.
The great potential of wideband communications gives an
impetus to address the problem of throughput degradation,
due to estimation errors, in the low-SNR (wideband) regime.
More specifically, to circumvent this drawback, a plausible
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solution is to mitigate the rate estimation errors by performing
further channel probing. In the sequel, we call the initial rate
estimation performed during the channel contention as “first-
level probing”, whereas the subsequent probing performed
after the successful contention is referred to as “second-level
probing”. Clearly, the improved rate estimation obtained with
second-level probing enables the desired link to make more
accurate decisions. However, the advantages of second-level
probing come at the price of additional delay. This gives rise
to two important questions: 1) Is it worthwhile for the link
with successful contention to perform further channel probing
to refine the rate estimate, at the cost of additional probing?
2) While there is always a gain in the transmission rate due to
the refinement, how much can one bargain with the additional
probing overhead?

We shall answer these questions by considering distributed
opportunistic scheduling with two-level channel probing.
Based on two recent advances in optimal stopping theory,
namely optimal stopping with two-level incomplete informa-
tion [16] and statistical versions of “prophet inequalities” [2],
we provide a rigorous characterization of the scheduling strat-
egy that optimizes the tradeoff between the throughput gain
achieved by second-level channel probing and the resulting
additional delay. It is shown that the optimal scheduling
strategy is threshold-based and is characterized by either
one or two thresholds, depending on the system parameters.
By establishing the corresponding necessary and sufficient
conditions for these two cases, we show that the second-level
probing can significantly improve the system throughput when
the estimated rate via first-level probing falls in between the
two thresholds. In such scenarios, the cost of addition delay
can be well justified by the throughput enhancement using the
second-level channel probing. We elaborate further on this in
Section III. Finally, through numerical results, we illustrate the
effectiveness of the proposed scheduling scheme.

Before proceeding further, the main contributions distin-
guishing this work from other existing works should be
emphasized. OST under two levels of incomplete information
is addressed with the objective of maximizing the net-return
in [16]; in contrast, we study OST with two levels of probing
as applied to DOS with the objective of maximizing the rate of
return (i.e., the throughput). We study distributed opportunistic
scheduling for ad-hoc communications under noisy conditions
where the rate estimate is available only after a successful
channel contention; and this is clearly different from [17]
which considers centralized scheduling assuming that the rate
estimates of all links are available a priori at the base station.
Despite the fact that both this work and [21] study dis-
tributed opportunistic scheduling with imperfect information,
this work concentrates on proactively improving throughput by
enhancing rate estimation, whereas [21] proposes to passively
reduce data rate to avoid transmission outages. Another related
work [20] uses optimal stopping theory to investigate the
intrinsic trade-off between energy and delay in distributed data
aggregation and forwarding in sensor networks.

The rest of the paper is organized as follows. In Sec-
tion II, we provide a brief introduction to the optimal stopping
theory, discuss the system model, and provide background

on DOS with only first-level probing in noisy environments.
In Section III, we present second-level channel probing and
characterize the optimal DOS with two-level probing. We also
present numerical results to illustrate the gain due to two-level
probing. In Section IV, we extend our study to the case where
there is limited feedback from the receiver to its transmitter.
Finally, Section V contains our conclusions.

Notation: |·| denotes the amplitude of the enclosed complex-
valued quantity. R+ denotes the space of non-negative real
numbers. We use [x]+ for max[x, 0], and E[·] for expectation.

II. BACKGROUND AND SYSTEM MODEL

A. Preliminaries on optimal stopping theory

As noted above, in an ad-hoc communication network with
many links, when a link discovers that its channel condition
is “relatively poor” after a successful channel contention, it
can either transmit or skip this opportunity so that, in the next
round, some link with a better condition would have the chance
to transmit. This is intimately related to the optimal stopping
strategy in sequential analysis [6]. Simply put, an optimal
stopping theory is concerned with the problem of choosing
a strategy for deciding when to take a given action based on
the past events in order to maximize the average return, where
the return is the net gain (the difference between the reward
and the cost). The corresponding strategy is called an optimal
stopping rule.

More specifically, let Z1, Z2, ... denote a sequence of ran-
dom variables, and Y0, Y1(z1), Y2(z1, z2), . . . , Y∞(z1, z2, . . .)
a sequence of real-valued reward functions. The reward is
Yn(z1, ..., zn) if the strategy chooses to stop at time n. The
theory of optimal stopping is concerned with determining the
stopping time N to maximize the expected reward E[YN ];
and in general, a stopping rule (or a stopping time) (cf. [6]) is
defined to be a random variable N such that {N = n} ∈ Fn,

where Fn is the σ-algebra generated by {Z1, . . . , Zn}. This
is equivalent to saying that the decision to transmit at a
slot n depends only on the sequence {Z1, . . . , Zn}. A good
introduction to optimal stopping theory can be found in [5],
[6], [15].

B. System model

Consider a single-hop ad-hoc network in which L links
contend for the channel using random access. A collision
model is assumed for random access, where a channel con-
tention of a link is said to be successful if no other links
transmit at the same time. Let p` be the probability that
link ` contends for the channel, ` = 1, . . . , L. Then the
overall successful contention probability, ps, is given by
ps =

∑L

`=1

(
p`

∏
i 6=`

(1− pi)
)

(cf. [3]). For ease of exposition,
we assume that the contention probabilities, {p`}, remain
fixed (our studies with adaptive contention probability are
underway [7]). We define the random duration of achieving
one successful channel contention as one round of channel
probing. Clearly, the number of slots in each probing round,
K, is a geometric random variable, i.e., K ∼ G(ps). Denoting
the slot duration by τ , the corresponding random duration for
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one probing round thus becomes Kτ , with its expected value
being τ/ps.

In a nutshell, each round of channel probing consists of two
phases, namely, channel contention and channel estimation.
We assume that a link can estimate its link conditions (hence
the transmission rate) after a successful contention1.

Let s(n) denote the successful link in the n-th round of
channel probing, and Rn denote the corresponding transmis-
sion rate. Due to the time-varying nature of wireless channels,
Rn is random. Following the standard assumption on block
fading channels in wireless communications [14], we assume
that the channel remains constant for a duration of T . When
an estimate of the transmission rate is available, the successful
link may decide to transmit over a duration of T , if the rate is
high enough, or may skip it2 and allow all links to re-contend,
in the hope that another link with a better channel will take
the channel later.

To get a more concrete sense of joint channel probing and
distributed scheduling, we depict, in Fig. 1, an example with
N rounds of channel probing and one single data transmission.
Specifically, suppose after the first round of channel probing
with a duration of K1 slots, the rate, R1, of link s(1) is very
small (indicating a poor channel condition); and as a result,
s(1) gives up this transmission opportunity and lets all links
re-contend. Then, after the second successful contention with
a duration of K2 slots, link s(2) also gives up the transmission
because its rate, R2, is also small. This continues for N rounds
until link s(N) transmits because its transmission rate, RN , is
good. Clearly, there exists a tradeoff between the throughput
gain from better channel conditions and the cost for further
probing.

