
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Privacy Preserving String Comparisons
Based on Levenshtein Distance

Rane, S.; Sun, W.

TR2010-109 December 2010

Abstract

Alice and Bob possess strings x and y of length m and n respectively and want to compute the
Levenshtein distance L(x, y) between the strings under privacy and communication constraints.
The Levenshtein distance, or edit distance, has a dynamic programming formulation that solves
a series of minimumfinding problems. Based on this formulation, there are known symmet-
ric privacy-preserving protocols for the computation of L(x, y), in which the two parties incur
equal protocol overhead. In this work, we propose an asymmetric two-party protocol in which
a lightweight client Bob with a string y interacts with a single powerful server Alice containing
string x in its database. We present a privacy-preserving minimum-finding protocol based on se-
mantically secure homomorphic functions and additive secret sharing. This protocol is executed
repeatedly, to enable private computation of the edit distance. Our protocol supports arbitrary
finite insertion/deletion costs and a variety of substitution costs. While Alice requires similar
effort as in previous approaches, the advantage is that Bob incurs far fewer ciphertext operations
and transmissions, making the protocol well-suited for client-server querying applications.

IEEE International Workshop on Information Forensics and Security (WIFS)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2010
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Privacy Preserving String Comparisons
Based on Levenshtein Distance

Shantanu Rane and Wei Sun
Mitsubishi Electric Research Laboratories, Cambridge, MA 02139

{rane,weisun}@merl.com

Abstract—Alice and Bob possess strings x and y of length m
and n respectively and want to compute the Levenshtein distance

L(x,y) between the strings under privacy and communication

constraints. The Levenshtein distance, or edit distance, has a dy-

namic programming formulation that solves a series of minimum-

finding problems. Based on this formulation, there are known

symmetric privacy-preserving protocols for the computation of

L(x,y), in which the two parties incur equal protocol overhead.

In this work, we propose an asymmetric two-party protocol

in which a lightweight client Bob with a string y interacts

with a single powerful server Alice containing string x in

its database. We present a privacy-preserving minimum-finding

protocol based on semantically secure homomorphic functions

and additive secret sharing. This protocol is executed repeatedly,

to enable private computation of the edit distance. Our protocol

supports arbitrary finite insertion/deletion costs and a variety

of substitution costs. While Alice requires similar effort as in

previous approaches, the advantage is that Bob incurs far fewer

ciphertext operations and transmissions, making the protocol

well-suited for client-server querying applications.

I. INTRODUCTION

The problem of comparing two strings arises in many engi-
neering systems, examples of which include keyword search
with spelling mistakes, plagiarism detection, spoken query
search, and comparison of gene sequences. Often, it is desired
to find out if the strings are similar according to a suitable
distance metric. One distance measure used to determine
the extent to which two strings differ, is the Levenshtein
distance [1] or edit distance. Informally, the edit distance
between two strings represents the cost of making insertions,
deletions and substitutions to transform one string into the
other. A related problem is to determine the length of the
longest subsequence that is common among two strings. Both
these problems are solved using two very similar dynamic
programming formulations [2].

The problem of computing edit distance becomes more
complicated when the two strings are owned by two untrusting
parties. In particular, private edit distance computation requires
the parties to work through a dynamic programming solution
without revealing any portion of the strings to each other. The
literature contains a solution in which a “customer” Carol
owns two strings x and y and outsources the computation
to two untrusted servers [3], [4]. This is an elegant solution
in which additive secret sharing is employed by Carol and

WIFS’2010, December 12-15, 2010, Seattle, WA, USA. 978-

1-4244-9080-6/10/$26.00 c�2009 IEEE.

the servers to prevent either server from finding out anything
about x and y. The servers are symmetric with respect to the
computation and communication overhead, and are assumed
not to collude with each other. To our knowledge, the only
other work on this problem is the three-party protocol of
Inan et al. [5] in which Alice and Bob enlist the help of a
semi-honest third party. In this solution, the third party finds
out nothing about Alice’s string x and Bob’s string y but does
find out the edit distance between every substring of x and y.

