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Abstract—Knowledge of the level crossing rates (LCR) and aver-
age outage durations (AOD) of the received signal-to-interference-
plus-noise ratio (SINR) is very useful in designing and analyzing the
communication system performance in a cellular environment with
co-channel interference (CCI). In this paper, we study the analytical
LCR and the AOD of the received SINR on Rayleigh fading channels
with CCI. A closed-form expression for the LCR and the AOD
is obtained for the general case of multiple co-channel interferers,
traveling at different speeds, with unequal powers and with additive
white Gaussian noise. We also specialize the derived results to the
case of both interference-limited and noise-limited scenarios.

Index Terms—Level crossing problems, average outage duration,
signal-to-interference-plus-noise ratio, co-channel interference, cel-
lular systems.

I. INTRODUCTION

Time varying multipath propagation environment together with
the interference from other users makes the design and analysis
of a multiuser mobile radio system a challenging task [1].
Traditionally, outage probability is considered to be a useful
measure of a wireless link performance and is being analyzed
extensively for a variety of desired user and interfering users’
fading statistics [2]-[5]. The outage probability of the signal-to-
interference-plus-noise ratio (SINR) is simply the probability that
the received SINR process stays below a predefined threshold,
and captures the static behavior of the mobile multiuser radio
link at any given time instance. However, as argued in [6], it
is the duration of the time the SINR stays below a threshold
that determines the outage in a cellular environment. Based on
an asymptotic level crossing analysis, the authors in [6] have
obtained an expression for the minimum duration of the outages
in an interference limited Rayleigh fading channel.

The level crossing rate (LCR) and the average outage duration
(AOD) of the time-varying SINR process are closely related to
the statistics of the error bursts [7]. Specifically, the LCR and
AOD can be used in selecting optimal packet lengths to minimize
the packet error rate and maintain a relatively small packet
overhead [8], [9]. In [10], the authors have considered a noise-
limited environment (i.e., no multiuser interference) and obtained
expressions for the average LCR and the AOD on Nakagami
fading channels with various diversity combining schemes. In
[11], a characteristic function approach is proposed to obtain
the average LCR in a noise-limited scenario which requires an
evaluation of a double integral.

The authors in [12] consider an interference-limited environ-
ment with S(t) and I(t) denoting the desired signal and the
interference powers, respectively. Instead of calculating the LCR
of the SINR process γ(t) = S(t)/I(t) at a threshold γth, the
authors define a process X(t) = S(t) − γthI(t) and obtain
the average zero crossing rate (ZCR) of X(t). With the above
defined X(t), and using the characteristic function approach of

[11], in [13] the authors obtained the average outage durations in
an interference-limited scenario with Ricean fading.

In this contribution, for arbitrarily correlated stationary signal,
S(t), and interference-plus-noise, I(t), processes, in Appendix-
A we formally prove that the LCR at the level γth is identical
to the ZCR of S(t) − γthI(t). However, this equivalence is
not very useful since, in addition to the knowledge of the joint
probability density function (PDF) of S(t), I(t), Ṡ(t) = d

dtS(t)
and İ(t) = d

dtI(t), the ZCR formulation requires evaluation of
a triple integral (please see (48) and (49) in Appendix-A). As
a result, we directly work with the SINR process as it requires
the joint PDF of only γ(t) and γ̇(t) = d

dtγ(t), and study the
analytical LCR and the AOD of the received SINR on Rayleigh
fading channels with multiple co-channel interferers (CCIs) and
additive noise. Our analysis yields a surprisingly simple closed-
form expression for the LCR for the general case of multiple
co-channel interferers, traveling at different speeds, with unequal
powers and with additive white Gaussian noise. We also specialize
the derived results to the case of both interference-limited and
noise-limited scenarios.

The rest of this paper is organized as follows. In Section II,
we present the system model and derive closed-form expressions
for the average LCR and the AOD of the SINR process with
interference and additive noise on Rayleigh fading channels. A
number of special cases of the derived LCR and AOD expressions
are presented in Section III. Conclusions are given in Section IV.

II. SYSTEM MODEL

We assume a cellular system with a desired user and K
interfereing users transmitting their signals to the base station
(BS) (i.e., the uplink). However, we note that the present system
model can also be applied to the downlink (i.e., from BS to a
mobile), where the desired signal will be that of the BS of interest
and the interfering signals are due to neighboring cells. Let Ω0

denote the average received signal power due to the desired user,
and Ωi, i = 1, 2, . . . ,K, correspond to the average received power
due to ith CCI. Let N denote the total average noise power at the
receiver front end. Let α0(t) and αi(t) denote the time varying
fading channel coefficients on the path from the desired user to the
BS, and the path from the ith interferer to the BS, respectively.
With this, the instantaneous received SINR, γ(t), at the BS is
given by

γ(t) =
Ω0α

2
0(t)

N +
∑K
j=1 Ωjα2

j (t)
. (1)

In this paper, we assume that the desired signal and the interferers
experience Rayleigh fading. Then, without loss of generality,
we assume that αj(t), j = 0, 1, . . . ,K, are independent and



identically distributed (i.i.d) with probability density function
(PDF) fαj(t)(x) = 2xe−x

2
, x ≥ 0.