ττ

TN

N

(2) I CSC I (1)S C C (N)S

TΚ τ Κ  τΚ τ
21

Successful Handshake / Collision / Idle Data transmission

Fig. 1. A sample realization of channel probing and data transmission.

In [22], we show that the process of joint channel probing
and distributed scheduling can be treated as a team optimiza-
tion problem in which all links collaborate to maximize rate
of return (the average throughput). Specifically, as illustrated
in Fig. 1, after one round of channel probing, a stopping
rule N decides whether the successful link carries out data
transmission, or simply skips this opportunity to let all links
re-contend. Let Tn =

∑n
j=1 Kjτ +T be the total system time,

defined as the sum of the contention time and the transmission
duration, where Kj is number of slots in jth probing round.
It turns out that the optimal DOS strategy achieving the

1The successful link can carry out its rate estimation via a training phase
during the request-to-send/clear-to-send (RTS/CTS) handshake, which follows
a successful contention. This procedure is fairly standard in the literature, and
is not dealt here.

2This decision can be broadcast to all users in the one-hop neighborhood
(e.g., NCTS).

maximum throughput hinges on the optimal stopping rule N∗,
which yields the maximal rate of return θ∗. That is,

θ∗ , sup
N∈Q

E[RNT ]
E[TN ]

, (1)

and

N∗ , arg max
N∈Q

E[RNT ]
E[TN ]

, (2)

where
Q , {N : N ≥ 1, E[TN ] < ∞}. (3)

It is clear that Rn plays a critical role in distributed
opportunistic scheduling. In practice, rate estimates are seldom
perfect. It is shown in [17] that the rate corresponding to the
estimated SNR tends to be greater than the actual rate, and
subsequently the transmission rate must be backed off from
the estimated rate to avoid outages. Then, a natural question
to ask is whether it is worthwhile for the link with successful
contention to perform further channel probing to refine the
channel estimate, at the cost of additional probing overhead,
and how much can one bargain?

Intuitively speaking, when the transmission rate is small, it
makes sense to give up the transmission, since the gain due
to rate refinement would be marginal due to the poor link
conditions. On the other hand, when the rate is large enough,
it may not be advantageous to perform additional probing as
the improvement is meager. It is natural to expect that there
exists a “gray area” between these extremes where significant
gains are possible by refining the rate estimate with additional
probing. In what follows, we seek a clear understanding of the
above fundamental issues.

To this end, we present the PHY-layer signal model first.
The received signal corresponding to s(n) can be written as3

Ys(n)(n) =
√

ρhs(n)(n)Xs(n)(n) + ξs(n)(n), (4)

where ρ is the normalized receiver SNR, hs(n)(n) is the
channel gain for link s(n), Xs(n)(n) is the transmitted signal
with E[

∣∣Xs(n)(n)
∣∣2] = 1, and ξs(n)(n) is additive white

Gaussian noise (AWGN) with unit variance. In this work,
we consider a homogeneous network in which all links are
subject to independent Rayleigh fading, with identical channel
statistics. Note that hs(n)(n) and hs(m)(m) are the channel
coefficients corresponding to the link with successful con-
tention in the nth round of probing and that in the mth
round of probing. With this observation, we assume that
hs(n)(n) and hs(m)(m) are independent for n 6= m. This is
a practically valid assumption because the likelihood of one
link (say link m) achieving two consecutive successful channel
probing, p2

m

∏
i 6=m(1 − pi)2, is fairly small, especially when

the number of links in the network is large. Furthermore, even
if the same link successfully obtains two consecutive channel
contentions, the channel conditions corresponding to the two
consecutive successful channel probings are independent since
the channel probing duration in between is designed to be
comparable to the channel coherence time. As shown in [22],

3We note that the results reported here can be extended to frequency-
selective fading channels by replacing scalar fading parameters with vectors.
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when pm = 1
L , L = 10, π = 0.9, the probability that the

correlation across two adjacent successful contentions is no
greater than 0.1 is 0.903. Summarizing, it is quite reasonable to
impose the assumption on the channel independence between
two successful channel contentions.

Without loss of generality, to simplify our exposition, we
make the following simplifications: We focus on the n-
th probing round and omit the temporal index n, when-
ever possible. We use Yn, Xn, ξn and hn to denote
Ys(n)(n), Xs(n)(n), ξs(n)(n) and hs(n)(n), respectively, in the
sequel. For convenience, the parameter, T , is normalized to be
unity, i.e., T = 1.

When perfect CSI is available to the link, as assumed in
[22], the instantaneous supportable data rate is given by the
Shannon channel capacity:

Rn = W log(1 + ρ|hn|2), (5)

where W is the bandwidth. Observe that {Rn, n = 1, . . .}
are i.i.d. due to the assumption that hn are independent and
homogeneous.

To facilitate our analysis, we concentrate our following
investigation in the low SNR (wideband) regime, assuming
ρ → 0 and W = Θ( 1

ρ ). It is well known that a decrease in
SNR estimation error can only increase the rate of commu-
nication. For cases with wideband signaling (e.g. in the low
SNR regime), where an increase in the SNR results in a linear
increase in the throughput, obtaining more accurate estimates
of the SNR can yield substantial benefits.

C. DOS with one-level probing

In this section, we briefly examine DOS with one-level
channel probing in the low SNR regime (cf. [21]). Let M
be the training length, and τt = MTs, where Ts is the symbol
duration. We assume that τt = Θ(1) as ρ → 0. We assume that
the rate estimation is performed via minimum mean square
error (MMSE) estimates of the channel coefficient hn. It
follows that, ĥ

(1)
n , the MMSE estimate of hn, is given by [11]:

ĥ(1)
n =

√
ρ

ρM + 1

M∑
m=1

Ym, (6)

Accordingly, we can express h in terms of ĥ
(1)
n and the

estimation error h̃
(1)
n as follows:

hn = ĥ(1)
n + h̃(1)

n , (7)

where

ĥ(1)
n ∼ CN

(
0,

ρM

ρM + 1

)
(8)

and

h̃(1)
n ∼ CN

(
0,

1
ρM + 1

)
. (9)

Based on the orthogonality principle, ĥ
(1)
n and h̃

(1)
n are uncor-

related.
Without perfect CSI, the link employs the estimated SNR

{ρ|ĥ(1)
n |2, n = 1, . . .} as the basis for distributed scheduling.