We tackle the privacy-preserving edit distance computation
from a different perspective. Specifically, there is a client Bob
who wishes to compute the edit distance between his string y
and another string x which is stored by a database server,
Alice. Bob has limited computation capability and upload
bandwidth while Alice has a more powerful computer with
higher upload bandwidth. Therefore our protocol is designed
to be asymmetric in terms of the computational and commu-
nication load that it places on Alice and Bob. This asymmetric
scenario is more common in practice; a lightweight end-user
wants to perform a private query against a more powerful
database server. Moreover, since there are only two parties,
the problem of collusion need not be considered. We assume
that the parties are semi-honest, i.e., they will follow the rules
of the protocol but will attempt to glean as much information
as possible from the data that is available to them at each
intermediate step.

The main tools used in our protocols are additive secret
sharing and semantically secure additively homomorphic en-
cryption. Semantic security ensures that repeated encryptions
of the same plaintext result in different ciphertexts. Usually,
semantic security is accomplished by using a random parame-
ter at the time of encryption; the ciphertext differs depending
on the value of the random parameter, which is not required at
the time of decryption. We will point out wherever semantic
security is useful in our protocols, but the random parameter
will be omitted to avoid notational clutter. The protocol
works with any of the published semantically secure additive
homomorphic cryptosystems of Paillier [6], Damgård-Jurik [7]
and Benaloh [8]. We have previously used homomorphic
encryption to develop efficient privacy-preserving protocols
for computation of Hamming distance, squared error [9] and
absolute error [10] between two sequences of equal length. In
this work, the focus is on comparing strings not necessarily
of equal length.

The remainder of this paper is organized as follows: Sec-

tion II gives a formal definition of edit distance and describes
a dynamic programming solution to compute it. Section III
proposes a privacy-preserving minimum-finding protocol that
will be used as a primitive in the edit distance computation.
Section IV describes privacy-preserving protocols for effi-
ciently computing some commonly used substitution costs. In
Section V, the full privacy-preserving edit distance protocol is
described, using repeated invocations of the minimum-finding
and substitution cost protocols. Finally, Section VI extends
the edit distance protocol to the problem of measuring the
similarity between two strings without sharing them.

II. STRING EDIT DISTANCE

Consider a finite alphabet set A whose elements will be used
to construct strings. Let ZI ,ZD and ZS be finite sets whose
elements are finite integers. Let the function I : A �→ ZI be
the insertion cost function, i.e., I(a) is the cost of inserting
the element a ∈ A into a given string. Similarly, define the
deletion cost function as D : A �→ ZD so that D(a) is the cost
of deleting the element a from a given string. Finally, define
the substitution cost function S : A × A �→ ZS so that, for
a, b ∈ A, S(a, b) is the cost of replacing the element a in a
given string by the element b.

Now consider two strings of length m and n, denoted by
x ∈ Am and y ∈ An. Consider the sequence of insertion,
deletion and substitution operations needed to transform
x into y and the corresponding aggregate cost of the
transformation. For a given pair of strings, the sequence of
operations and the aggregate cost is not unique in general.

Definition 1: The string edit distance or Levenshtein dis-
tance is defined as the minimum aggregate cost of transform-
ing x into y.

Definition 2: For all a, b ∈ A, let I(a) = D(a) = 1,
S(a, b) = 1 when a �= b, and S(a, a) = 0. Then, the edit
distance is defined as the minimum number of insertions,
deletions and substitutions required to convert x into y.

A. Dynamic Programming Formulation

When x = x1x2...xm and y = y1y2...yn are clear from the
context, we use L(i, j) to denote the edit distance between the
two substrings x1x2...xi and y1y2...yj . Thus, L(x,y) can also
be written L(m, n). The problem of finding the edit distance
can be solved in O(mn) time by a well-known dynamic
programming formulation [2] which we will adapt to the two-
party scenario of this paper.

Fix L(0, 0) = 0. Define for 1 ≤ i ≤ m, 1 ≤ j ≤ n:

L(i, 0) =
i�

k=1

I(xk) and L(0, j) =
j�

k=1

D(yk) (1)

Then, the edit distance L(m, n) is defined by the following
recurrence relation for 1 ≤ i ≤ m, 1 ≤ j ≤ n:

L(i, j) = min






L(i− 1, j) + D(yj),
L(i, j − 1) + I(xi),

L(i− 1, j − 1) + S(xi, yj)




 (2)

0 1 2 3 4

1 1 2 3 4

2 2 2 2 3

3 3 3 3 2

1

2

3

4

1 2 3 4 50

F

A

S

T

F I R S T

L(i,j)L(i,0)

L(0, j)

L(m,n)

Accumulated
Insertion Costs

Accumulated
Deletion Costs

Edit Distance

Alice obtains encryptions of these
via private minimum-finding protocol

Fig. 1. An example of edit distance computation, in which Alice owns the
string FAST and Bob owns the string FIRST. In our asymmetric setup, only
Bob, the end-user possesses the decryption key for additively homomorphic
encryption. Alice, the server, computes the encryptions of L(i, j) via an
interactive protocol that will be described in the subsequent sections.