However, since the channel estimation error, h̃
(1)
n , behaves as

an additive Gaussian noise, the actual instantaneous SNR of
the link is given by [17, Eq.(3)]:

λ(1)
n =

ρ|ĥ(1)
n |2

1 + ρ|h̃(1)
n |2

, (10)

where the effect due to channel estimation errors is subsumed
in the noise term. 4

Inspection of (10) reveals that λ
(1)
n is always smaller than

the estimated SNR {ρ|ĥ(1)
n |2}, in the presence of channel

estimation errors. As a result, an outage occurs if the link
transmits at a data rate specified by {ρ|ĥ(1)

n |2}. To circumvent
this problem, a linear backoff scheme is proposed in [21] to
reduce the data rate. More specifically, the estimated SNR is
linearly backed off to σMρ|ĥ(1)

n |2, where σM is the backoff
factor with 0 < σM < 1. Under imperfect information, the
transmission rate in the low-SNR wideband region simplifies
to

R(1)
n ≈ ρWσM |ĥ(1)

n |2. (11)

For more details of arriving at the above equation, we refer to
Appendix A. 5

For convenience, let θ be the cost per unit system time,
where the system time encompasses the contention time, the
probing time and the transmission time. It follows that a
successful channel contention incurs an average cost of θτ/ps,
whereas the data transmission for a duration of T entails a
cost θT . It takes a total duration of

∑n

j=1
Kjτ to reach the

n-th round of probing. After the n-th round of probing and
computing its rate R

(1)
n , the successful link has the following

options:
1) Transmit at rate R

(1)
n for a time duration of T = 1 (the

corresponding reward is R
(1)
n − θ);

2) Defer transmission and let all nodes re-contend (the
corresponding reward is the expected return).

Note that the cost of probing, θτ/ps, is common to both op-
tions. Clearly, the basis for distributed opportunistic scheduling
with one-level probing is the observation sequence {R(1)

n }n.
Using the Proposition 3.1 of [22], we can show that the optimal
DOS policy with noisy channel estimation still has a threshold
structure, given by

N∗ = min
n
{n ≥ 1 : R(1)

n ≥ θ̂},

where the optimal threshold θ̂ is given as the solution to the
following Bellman’s optimality equation:

E
[
R(1)

n − θ
]+

=
θτ

ps
. (12)

Furthermore, θ̂ is the corresponding throughput.
The above result reveals that the optimal stopping rule, N ,

is a pure threshold policy, and the stopping decision can be
made based on the current rate only. Accordingly, the optimal
channel probing and scheduling strategy takes the following

4For example, the maximum likelihood decoding method yields that X̂ =√
ρĥ∗Y = ρ|ĥ|2X + ρĥ∗h̃X +

√
ρĥ∗ξ, where ρĥ∗h̃X , is effectively an

additive noise.
5For further discussions regarding the design of back-off factor, σM , we

refer to [21].
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1-st Level Probing

Rate  R(1)

C IGive up and re-
contend

Transmit at R(1)

R(1)

2-nd Level Probing

Refined Rate R(2)

T

Possibilities

?C I S(n)
?

Possibilities

Transmit at R(2)Give up and re-contend

R(2)

Fig. 2. A sketch of DOS with two-level probing.

simple form: If the successful link discovers that its current
rate R

(1)
n is higher than the threshold θ̂, it transmits the data

with rate R
(1)
n ; otherwise, it skips this transmission opportunity

(e.g., by skipping CTS), and then the links re-contend.

III. DOS WITH TWO-LEVEL PROBING

In this section, we characterize the optimal DOS with two-
level probing, i.e., the links may choose to refine their rate
estimates before making a decision on whether to transmit or
not. We illustrate, in Fig. 2, the underlying rationale behind
DOS with two-level probing. In the following, we detail the
procedure with second-level probing, and then cast DOS with
two-level probing as a problem of maximal rate of return,
using optimal stopping theory with incomplete information.
We then characterize the corresponding structure and provide
a complete description of the optimal strategy.

A. Second-level probing

To improve the estimation accuracy, the receiver of the
successful link can request its transmitter to send another pilot
packet, at the cost of a part of the data transmission duration
allotted to it. More specifically, in addition to the pilot symbols
sent during the first-level probing, the receiver obtains a refined
MMSE estimate of hn by exploiting the newly transmitted
pilot symbols of length τt during second-level probing (of
duration τ ). Then, the link uses the remaining 1 − τ for the
data transmission. We let ĥ

(2)
n denote this refined estimate of

hn, obtained via two-level probing. We can show that

ĥ(2)
n =

√
ρ

2ρM + 1

2M∑

i=1

Yi, (13)

Furthermore, the estimate ĥ
(2)
n , and the corresponding estima-

tion error, h̃(2), are uncorrelated, where

ĥ(2)
n ∼ CN

(
0,

ρ2M

ρ2M + 1

)
(14)

and
h̃(2)

n ∼ CN
(

0,
1

ρ2M + 1

)
. (15)

Finally, the resulting data rate is computed as

R(2)
n ≈ ρWσ2M |ĥ(2)

n |2, (16)

where σ2M is the corresponding linear rate back-off factor.
Next, we establish the relationship between the esti-

mates due to first-level and second-level probings. Simply
put, we are interested in obtaining an estimate of h from
(ĥ(1)

n ,
∑2M

n=M+1 Yn). Applying the Gram-Schmidt orthogo-
nalization procedure, we can transform (ĥ(1)

n ,
∑2M

n=M+1 Yn)
into orthogonal components. Then, we project h on these
components to represent ĥ

(2)
n as (see [10, Ch.4, p.130] for

more details):
ĥ(2)

n = ĥ(1)
n + he, (17)

where he ∼ CN (0, σ2
e), with σ2

e = Mρ
(Mρ+1)(2Mρ+1)

. Note that
ĥ

(1)
n and he are orthogonal. By orthogonality, we have

E[|ĥ(2)
n |2] = E[|ĥ(1)

n |2] + σ2
e . (18)

Thus, it follows that the expected rate of the second-level
probing conditioned on the rate due to first-level probing,
obeys the following relationship:

E[R(2)
n |R(1)

n ] = crR
(1)
n + Re,

where Re = σ2MWρσ2
e , and cr = σ2M

σM
. We note that Re

can be interpreted as the expected relative rate gain due to the
second level probing.

B. Scheduling options and rewards

In what follows, we devise DOS with two levels of probing
using optimal stopping theory. Drawing on the ideas from [6],
we show that optimizing the network throughput via DOS can
be cast as a maximal rate of return problem.

Consider the example in Fig. 1. It takes a total duration of∑n

j=1
Kjτ to reach the n-th round of probing. After the n-th

round of probing, the successful link has the following three
options after computing its rate R

(1)
n :

1) Transmit at rate R
(1)
n for a time duration of T = 1;

2) Defer transmission and let all nodes re-contend;
3) Perform second-level probing to obtain the new rate

R
(2)
n , and then decide whether to transmit at R

(2)
n for

a time duration of 1− τ , or to defer and re-contend.
Clearly, the basis for distributed opportunistic schedul-

ing with two-level probing is the observation sequence
{R(1)

n , R
(2)
n }n, with the option of skipping R

(2)
n . We empha-

size that the transmission duration after second-level probing
reduces to 1− τ , in contrast to the duration of one after first-
level probing.

Let φn : R+ → {0, 1, 2} and ψn : R+ → {0, 1} be the
decision sequences after R

(1)
n = x is observed. In particular,
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φn(x) = 1 refers to transmitting at the current rate, φn(x) =
0 means giving up the transmission and re-contend, while
φn(x) = 2 indicates engaging in the second-level probing.
Furthermore, when φn(x) = 2, the final decision hinges on
R

(2)
n = y: if ψn(y) = 1, the link transmits at the refined rate,

whereas if ψn(y) = 0, the link gives up the transmission and
lets all nodes re-contend.

Let N be a stopping rule such that {N = n} ∈ Fn, where Fn

is the σ-algebra generated by {R(1)
j , R

(2)
j }j≤n. Stopping rule

N is given by

N = inf{n ≥ 1|φn = 1, or φn = 2 and ψn = 1}.
Let Tn be the total time, given by

Tn =
n∑

j=1

Kjτ + 1,

which is the sum of total contention time (and time due to
second-level probing, when performed) and the data transmis-
sion duration, Td,n = 1− I(φn = 2)I(ψn = 1)τ .

Let θ be the cost per unit system time. Then, the successful
contention, with first-level probing, incurs an average cost of
θτ/ps, the second-level probing incurs a further cost of θτ ,
whereas the data transmission for a duration of Td entails a
cost θTd.

Then, the expected net reward (expected return) is given by

r = E [RNTd,N − θTN ] , (19)

where Rn is the transmission rate after the n-th probing round
and is given by

Rn = I(φn = 1) ·R(1)
n + I(φn = 2)I(ψn = 1) ·R(2)

n ,

with I(·) being the indicator function. The corresponding rate
of return is E[RNTd,N ]/E[TN ]. The maximal expected return
is given by

r0 = sup
N∈Q

E [RNTd,N − θTN ] . (20)

Note that the expected return, r, depends on the decision
functions φ, ψ, and the cost θ. The principal objective is to
maximize the rate of return (i.e., the throughput) of the DOS
with two-level probing, defined as

θ∗ = sup
N∈Q

E [RNTd,N ]
E [TN ]

.

Summarizing, we are interested in seeking a stopping rule
N ∈ Q that obtains θ∗. The following lemma relates the
optimal throughput θ∗ to the expected optimal return r0, and
guarantees the existence of such an optimal stopping rule.

Lemma 1: For DOS with two-level probing, the optimal
stopping rule N∗ exists. Furthermore, θ∗ is attained at N∗,
and θ∗ satisfies

r0 = sup
N∈Q

E [RNTd,N − θ∗TN ] = 0,

Proof: See Appendix B.
Next, we derive the optimality equation for DOS with two-

level probing.
We begin by considering the option of second-level probing

and introducing its associated reward function. Suppose after

observing R
(1)
n = x, the link performs a second-level probing

to obtain R
(2)
n , and then uses an optimal strategy thereafter.

Then, depending on R
(2)
n = y, it may choose to transmit at

rate y, for a duration of 1 − τ ; or it would defer and re-
contend. Note that the reward associated with the transmission
is (y − θ)(1 − τ), and the reward associated with forgoing
the transmission is the expected return, r. Therefore, the link
engages in a transmission if (y − θ)(1− τ) > r, and defers its
transmission if (y − θ)(1− τ) ≤ r. In a nutshell, the expected
net reward corresponding to the second-level probing is then
given by

Jθ(x, r) , rG(
r

1− τ
+ θ|x)

+(1− τ)

∫ ∞

r
1−τ

+θ

(y − θ)G(dy|x)− θτ, (21)

where G(y|x) is the conditional cumulative distribution func-
tion (cdf) of R

(2)
n , given R

(1)
n = x. Note that G(y|x) is non-

central χ2 with two degrees of freedom. Furthermore, both
R

(1)
n and R

(2)
n are exponentially distributed. We use F and F1

respectively, to denote the cdfs of R
(1)
n and R

(2)
n . Finally, it

can be shown that lim
x→∞

G(y|x) = 0 and E [y|x] = crx + Re.

Upon observing R
(1)
n after the n-th probing round, the link

s(n) can obtain one of the following three rewards:
1) R

(1)
n − θ: the reward by transmitting at a rate R

(1)
n ;

2) r0: the reward obtained by forgoing the current opportu-
nity and re-contending (the maximum expected return);

3) Jθ(R
(1)
n , r0): the reward by resorting to refining the rate

via second-level probing.
The optimal strategy for the link is to choose the option that
yields the maximum of the above rewards. Therefore, the
optimality equation of DOS with two-level probing can be
represented by the following Bellman’s optimality equation:

E
[
max

{
R(1) − θ, r0, Jθ(R(1), r0)

}]
− θτ

ps
= r0, (22)

where R(1) has same distribution as R
(1)
n . Note that, in the

discussions above, we have factored out the cost for obtaining
the first successful channel probing, i.e. θτ/ps, since it is
common to all three returns. From Lemma 1, when the
throughput, as a function of θ, reaches its maximum, we have
that r0 = 0 at θ = θ∗. Thus, (22) can be rewritten as

E
[
max

{
R(1) − θ∗, Jθ∗(R(1), 0)

}]+

=
θ∗τ
ps

. (23)

Inspection of (23) indicates that the second-level probing is
optimal when Jθ∗(x, 0) > 0 and Jθ∗(x, 0) > x− θ∗ for some
x.

It is worth noting that the following fact holds:

θ∗ > θL
∆=

E[R(1)]
τ
ps

+ 1
. (24)

Note that θL corresponds to the throughput of PHY-Oblivious
scheduling, which is a single-level probing scheme with zero
threshold. This can be achieved by the degenerate stopping
rule, which stops at the very first time.
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C. Structure of optimal scheduling strategy

We next proceed to study the structure of the optimal
scheduling strategy. Essentially, the optimal strategy takes a
threshold form. Depending on the specific network setting,
the optimal strategy may admit one of the two intuitively
reasonable types, namely Strategy A and Strategy B. Generally
speaking, under Strategy A, it is always optimal to demand
additional information when the estimated rate lies between
two thresholds. This is the case when the gain due to second-
level probing is comparable with the additional overhead. In
contrast, under Strategy B, there is never a need to appeal
to second-level probing. This case occurs for example, when
the improvement due to the refinement is dominated by the
probing overhead. An extreme example of this case is when
perfect CSI is available to the transmitter.

Before we state the main result on the optimal strategy, we
define q(x) ∆= Jθ∗(x, 0) − x + θ∗. Intuitively speaking, q(x)
represents the expected gain achieved by second-level probing
compared to directly transmitting at the current rate. Thus, if
q(x) > 0, performing second-level probing is a better option
than directly proceeding to data transmission. We need the
following lemmas before characterizing the structure of the
optimal scheduling strategy.