The remainder of this paper describes how Alice and Bob
can compute L(i, j) in a privacy-preserving manner. A high-
level description of the protocol is as follows: Alice, the more
powerful computer, engages in a minimum-finding protocol
with Bob, at the end of which, she obtains encryptions of
L(i, j). She is not able to decrypt these values and therefore
is unable to extract any information about Bob’s string y.
The protocol does not allow Bob to discover L(i, j), 1 ≤ i <

m, 1 ≤ j < n, thereby keeping Alice’s string concealed from
Bob. At the end of the protocol, Alice sends the encryption
of L(m, n) to Bob, who decrypts it and obtains the desired
edit distance. If necessary, Bob can then share this value with
Alice. Fig. 1 shows an example of edit distance calculation
under this framework. The example shown in the figure uses
unit insertion costs, unit deletion costs, and indicator function
substitution costs as in Definition 2

Our method is motivated by the asymmetry in the compu-
tational capabilities of Alice and Bob, and therefore differs
from the symmetric approach of [3], [4] in which Alice and
Bob compute additive shares of L(i, j) for all i, j. Before
describing the string edit distance protocol, we first describe a
privacy-preserving minimum-finding protocol for two parties.
The minimum-finding protocol is a primitive that will be
invoked repeatedly in order to find the string edit distance.

III. PRIVACY-PRESERVING MINIMUM FINDING

Let (ke, kd) be the encryption/decryption key pair for
a semantically secure additively homomorphic public key
cryptosystem. Denote the encryption and decryption functions
by ξ(·) and ξ−1(·) respectively. The additively homomorphic
property ensures that ξ(m1)ξ(m2) = ξ(m1 + m2) and
ξ(m1)m2 = ξ(m1m2) for integer messages m1, m2.
Further, consider a vector of integers z ∈ ZN . Let
ξ(z) = (ξ(z1), ξ(z2), · · · , ξ(zN)).

Inputs: Alice has the public encryption key ke and ξ(z), Bob
has the key-pair (ke, kd)
Outputs: Alice obtains ξ(min1≤i≤N zi). Bob obtains nothing.
Conditions: Bob should not discover any of the zi. Neither
Alice nor Bob should discover the index arg mini zi

The steps of the protocol are as follows:
1) Alice generates a permutation π on the set {1, 2, · · · , N}

and obtains an encrypted vector ξ(v) = π(ξ(z)).
2) Alice chooses an integer g > 0 and generates a matrix

G ∈ ZN×N as follows:

G =





g + g1 g2 g3 · · · gN

g1 g + g2 g3 · · · gN

g1 g2 g + g3 · · · gN
...

...
...

. . .
...

g1 g2 g3 · · · g + gN




. (3)

Let w = Gv. Then, for any 1 ≤ i, j ≤ N , wi − wj =
g(vi − vj), which means that for g > 0, G is an
order-preserving map1. In other words, vi ≤ vj iff
wi ≤ wj . Using the properties of additive homomorphic
encryption, Alice determines ξ(w) = ξ(Gv).

3) Alice generates a vector a ∈ ZN of random integers.
Using homomorphic properties, she obtains ξ(w − a)
and sends it to Bob.

4) Bob obtains b = w − a by element-wise decryption.
Notice that, at this stage Alice has a and Bob has b,
which are just additive shares of w. Therefore wi ≤ wj

iff ai + bi ≤ aj + bj iff ai − aj ≤ bj − bi.
5) Alice constructs a new vector a∆ whose elements are

the pairwise differences of the elements of a. Thus,
a∆ = (a1 − a2, a1 − a3, · · · , a1 − aN , a2 − a3, a2 −
a4, · · · , a2 − aN , · · · , aN−1 − aN). Similarly, Bob ob-
tains a vector b∆ = (b1− b2, b1− b3, · · · , b1− bN , b2−
b3, b2− b4, · · · , b2− bN , · · · , bN−1− bN). Observe that
a∆ and b∆ both contain

�N
2

�
elements.

6) Alice chooses an integer η at random over [−g, g]. She
generates a vector η = (ηij)1≤i<j≤N ∈ Z(N

2) such that
−g ≤ ηij ≤ g and

�
1≤i<j≤N ηij = η. She sends the

vector a∆ − η to Bob.
7) Bob compares the corresponding elements of a∆ − η

and −b∆. For, any element ηij in the noise vector η,
Bob determines for 1 ≤ i < j ≤ N whether or not
ai−aj−ηij ≤ bj−bi, which is equivalent to determining
whether or not g(vi− vj)− ηij ≤ 0 by the construction
of the G matrix.
Since −g ≤ ηij ≤ g, Bob knows that ai − aj − ηij ≷
bj − bi if and only if vi ≷ vj . Thus, the order is
preserved when vi �= vj . If vi = vj , then ai − aj − ηij

may be greater or less than bj − bi depending on
the value of ηij that was randomly chosen by Alice2.

1It can be shown that G is the only map that is order-preserving.
2Bob essentially observes random perturbations of wi−wj . Therefore, the

probability of ties in Step 7 is vanishingly small, but even if a tie occurs, Bob
chooses any one of the tied indices as the π-permuted index of the minimum.

Nevertheless, this perturbation still allows Bob to obtain
α = arg min1≤i≤N vi without knowing vi or wi. He
sends ξ(α) to Alice.

8) For 1 ≤ i ≤ N , Alice choses integers r and βi at
random and uses homomorphic properties to compute
ξ(βi(i− α) + vi + r). She sends the resulting vector of
N encrypted entries to Bob.

9) Bob decrypts the entry corresponding to the index i = α

to obtain vα+r. He then re-encrypts this term and sends
it back to Alice.

10) Due to the semantic security property Alice cannot de-
termine the π-permuted index of the minimum, i.e., α by
looking at the ciphertext. She removes the random noise
r via ξ(vα + r)ξ(−r) = ξ(vα) = ξ(min1≤i≤N vi) =
ξ(min1≤i≤N zi)

Security and Privacy Analysis: In Steps 1 and 2, Alice
operates in the encrypted domain, and therefore finds out
nothing about z. In Steps 3-6, Bob operates only on additive
shares of w and a∆. Therefore, he does not discover anything
about w and a∆. In Step 7, Bob can obtain

δij
def= (ai + bi)− (aj + bj)− ηij = g(vi − vj)− ηij

where 1 ≤ i < j ≤ N . There are
�N

2

�
values of the noise

terms ηij that have been chosen by Alice but are unknown to
Bob. This makes it impossible for Bob to discover vi− vj , let
alone vi and vj . Bob could try another strategy, which is to
add all the δi,i+1 and obtain

�

1≤i<N

δi,i+1 = g(v1 − vN)−
�

1≤i<N

ηi,i+1.

However, he does not know
�

1≤i<N ηi,i+1. Thus, Bob is still
unable to discover whether v1 = vN or not. In Steps 8 and 9,
Bob discovers only an additive share of the minimum, given
by vα + r, but cannot discover vα since he does not know
the value of r. Finally, in Step 10, Alice does not know the
index α of the minimum owing to the semantic security of
the homomorphic function. Specifically, when Bob re-encrypts
vα + r, he chooses a random encryption parameter which
obfuscates the index of the minimum from Alice. Thus, in
the semi-honest setting, Alice finds out the encryption of the
minimum without finding out either the value of the minimum
or the index of the minimum. Bob performs the role of a helper
in this protocol by performing decryptions wherever necessary,
but does not discover any information about the zi. Moreover,
other than decryptions, all other computations at Bob’s end
are in the plaintext domain and therefore incur a very small
overhead.