Lemma 2: Jθ∗(x, 0) and q(x) are characterized by the
following properties:

i) Jθ∗(x, 0) is monotonically increasing in x with
lim

x→∞
Jθ∗(x, 0) = ∞, and lim

x→0
Jθ∗(x, 0) < 0 when

Re

θ∗ e−
θ∗
Re < τ

1−τ .
ii) For cr < 1

1−τ , q(x) is monotonically decreasing in x
with lim

x→0
q(x) > 0 and lim

x→∞
q(x) = −∞.

Proof: See Appendix C.
Remarks: Observe that the above conditions are stated in

terms of the design variables (e.g., τ and cr). It is clear that
Re ≤ θ∗, since Re is the relative gain due to rate refinement
and cannot be greater than the optimal throughput θ∗. Thus,
in the extreme case, where Re = θ∗, we have the pessimistic
bound Re

θ∗ e−
θ∗
Re < e−1, based on which it suffices to have

τ > 1/(1 + exp(1)) to guarantee that Condition i) holds. We,
however, caution that τ > 1/(1 + exp(1)) is just a sufficient
condition. Also, it is easy to satisfy the condition in ii) by
choosing cr ≤ 1/(1− τ)− δ, where δ > 0.

Lemma 3: There exists at most one solution, in terms of
{xJ , xq, θ

∗}, to the following system of equations:




∫∞
θ∗ (1−G(u|xJ))du = θ∗τ

1−τ ,

(cr(1− τ)− 1)xq + (1− τ)
(
Re +

∫ θ∗

0
G(u|xq)du

)
= 0,∫ xq

xJ
Jθ∗(u, 0) dF (u) +

∫∞
xq

(u− θ∗) dF (u) = θ∗τ
ps

.
(25)

Recall that xJ and xq are the solutions to Jθ∗(x, 0) = 0 and
q(x) = 0, respectively. From Lemma 2, it is easy to see that
there is at most one pair {xJ , xq} satisfying (25). Similarly,
since Jθ∗(x, 0) and q(x) intercept at x = θ∗, there exists at
most one θ∗ due to the monotonic nature of Jθ∗(x, 0) and
q(x).

For convenience, let {xJ , xq, θ
∗
A} denote the solution to (25)

with xJ ≤ xq, and θ∗B be the solution to (12). Using the above

lemmas, we obtain the following result on the structure of
optimal scheduling strategy.

Theorem 1: The optimal strategy for DOS with two-level
probing, takes one of the two forms:
[Strategy A] It is optimal for the successful link

i) to transmit immediately after the first-level probing if
R

(1)
n > xq; or

ii) to give up the transmission and let all links re-contend
if R

(1)
n < xJ ; or

iii) to engage in second-level probing if R
(1)
n ∈ [xJ , xq];

upon computing the new rate R
(2)
n , transmit at rate R

(2)
n

if R
(2)
n > θ∗A, or to give up the transmission otherwise.

Furthermore, the throughput under Strategy A is θ∗A.
[Strategy B] There is never a need to perform second-level
probing. That is, it is optimal for the successful link to
transmit at the current rate R

(1)
n if R

(1)
n > θ∗B , or to defer

its transmission and re-contend otherwise. Furthermore, the
throughput under Strategy B is θ∗B .

Proof: See Appendix D.

D. Optimality conditions

In previous sections, we have studied DOS with two-level
probing within the OST framework, and characterized the
structure of optimal scheduling strategies. Our findings reveal
that optimal scheduling may take either of two forms: Strategy
A or Strategy B. The next key step is to determine the
conditions under which it is optimal to use Strategy A or
Strategy B. We show that this can be easily determined by
performing a threshold test on the function Jθ∗(·, ·). We have
the following theorem.

Theorem 2: Strategy A is optimal if Jθ∗
A

(θ∗A, 0) ≥ 0; else,
Strategy B is optimal.

Proof: See Appendix E.

E. Numerical results

In this section, we provide a numerical example to illustrate
the effectiveness of the proposed DOS with two-level probing
under noisy estimation. Specifically, we compare the perfor-
mance of the proposed DOS with two-level probing, with that
of DOS with one-level probing and PHY-oblivious scheduling.
The baseline for comparison is the PHY-oblivious scheduling
that does not make use of any link-state information. We focus
on the relative gain over PHY-oblivious scheduling, which is
a function of ρM , and is defined as

Γ(ρM) =
θ − θL

θL
.

We set ps = exp(−1), M = 300 and W = 3000, so
that τt = 0.1 and τ = 0.2. Fig. 5 depicts the performance
comparison. It is clear that the relative gain achieved by DOS
with two-level probing substantially outperforms that obtained
by DOS with one-level probing. Observe that the performance
gain is significant in the low SNR regime (i.e., smaller values
of α). As α increases, the relative gain of DOS with two-
level probing approaches that of DOS with one-level probing,
and our intuition is that, for higher values of α, the cost of
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Fig. 4. A structural sketch for Strategy B.

overhead offsets that of the rate gain due to additional probing.
Accordingly, the “gray area” between two thresholds (xh and
xq) collapses, and the optimal strategy degenerates to Strategy
B, which is essentially DOS with first-level probing.
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IV. DOS WITH TWO-LEVEL PROBING: A CASE WITH
LIMITED FEEDBACK

In the above studies, it is assumed that for the link with
successful contention, its transmitter has the knowledge of the
rate estimate for data transmissions. In some practical sce-
narios, there is only limited feedback from the receiver to the
transmitter. With this motivation, we extend the study on DOS
with two-level probing, to the case where the feedback from
the receiver to its transmitter takes the form (0, 1, e). More
specifically, the decisions from the receiver to the transmitter
are conveyed by using “NACK/ACK/ERASURE” signaling,
where “NACK” is represented by “0” corresponding to the
decision of defer and re-contend, “ACK” by “1” corresponding
to the decision of transmit, and “ERASURE” by “e” indicating
that the rate estimate falls in the gray area.

A. One-level probing

We first consider DOS with one-level probing, with one-
bit feedback from the receiver to its transmitter. The basic
idea is as follows. A constant transmission rate, denoted as
R1, is pre-determined and known to the transmitter, and the
data transmission takes place only when the one-bit feedback
is “1”. A central problem here is to design the transmission
strategy for maximal throughput. Let γ be the price function
per unit time. Then, given its current rate estimate R

(1)
n , the

successful link in the the n−th probing has two options:
• “1”— transmit at rate R1, and the corresponding reward

is R1I(R(1)
n > R1)− γ;

• “0”— defer and re-contend, with the expected reward of
r0.

Clearly, there is an average cost of γτ/ps for every successful
contention.

Let γ̂ , sup
N∈Q

E[RNT ]/E[TN ] be the optimal throughput.

Then, based on Lemma 1, the optimality equation is given
by

E
[
R1I(R(1) > R1)− γ̂

]+

=
γ̂τ

ps
. (26)

As a result, we can show that the optimal policy in this case
still has a threshold structure with R1 being the threshold.
Furthermore, noting that R

(1)
n ∼ exp(E[R(1)]), we conclude

that the average throughput is given as

γ̂ =
R1e

− R1
E[R(1)]

τ
ps

+ e
− R1

E[R(1)]

.

Observe that γ̂ is a function of R1. For a given stopping rule,
R1 can be chosen to maximize the throughput, i.e., the optimal
transmission rate R̂1 and the corresponding throughput obey
that

R̂1 = arg max
R1

γ̂; and γ̂max = γ̂(R̂1).

It can be shown that R̂1 is the solution to(
R1

E[R(1)]
− 1

)
e

R1
E[R(1)] =

ps

τ
. (27)
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It follows that the optimal throughput is given by

γ̂max = R̂1 − E[R(1)] =
ps

τ
E[R(1)]e

−R̂1
E[R(1)] . (28)

B. Two-level probing

Next, we study DOS with two-level probing, with the
feedback taking the form of (0, 1, e). Along the same line as
in the studies in Section III, the receiver of the successful link,
depending on its rate estimate R

(1)
n , presents three options to

its transmitter:
• “1”— transmit at the rate R1;
• “0”— defer and re-contend;
• “e”— perform a second-level probing to obtain R

(2)
n , and

then decide:
– “1”— to transmit at rate R1;
– “0”— defer and re-contend.

Define γ∗ = sup
N∈Q

E[RNTd,N ]/E[TN ], which represents the op-

timal throughput for the given R1. By Theorem 1, this
corresponds to r0 = 0. Since, γ∗ is the function of the rate
R1, we further maximize the throughput over all choices of
R1, by defining γ∗max = max

R1
γ∗.

We can write the expected net reward function correspond-
ing to the second-level probing as

Vγ∗(x,R1) = (1− τ)(R1 − γ∗)
∫ ∞

R1

G(dy|x)− γ∗τ,

which can be further simplified as

Vγ∗(x,R1) = (1− τ)(R1 − γ∗) (1−G (R1|x))− γ∗τ.

The optimality equation in this case is given by

E
[
max

{
R1I

(
R(1) ≥ R1

)
− γ∗, Vγ∗(R

(1), R1)
}]+

= γ∗
τ

ps
.

(29)
The following lemma gives useful bounds on the optimal

throughput.
Lemma 4: For a given transmission rate R1, the optimal

throughput obeys that

γL ≤ γ∗ ≤ γU ,

where

γL , (1− τ)R1

(1− τ) + τ
(
1 + 1

ps

)
e

R1
E[R(2)]

; γU , R1

1 + τ
ps

.

Remarks:
a) The lower bound γL is obtained by using a strategy where
the successful link always performs a second level probing,
and then decides to transmit for a duration of 1− τ or to re-
contend.
b) The upper bound γU is achieved by a genie aided scheme,
where the successful link contends only when its channel is
good and there is no transmission outage.

Next we turn our attention to structural properties of the
optimal strategy. For convenience, define the relative gain
function as

qγ∗(x,R1) , Vγ∗(x,R1)−R1I(x ≥ R1) + γ∗.

Lemma 5: Vγ∗(x, R1) and qγ∗(x,R1) are characterized
by the following properties:

i) Vγ∗(x,R1) is monotonically increasing in x. Further-
more, lim

x→∞
Vγ∗(x,R1) = c1 > 0, if τ ≤ 1 − ps, and

lim
x→0

Vγ∗(x, R1) < 0, when τ ≥ 0.5(ln(1 + 1
ps

)− 1).
ii) qγ∗(x,R1) ≥ 0 for x < R1; and qγ∗(x,R1) < 0 for

x ≥ R1.
Proof: See Appendix F.

The above lemma serves as the basis to determine the
optimal DOS scheduling under the feedback of (0, 1, e).
Specifically, from the properties of Vγ∗(·, R1), there exists
some xv such that

Vγ∗(x, R1) ≥ 0, ∀x ≥ xv, (32)

which, in turn, gives a threshold below which the option of
“defer and re-contend” is optimal. From the properties of
qγ∗(·, R1), it is also clear that for all x ≥ R1, it is opti-
mal to transmit immediately without a second-level probing.
Therefore, the interval [xv, R1] defines the gray area where
one could benefit from performing a second-level probing.

We note that the throughput, denoted by γ∗, is the parameter
to be optimized over the thresholds xv and R1. Combin-
ing (29) and (32), we establish (30) and (31) that relate
three key parameters, namely the lower threshold xv , the
transmission rate R1, and the throughput γ∗. It can be seen
from (30) and (31) that xv = f1(R1, γ

∗) and γ∗ = f2(xv, R1),
indicating that γ∗ = g(R1). Then, R1 can be chosen to the
one maximizing g(R1), i.e.,

R∗1 = arg max
R1

g(R1); and γ∗max = g(R∗1).

Accordingly, the optimal x∗v is given by

x∗v = f1(R∗1, γ
∗
max).

Let {x∗v, R∗1, γ
∗
max} be the set of parameters obtained as

outlined above. Also, let R̂1 be the solution to (27). The
optimal strategy in the case with limited feedback is given
by the following result.

Theorem 3: The optimal strategy for DOS with two-level
probing, with (0, 1, e) feedback, takes one of the two forms:
[Strategy A] It is optimal for the receiver of the successful
link to

i) feed back “1” if R
(1)
n ≥ R∗1, indicating to transmit at

rate R∗1 immediately after the first-level probing; or
ii) feed back “0” if R

(1)
n < x∗v , indicating to give up the

transmission and let all links re-contend; or
iii) feed back “e” if R

(1)
n ∈ [x∗v, R∗1), indicating to engage

in second-level probing; and upon computing the new
rate R

(2)
n ,

a) feed back “1” if R
(2)
n ≥ R∗1, indicating to transmit

at rate R∗1; or
b) feed back “0” if R

(2)
n < R∗1, indicating to give up

the transmission and re-contend.
Furthermore, the throughput under Strategy A is γ∗max.
[Strategy B] There is never a need to perform second-level
probing. That is, it is optimal for receiver of the successful
link to
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γ∗ =
(1− τ)R1

∫ R1

xv
(1−G(R1|u))dF (u) + R1e

− R1
E[R(1)]

(1− τ)
(∫ R1

xv
(1−G(R1|u))dF (u) + e

− R1
E[R(1)]

)
+ τ( 1

ps
+ e

− xv

E[R(1)] )
(30)

(1− τ)(R1 − γ∗) (1−G (R1|x)) = γ∗τ. (31)

i) feed back “1” if R
(1)
n ≥ R̂1, indicating to transmit at

rate R̂1; or
ii) feed back “0” if R

(1)
n < R̂1, indicating to give up the

transmission and re-contend.

Furthermore, the throughput under Strategy B is γ̂.
Proof: The proof follows the same line of that for

Theorem 1.