Table I shows the cost in terms of computation and com-
munication incurred by the two parties. For comparison, we
also show the cost for a symmetric realization of the minimum
finding protocol [4], in which Alice and Bob obtain additive
shares of the minimum. According to our reading of [4], the
protocol preserves privacy in all cases, except for scenarios
in which two or more elements in the vector being queried
are equal. Specifically, Alice and Bob don’t explicitly find out

Quantity Alice Bob Symmetric [4] [4] without
(Server) (End-User) reveals revealing
Proposed Proposed equalities equalities

Encryptions O(N) O(1) O(N) O(N2)
Decryptions None O(N) O(N) O(N2)
Ciphertext O(N) O(1) O(N) O(N2)
Transmissions
Adds and O(N2) None O(N) O(N)
Multiplies in
ciphertext

TABLE I
THE END-USER INCURS LOW COMPUTATIONAL AND COMMUNICATION

COMPLEXITY IN THE PROPOSED PRIVACY-PRESERVING MINIMUM-FINDING
PROTOCOL. THE OVERHEAD IN A SYMMETRIC REALIZATION OF

MINIMUM-FINDING IS PROVIDED FOR COMPARISON.

the value of these elements, but, with the simple minimum
finding protocol required at the end of the protocol, they will
find out whether or not some elements in the vector z are equal
to others. This can be remedied by using a secure millionaire
protocol instead of the simple minimum finding protocol in the
final stage, at the cost of increased complexity. Therefore, the
costs for the symmetric scheme in the last column of Table I
assume that a millionaire protocol is used

�N
2

�
times. In the

protocol that we presented above, the noise vector η prevents
Bob from knowing whether any of the elements were equal
or not. Alice operates only on encrypted data, so she remains
oblivious of the presence of equalities.

IV. PRIVATE SUBSTITUTION COST PROTOCOLS

Recall that, in the two party setup, one party (say Alice)
knows the insertion costs I(xi), 1 ≤ i ≤ m, while the other
party knows the deletion costs D(yj), 1 ≤ j ≤ n. The
substitution costs, however, must be computed interactively
using a privacy preserving protocol. In general, arbitrary
substitution cost functions can be computed with privacy using
Oblivious Transfer (OT) protocols. However, using additive
homomorphisms, some commonly used substitution costs can
be computed more efficiently than by using the generalized
OT-based framework for secure function evaluation.

Inputs: Alice has a symbol a ∈ A, and a public key
ke for the homomorphic encryption function ξ(·). Bob has a
symbol b ∈ A, and the public-private key pair (ke, kd).
Outputs: Alice obtains ξ(S(a, b)).
Conditions: Alice should not discover b. Bob should not
discover a

A. Absolute distance cost: S(a, b) = |a− b|
Note that S(a, b) = −min(a − b, b − a).The steps of the

protocol are as follows:
1) Bob sends ξ(b) to Alice.
2) Alice obtains ξ(a − b) and ξ(b − a) using the additive

homomorphic property.
3) Then, Alice and Bob execute the privacy-preserving

minimum-finding protocol described in Section III. At
the end of the protocol, Alice obtains ξ(−min(a−b, b−
a)) = ξ(S(a, b)) as required.

Quantity Alice Bob
Encryptions None O(max u)
Decryptions None None
Ciphertext Transmissions None O(max u)
Adds & Multiplies in ciphertext O(amax t) None

TABLE II
OVERHEAD FOR POLYNOMIAL SUBSTITUTION COST PROTOCOL. THIS

PROTOCOL IS IMPRACTICAL FOR LARGE t OWING TO VERY HIGH
COMPUTATIONAL COMPLEXITY AT THE SERVER.

The privacy, computational cost and communication over-
head of this protocol derives from the minimum finding
protocol of Section III.

B. Polynomial cost: S(a, b) =
�

t,u γt,uatbu
with γt,u ∈ Z,

t, u ∈ Z+

This function includes cost functions of the form S(a, b) =
(a− b)t, t ∈ Z+. The steps of the protocol are as follows:

1) Bob sends ξ(bu) to Alice for all the terms in S(a, b) that
contain positive powers of b.

2) Alice computes

�

t,u

ξ(bu)γt,uat

=
�

t,u

ξ(γt,ua
t
b
u) = ξ

�
�

t,u

γt,ua
t
b
u

�

The privacy of this protocol is based on the fact that Alice
operates solely in the encrypted domain and cannot discover
Bob’s inputs. The protocol overhead in terms of encryptions,
decryptions and ciphertext transmissions is given in Table II.

C. Indicator function cost: S(a, b) = (1− 1{a=b})C, C ∈ Z
This is a commonly used substitution cost. The conven-

tional implementation, based on oblivious transfer, would incur
O(|A|) complexity from Bob. Since Bob is an end-user in our
framework, we present below an alternative protocol which
has O(1) complexity for Bob. The steps of the protocol are:

1) Alice constructs an indicator vector E(a) = (E(a)
i) of

length |A| containing all 0’s except a 1 at position a,
that is, E

(a)
i = 1 if i = a, and 0 otherwise.

2) Bob sends ξ(b) to Alice.
3) For 1 ≤ i ≤ |A|, Alice uses the properties of additive

homomorphisms to compute ξ(βi(i−b)+(1−E
(a)
i)C+

r), where βi and r are integers chosen at random from
an appropriately large integer field. She sends these
encryptions to Bob in the correct order.

4) From the received encryptions, Bob discards all except
the bth term and decrypts it to obtain (1 − E

(a)
b)C +

r. Then, he re-encrypts this value and sends ξ((1 −
E

(a)
b)C + r) back to Alice.

5) Due to the semantic security property, Alice does not
know which of the encrypted transmissions Bob returned
to her. She just removes the noise term and obtains
ξ((1 − E

(a)
b)C + r)ξ(−r) = ξ((1 − E

(a)
b)C) = ξ((1 −

1{a=b})C) = ξ(S(a, b)) as desired.
The privacy of this protocol derives from the privacy of

1-out-of-|A| OT and from the semantic security of homomor-
phic encryption which ensures that Alice cannot distinguish

Quantity Alice Bob
Encryptions O(|A|) O(1)
Decryptions None O(1)
Ciphertext Transmissions O(|A|) O(1)
Adds & Multiplies in ciphertext O(|A|) None

TABLE III
OVERHEAD FOR INDICATOR FUNCTION SUBSTITUTION COST PROTOCOL.

between encryptions of 1’s and 0’s. The protocol overhead is
given in Table III.

V. PRIVACY PRESERVING EDIT DISTANCE PROTOCOL

The protocol for privacy-preserving computation of edit
distance can now be implemented using the minimum
finding and substitute cost protocols presented in Section
III and Section IV as primitives. Following the dynamic
programming formulation for computing edit distance, the
protocol enables Alice to calculate the encryption of the
matrix ξ(L) = (ξ(L(i, j))). Bob finds out nothing about the
matrix except the last entry L(m, n) = L(x,y).

Inputs: Alice has string x, and a public key ke for the
homomorphic encryption function ξ(·). Bob has string y, and
the public-private key pair (ke, kd).
Outputs: Bob obtains the edit distance L(m, n).
Conditions: Alice will not discover any information about y.
Bob will not discover any information about x

The steps of the protocol are as follows:
1) Alice keeps a table of I(xi) and L(i, 0), 1 ≤ i ≤ m.

Bob keeps a table of D(yj) and L(0, j), 1 ≤ j ≤ n.
2) Alice obtains the encryption of substitution cost

S(x1, y1), i.e., ξ(S(x1, y1)). In general, the encryption
of any function S(·, ·) can be evaluated by means of
oblivious transfer (OT). For some commonly used sub-
stitution cost functions, however, the protocols presented
in Section IV can be used.

3) For i = 1, 2, · · · , m

For j = 1, 2, · · · , n, with (i, j) �= (1, 1)
(a) Bob transmits ξ(D(yj)) to Alice.
(b) Alice and Bob use a substitution cost protocol, at
the end of which, Alice gets ξ(S(xi, yj)).
(c) Using homomorphic encryption, Alice computes the
encryptions of the three terms inside the curly brackets
in (2), i.e. ξ(L(i−1, j)+D(yj)), ξ(L(i, j−1)+I(xi)),
ξ(L(i− 1, j − 1) + S(xi, yj)).
(d) Then, Alice and Bob execute the privacy-preserving
minimum-finding protocol of Section III. At the end
of the protocol, Alice has ξ(L(i, j)). Note that, Alice
choses new parameters G and η for every execution
of the minimum-finding protocol of Section III. As
the parameters change with every instance, Bob cannot
discover their values or use statistical analysis to guess
the values L(i, j) in the edit distance matrix.

4) Alice sends ξ(L(m, n)) to Bob, who decrypts it. This is
the required edit distance.