V. CONCLUSION

We have considered distributed opportunistic scheduling
for single-hop ad-hoc networks in which many links contend
for the same channel using random access. Specifically, we
have investigated DOS with two-level channel probing by
optimizing the tradeoff between the throughput gain from
more accurate rate estimation and the corresponding probing
overhead. Capitalizing on optimal stopping theory with two-
level incomplete information, we have showed that the optimal
scheduling policy is threshold-based and is characterized by
either one or two thresholds, depending on system settings.
We have also identified optimality conditions. In particular, our
analysis reveals that DOS with second-level channel probing is
optimal when the first-level estimated rate falls in between the
two thresholds. By a numerical example, we have illustrated
the effectiveness of the proposed DOS with two-level channel
probing. Finally, we considered the extension of DOS with
two-level probing to the case where there is a limited feedback,
of the form (0, 1, e), from the receiver to its transmitter.

So far, we have considered DOS with two-level probing,
where we assumed that the refinement of the rate estimate
is carried out once, via second-level probing of duration τ .
However, we can further extend this to L−level probing, where
for k = 1, . . . , L − 1 has the options 1) to transmit, or 2) to
defer and re-contend, or 3) to resort to (k+1)−st level training
at the cost of additional overhead. It is of great importance to
devise well-structured, yet simple policies.

We note that the proposed distributed scheduling with
two-level probing provides a new framework to study joint
PHY/MAC optimization in practical networks where noisy
probing is often the case and imperfect information is in-
evitable. We believe that this line of study provides some
initial steps towards opening a new avenue for exploring the
intrinsic tradeoffs between probing (sensing) and scheduling
to enhance spectrum utilization; and this is potentially useful
for enhancing MAC protocols for wireless mesh networks and
cognitive radio networks. Notably, a very recent work [9] has
applied our methods [22] to study optimal selection of channel
sensing order in cognitive radio networks.

APPENDIX A
DERIVATION OF RATE EQUATION (11)

Let β(1) , E
[
|h̃(1)|2

]
, we follow the approach proposed

in [17] and normalize |ĥ(1)|2 and |h̃(1)|2 as

λ̂(1) =
|ĥ(1)|2

1− β(1)
, (33)

ζ(1) =
|h̃(1)|2
β(1)

, (34)

where both λ̂(1) and ζ(1) are exponential-distributed with unit
variance.

Defining the “effective channel SNR” and “normalized error
variance” as

ρ
(1)
eff , (1− β(1))ρ, (35)

α(1) , β(1)

1− β(1)
, (36)

respectively. Substituting (35) and (36) in (10) results in

λ(1) =
ρ
(1)
eff λ̂(1)

1 + α(1)ρ
(1)
effζ(1)

. (37)

It has been shown in [17] that the conditional probability
distribution function (pdf) of λ(1) given λ̂(1) takes the follow-
ing form

f
(
λ(1)

∣∣ λ̂(1)
)

=
λ̂(1)

α(1) [λ(1)]
2

exp

{
− 1

α(1)

(
λ̂(1)

λ(1)
− 1

ρ
(1)
eff

)}

I

(
λ̂(1)

λ(1)
≥ 1

ρ
(1)
eff

)
, (38)

where I(·) is the indicator function.
The following linear backoff function is employed to pre-

vent channel outage.

λc(λ̂(1)) = σMρeff λ̂(1), (39)

where σM is the backoff factor with 0 < σM < 1. Let R
(BK)
n

be the instantaneous rate with backoff, which is given by

R(BK)
n = log

(
1 + λc(λ̂n)

)
I
(
λc(λ̂n) ≤ λn

)
. (40)

We note that, due to the estimation errors, the instantaneous
rate, R

(BK)
n defined in (40), is now a random variable, and

is not observable at time n. Moreover, since {(ρ|ĥj |2, Kj)}j≤n

is the only observable sequence, the decision has to be made
solely based on F ′, the σ-field generated by {(ρ|ĥj |2, Kj)}j≤n.
However, it can be shown that the optimal scheduling strategy
and the optimal throughput remain the same if the random
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“reward” R
(BK)
n is replaced with its conditional expectation,

denoted as R
(1)
n [6, Page 1.3] [2]. As a result, the schedul-

ing can now be based on R
(1)
n instead of R

(BK)
n , where

R
(1)
n

∆
= E

[
R

(BK)
n |F ′

]
. Using (38) and (39), the conditional

expectation R
(1)
n can be computed as

R(1)
n =E

[
R(BK)

n |F ′
]

=E
[
log

(
1 + λc(λ̂

(1))
)
I
(
λc(λ̂

(1)) ≤ λ(1)
)
|F ′

]
,

=

[
1− exp

{
−

(
1

σM
− 1

)

α(1)ρ
(1)
eff

}]
W log

(
1 + σMρ|ĥ(1)|2

)
.(41)

For the low SNR wideband regime where ρ → 0 and W =
Θ( 1

ρ ), R
(1)
n can be well approximated by

R(1)
n ≈ ρWσM |ĥ(1)|2. (42)

APPENDIX B
PROOF OF LEMMA 1

For a given θ, let N(θ) be a stopping rule such that

N(θ) = arg sup
N∈Q

E [RNTd,N − θTN ] .

Let Zn
∆
= RnTd,n − θTn. Then, it follows from Theorem 1

in [6, Chapter 3] that N(θ) exists if the following conditions
are satisfied:

(A1) E[sup
n

Zn] < ∞, and (A2) lim sup
n→∞

Zn = −∞, a.s.,

Since, it is clear that lim sup
n→∞

Zn = −∞, we can easily verify

(A2).
For some 0 < µ < 1/ps, we introduce

Z ′n = max{R(1)
n , R(2)

n }T − n(θ
τ

ps
− µ)

and

Z ′′n =
n∑

j=1

(
1
ps
−Kj − µ

)
.

Then, we note that

E

[
sup

n
Zn

]
≤ E

[
sup

n
Z ′n

]
+ E

[
sup

n
Z ′′n

]

Appealing to Theorem 1 and Theorem 2 of [6, Chapter 4],
we conclude that E [Z′n] < ∞ and E [Z′′n ] < ∞, respectively.
Therefore (A1) holds.

The second part of the lemma follows directly from Theo-
rem 1 in [6, Ch.6].

APPENDIX C
PROOF OF LEMMA 2

a) Using integration by parts, we rewrite Jθ∗(x, r) as

Jθ∗(x, 0) = (1− τ)
∫ ∞

θ∗
(1−G(u|x))du− θ∗τ. (43)

Since G(y|x) decreases monotonically with x, Jθ∗(x, 0)
is also monotonically increasing in x. Note that lim

x→∞
(1 −

G(u|x)) = 1. Then, by Lebesgue’s convergence theorem, we
have limx→∞ Jθ∗(x, 0) = ∞. Let z =

√
σ2MWρhe, where

z ∼ CN (0, Re), with Re = σ2MWρσ2
e . Then, from (17),

it follows that lim
x→0

G(y|x) = G|z|2(y) = 1 − e
− y

Re , and
consequently,

lim
x→0

Jθ∗(x, 0) = (1− τ)Ree
− θ∗

Re − θ∗τ. (44)

Thus, under the condition Re/θ∗e−
θ∗
Re < τ/(1− τ),

lim
x→0

Jθ∗(x, 0) < 0. (45)

b) Using integration by parts, we can rewrite Jθ∗(x, r) as

Jθ∗(x, 0) = (1−τ)

(
crx + Re − θ∗ +

∫ θ∗

0

G(u|x)du

)
−θ∗τ (46)

It follows that

q(x) = (cr(1− τ)− 1)x + (1− τ)Re + (1− τ)

∫ θ∗

0

G(u|x)du.