The security derives from that of the proposed minimum
finding and substitute cost protocols. At the end, Alice is left
with the encrypted L(i, j), while Bob discovers nothing about
the matrix and Alice’s data except for the edit distance. Since
there are only two parties in the protocol, the question of col-
lusions does not arise. The dynamic programming framework,
combined with the requirement that Alice cannot decrypt any
data, allows parallelization while preserving privacy. Suppose
that Alice has a cloud of server nodes at her disposal, each
with access to x and to the encryptions ξ(L(i, j)) as they
become available according to privacy-preserving realizations
of (2). The dynamic programming formulation ensures that
if one server has obtained ξ(L(i, j)), then another server can
independently obtain ξ(L(i+1, j�)) for j� = 1, 2, · · · , j. This
reduces the computational load on any single server node in
the cloud, and reduces the overall time required for Bob to
obtain L(m, n). As the server nodes are unable to decrypt
Bob’s transmissions, or to decrypt the L(i, j), interaction
amongst the nodes reveals no information about Bob’s string.

VI. SIMILARITY MEASUREMENT WITH PRIVACY

The dynamic programming formulation for edit distance can
be extended to compute the similarity between sequences x
and y. These extensions accommodate a variety of similarity
measures, including a widely used metric: the length of the
longest subsequence common to x and y. These extensions
necessitate small changes in the privacy-preserving edit dis-
tance protocol that are described below.

Let A� = A ∪ { }, where A is the alphabet set defined
earlier and { } denotes a space. The space symbol is used to
construct alignments between x and y, i.e., if x and y have
different lengths, then an appropriate number of spaces can
be inserted into one or both strings, so that the augmented
strings x� and y� are of equal length. The alignments only
involve insertion of spaces and they necessarily preserve the
relative order of the elements in each string, for e.g.,

F A T E S → F - A T E S
J E A N S → J E A N - S

Clearly, many such alignments are possible, and each align-
ment is associated with a score as follows: Akin to the
substitution cost function in Section II, define the pair-wise
score function S : A� × A� �→ ZS so that, for a, b ∈ A�,
S(a, b) is the score for elements a and b located in the same
locations in the first and second augmented string respectively.
To prevent insertion of redundant spaces, force S(,) = −∞,
which is equivalent to imposing that x� and y� can never have
a space at the same position. The value of an alignment is
given by the sum of the scores for each pair (x�i, y�i) in the
augmented strings.

Definition 3: The similarity between x and y is defined as
the maximum of the values of all possible alignments.

One application of similarity measurement is to find the
length of the longest subsequence common to x and y. A
subsequence is defined as a subset of the elements of a string

1 1 1 1 1

1 1 1 1 1

1 1 1 2 2

1 1 1 2 3

0

0

0

0

0 0 0 0 0 0

F

A

S

T

F I R S T

L(i,j)!L(i,0)!

L(0, j)!

L(m,n)!

Accumulated
Alignment

Scores

Accumulated
Alignment

Scores

Similarity
Score

Alice obtains encryptions of these
via private minimum-finding protocol

Fig. 2. An example of similarity computation, in which Alice owns the
string FAST and Bob owns the string FIRST. As before, only Bob possesses
the decryption key for additively homomorphic encryption. Alice computes
the encryptions of L(i, j) via an interactive protocol identical to the edit
distance protocol. Only the encryption of the final value L(m, n) is sent to
Bob, who decrypts it to obtain the similarity, which in this case, is the length
of the longest common subsequence, “FST”.

in the original order. For e.g., ABLE is a subsequence of WAR-
BLER, and the longest common subsequence of WARBLER
and WEAVER is WAER.

Theorem 1: [2] For all a, b ∈ A�, and S(a, b) = 1{a=b},
the similarity gives the length of the longest common subse-
quence of x and y.

Now, let us convert the problem of privacy-preserving
computation of edit distance into the problem of privacy-
preserving computation of similarity. As in Section II, let
x = x1x2...xm and y = y1y2...yn be the two strings. Once
again, use L(i, j) to denote the similarity between the two
substrings x1x2...xi and y1y2...yj . Instead of the insertion
cost function from Section II, define I(a) = S(a,) for
a ∈ A. Similarly, instead of the deletion cost function, define
D(b) = S(, b) for b ∈ A. With these new definitions, set
up the base conditions exactly as in (1). Then, the similarity
L(m, n) is defined by the following recurrence relation for
1 ≤ i ≤ m, 1 ≤ j ≤ n:

L(i, j) = max






L(i− 1, j) + D(yj),
L(i, j − 1) + I(xi),

L(i− 1, j − 1) + S(xi, yj)




 (4)

The desired similarity between the strings is L(m, n). Thus,
once the score function S(·, ·) has been specified and the
insertion and deletion cost functions are modified as above,
the edit distance formulation in (2) and similarity formulation
in (4) are nearly identical. In fact, the only difference is that the
former requires minimum-finding whereas the latter requires
maximum-finding under privacy constraints. These operations
both use the same protocol because maxi zi = −mini(−zi).