We can verify that

lim
x→0

q(x) = Re(1− τ) + (1− τ)θ∗ > 0

Furthermore, when cr < 1
1−τ

, it is clear that

lim
x→∞

q(x) = −∞.

Since G(y|x) is monotonically decreasing in x, we conclude
that q(x) is also monotonically decreasing in x.

APPENDIX D
PROOF OF THEOREM 1

Let xJ and xq be solutions to Jθ∗(x, 0) = 0 and q(x) = 0
respectively. From Lemma 2, we have

Jθ∗(x, 0)

{
< 0 if x < xJ

= 0 if x = xJ

> 0 if x > xJ

(47)

and

q(x)

{
< 0 if x > xq

= 0 if x = xq

> 0 if x < xq.
(48)

Thus, one of the following two possibilities holds.
1) The case with xq ≥ xJ :

From the above discussions and the monotonicity prop-
erties of Jθ∗(·, 0) and q(·), it follows that

max [x− θ∗, Jθ∗(x, 0)]
+

=

{
x− θ∗ if x > xq

Jθ∗(x, 0) if x ∈ [xJ , xq]
0 if x < xJ

(49)
Furthermore, from (49) and the optimality equa-

tion (23), we have that∫ xq

xJ

Jθ∗(u, 0) dF (u) +

∫ ∞

xq

(u− θ∗) dF (u) =
θ∗τ
ps

. (50)

Consequently, it is clear that the optimal strategy is

φn(R(1)
n ) =





1 (transmit) if R
(1)
n > xq

2 (2-level) if R
(1)
n ∈ [xJ , xq]

0 (re-contend) if R
(1)
n < xJ

(51)

and when φn(R(1)
n ) = 2, the strategy is

ψn(R(2)
n ) =

{
1 (transmit) if R

(2)
n ≥ θ∗A

0 (re-contend) if R
(2)
n < θ∗A

(52)
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where θ∗A is the solution to (50). It can be seen
that thresholds xJ and xq are found as the solutions
to Jθ∗(x, 0) = 0 and q(x) = 0 respectively. Thus,
{xJ , xq, θ

∗
A} is the solution to the system (25). An

illustration of Strategy A is depicted in Fig. 3.

2) The case with xq < xJ :
From (47) and (48), we have

max [x− θ∗, Jθ∗(x, 0)]
+

=

{
x− θ∗ if x ≥ θ∗

0 if x < θ∗ (53)

and Jθ∗(x, 0) < max [x− θ∗, 0]. Therefore, it is never
optimal to perform second-level probing. From (53) and
the optimality equation (23) we obtain

∫ ∞

θ∗
(x− θ∗) dF (x) =

θ∗τ
ps

,

which is equivalent to (12). Thus from (53), the optimal
strategy is

φ(R(1)
n ) =

{
1 (transmit) if R

(1)
n ≥ θ∗B

0 (re-contend) if R
(1)
n < θ∗B ,

(54)

where the threshold θ∗B is the solution to (12). An
illustration of Strategy B is depicted in Fig. 4.

APPENDIX E
PROOF OF THEOREM 2

Suppose Jθ∗
A

(θ∗A, 0) ≥ 0. Then, this implies that
Jθ∗

A
(θ∗A, 0) ≥ max[x − θ∗A, 0] when x = θ∗A. Specifically,

when R
(1)
1 = θ∗A, performing second-level probing and using

an optimal strategy thereafter yield an expected reward of
Jθ∗

A
(θ∗A, 0), which is at least as good as using Strategy B.

Equivalently, we show that there exists at least one value of x
(θ∗A in this case) for which performing second-level probing
is optimal. We conclude that Strategy A is optimal.

Next, we assume Strategy A is optimal and show that
Jθ∗

A
(θ∗A, 0) ≥ 0. Under such an assumption, there must exist

some x1 for which it is beneficial to demand additional
information, i.e.

Jθ∗
A

(x1, 0) ≥ max[x1 − θ∗A, 0]. (55)

We now investigate Jθ∗
A
(θ∗A, 0) in two different cases, namely

θ∗A ≥ x1 and θ∗A < x1.
1) The case with θ∗A ≥ x1:

In this case,

Jθ∗
A

(θ∗A, 0) ≥ Jθ∗
A

(x1, 0) ≥ max[x1 − θ∗A, 0] = 0, (56)

where the first and second inequalities are due to the
monotonicity of J(·, 0) and the assumed optimality of
Strategy A, respectively.

2) The case with θ∗A < x1:
In this case,

Jθ∗
A
(θ∗A, 0) ≥ Jθ∗

A
(x1, 0)− x1 + θ∗A ≥ 0, (57)

where the first inequality follows from the fact that
JθA(x, 0) − x + θ is decreasing in x and the second
inequality is due to (55).

Summarizing the above two cases, we conclude that
Jθ∗

A
(θ∗A, 0) ≥ 0 is a necessary condition for the optimality of

Strategy A. Using contra position, we conclude that Strategy
B is optimal if Jθ∗

A
(θ∗A, 0) < 0.

APPENDIX F
PROOF OF LEMMA 5

It is clear that Vγ∗(x,R1) is monotonically increasing in x,
and that

lim
x→∞

Vγ∗(x,R1) = (1− τ)R1 − γ∗.

Since γ∗ ≤ γU , it follows that lim
x→∞

Vγ∗(x,R1) > 0, provided
that τ ≤ 1− ps. Furthermore, observe that

lim
x→0

Vγ∗(x,R1) = (1− τ)(R1 − γ∗)e−
R1
Re − γ∗τ

≤ γ∗
(

(1− τ)(
R1

γL
− 1)e−

R1
Re − τ

)

= τγ∗
(

(1 +
1
ps

)e
R1

E[R(2)] e−
R1
Re − 1

)

≤ τγ∗
(

(1 +
1
ps

)e−(1+2τ) − 1
)

,

where the last inequality follows due to the fact that E[R(2)]
R1

≤
1 and E[R(2)]

Re
≈ (1 + 2τ). We conclude that

lim
x→0

Vγ∗(x,R1) < 0, for τ ≥ 0.5
(

ln
(

1 +
1
ps

)
− 1

)
.

The second part follows from the facts that for x ≥ R1,

qγ∗ (x, R1)

= (1− τ) (1−G (R1|x)) (γ∗ −R1)− τR1 < 0,

and for x < R1,

qγ∗ (x, R1)

= (1− τ)R1 (1−G (R1|x)) + (1− τ)G (R1|x) γ∗ ≥ 0.
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