Fig. 2 shows an example in which Alice and Bob compute
the similarity in a privacy-preserving manner. The example

uses the indicator function score, i.e., S(a, b) = 1{a=b} as
in Theorem 1 above, therefore the obtained similarity is the
length of the longest subsequence common to Alice’s and
Bob’s strings. For this problem, the score function S(xi, yj)
for 1 ≤ i ≤ m, 1 ≤ j ≤ n is determined using a privacy-
preserving protocol nearly identical to the indicator function
substitution cost protocol from Section IV-C. Note that the
edit distance between FAST and FIRST is 2 while the length
of the longest common subsequence is 3.

VII. CONCLUSIONS

This paper presented a two party protocol for privacy-
preserving computation of the edit distance between strings
held by two parties. The protocol is asymmetric in the sense
that one of the parties has limited computing resources while
the other is a more powerful database server. To compute
the edit distance, Alice and Bob execute several instances
of a privacy preserving minimum-finding protocol that re-
quires fewer encryptions and encrypted transmissions from the
lightweight customer (Bob). The protocol supports arbitrary
finite insertion and deletion costs. The use of semantically
secure additively homomorphic encryption functions has been
shown to allow efficient computation of various useful substi-
tution cost functions. The privacy-preserving protocol extends
in a straightforward manner to similar problems in string
comparison that admit a dynamic programming formulation.
In particular, an extension is described in which the customer
Bob interacts with the server Alice to find the length of the
longest subsequence common to their strings.

REFERENCES

[1] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp.
707–710, Feb. 1966.

[2] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer

Science and Computational Biology, Cambridge University Press, 1997.
[3] M. Atallah and J. Li, “Secure outsourcing of sequence comparisons,”

International Journal of Information Security, vol. 4, no. 4, pp. 277–287,
Oct. 2005.

[4] M. Atallah, F. Kerschbaum, and W. Du, “Secure and private sequence
comparisons,” in Proceedings of the 2003 ACM Workshop on Privacy

in the Electronic Society, Washington, DC, Oct. 2003, pp. 39–44.
[5] A. Inan, S. Kaya, Y. Saygin, E. Savas, A. Hintoglu, and A. Levi,

“Privacy preserving clustering on horizontally partitioned data,” Data

and Knowledge Engineering, vol. 63, no. 3, pp. 646–666, Dec. 2007.
[6] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes,” in Advances in Cryptology, EUROCRYPT 99.
1999, vol. 1592, pp. 233–238, Springer-Verlag, Lecture Notes in Com-
puter Science.

[7] I. Damgård and M. Jurik, “A Generalisation, a Simplification and
Some Applications of Paillier’s Probabilistic Public-Key System,” in
4th

International Workshop on Practice and Theory in Public Key

Cryptosystems, Cheju Island, Korea, Feb. 2001, pp. 119–136.
[8] J. Benaloh, “Dense Probabilistic Encryption,” in Proceedings of the

Workshop on Selected Areas of Cryptography, Kingston, ON, Canada,
May 1994, pp. 120–128.

[9] S. Rane, W. Sun, and A. Vetro, “Secure Distortion Computation in the
Encrypted Domain Using Homomorphic Encryption,” in Proc. IEEE

International Conference on Image Processing, Cairo, Egypt, Nov. 2009,
pp. 1485–1488.

[10] S. Rane, W. Sun, and A. Vetro, “Privacy Preserving Approximation of
L1 Distance for Multimedia Applications,” in Proc. IEEE International

Conference on Multimedia and Expo (ICME), To Appear, Singapore,
July. 2010.

	Title Page
	Title Page
	page 2

	Privacy Preserving String Comparisons Based on Levenshtein Distance
	page 2
	page 3
	page 4
	page 5
	page 6