The average level crossing rate, LCR, of γ(t), at a level γth
is defined as [14]

LCR(γth) =

∞∫
x=0

xfγ̇(t),γ(t)(x, γth)dx, (2)

where γ̇(t) = d
dtγ(t) is the time derivative of the SINR process

γ(t) and fγ̇(t),γ(t)(·, ·) is the joint PDF of γ̇(t) and γ(t).
The average outage duration, AOD, of γ(t) below a level γth

is defined as [14]

AOD(γth) =
Prob(γ(t) ≤ γth)

LCR(γth)
=
Fγ(t)(γth)
LCR(γth)

, (3)

where Fγ(t)(γth) = Prob(γ(t) ≤ γth) is the cumulative distribu-
tion function (CDF) of γ(t) at time t. The rest of this section is
devoted to obtaining Fγ(t)(γth) and LCR(γth) in closed-form.

A. Derivation of Fγ(t)(x)

Dropping the time dependence for notational simplicity, and
using (1), we have

Fγ(x) = Prob

(
α2

0 ≤ x

(
N

Ω0
+

K∑
k=1

Ωk
Ω0

α2
k

))
. (4)

Denote by Γi = Ωi
N the average signal-to-noise ratio (SNR) of

the ith signal in the absense of interference, and Λi,j = Ωi
Ωj

as
the average signal-to-interference ratio (SIR) of ith user due to
jth user. We also denote

X0 = α2
0 (5)

and Y0 =
K∑
k=1

Ωk
Ω0

α2
k =

K∑
k=1

α2
k

Λ0,k
. (6)

With the above, (4) can be conveniently written as

Fγ(x) = Prob
(
X0 ≤ x

(
1

Γ0
+ Y0

))
= 1− E

[
exp

(
−x
(

1
Γ0

+ Y0

))]
= 1− exp

(
− x

Γ0

)
E

[
exp

(
−

K∑
k=1

x

Λ0,k
α2
k

)]

= 1− exp
(
− x

Γ0

) K∏
k=1

Λ0,k

Λ0,k + x
(7)

where the last step in (7) is due to the fact that α2
k, k = 1, . . . ,K,

are i.i.d exponential random variables (r.vs) with unit mean.

B. Derivation of fγ̇(t),γ(t)(x, γth)

Starting from (1), the time derivative of γ(t) is given by (8), as
shown at the top of the next page. Since αj(t), j = 0, 1, . . . ,K,
is Rayleigh distributed with unit second moment, the derivative
α̇j(t) is Gaussian distributed [15] with zero mean and variance
σ2
j = π2f2

max,j , where fmax,j = vj ·fc/c is the maximum Doppler
frequency of the jth mobile, vj is the corresponding mobile speed,
fc is the carrier frequency, and c is the speed of light.

Note that γ(t) in (8) is itself a function of
α0(t), α1(t), . . . , αK(t), according to (1). Conditioned on

α0(t), . . . , αK(t), it is easy to show that γ̇(t) of (8) is Gaussian
distributed with zero-mean and variance

σ2(α2
0, α

2
1, . . . , α

2
K) = 4σ2

0

γ4(t)
α4

0(t)

(
α2

0(t)
γ2(t)

+
K∑
k=1

α2
k(t)σ2

k

Λ2
0,kσ

2
0

)
,

(9)
and the conditional PDF of γ̇(t) can be written as

fγ̇(t)|α2
0(t),...,α2

K(t)(x|α2
0, . . . , α

2
K) =

e
− x2

2σ2(α2
0,α

2
1,...,α

2
K

)√
2πσ2(α2

0, α
2
1, . . . , α

2
K)
.

(10)
Our immediate goal is to obtain an expression for fγ̇(t),γ(t)(·, ·)
in order to successfully compute the LCR in (2). We proceed
as follows: removing the time index and using the following
transformation of r.vs

γ̇ = γ̇ (11)
uk = α2

k, k = 1, . . . ,K (12)

γ =
Ω0α

2
0

N +
∑K
k=1 Ωkα2

k

=
Ω0α

2
0

N +
∑K
k=1 Ωkuk

(13)

and noting that

fγ̇,γ,u1,...,uK (·, ·, ·, . . . , ·) =
fγ̇,α2

0,α
2
1,...,α

2
K

(·, ·, ·, . . . , ·)∣∣∣ ∂(γ̇,γ,u1,u2,...,uK)
∂(γ̇,α2

0,α
2
1,α

2
2,...,α

2
K)

∣∣∣ , (14)

where ∂(··· )
∂(··· ) is the standard Jacobian operation defined as

(15), shown in the next page. With (15), (14) can be sim-
plified as (16), shown in the next page. The expression
fγ̇,α2

0,α
2
1,...,α

2
K

(γ̇, α2
0, α

2
1, . . . , α

2
K) can be written as (17), also

shown in the next page. With the substitution α2
k = uk, k =

1, . . . ,K, α2
0 = γ

Ω0
(N +

∑K
k=1 Ωkuk), the conditional variance,

σ2(α2
0, α

2
1, . . . , α

2
K), of (9) becomes (18), as shown in the next

page. Using (2), the LCR at a level γth can be obtained as

LCR(γth) =

∞∫
x=0

xfγ̇,γ(x, γth)dx =

∞∫
u1=0

· · ·
∞∫

uK=0

∞∫
x=0

×

xfγ̇,γ,u1,...,uK (x, γth, u1, . . . , uK)du1, . . . uKdx. (19)

We can express fγ̇,γ,u1,...,uK (x, γth, u1, . . . , uK) as (20), shown
above. The expression fγ̇|γ,u1,...,uK (x|γth, u1, . . . , uK) is al-
ready shown to be Gaussian with zero-mean and variance
σ2(γth, u1, . . . , uK) which is given in (18). Using (13), it is easy
to show that the conditional PDF fγ|u1,...,uK (γth|u1, . . . , uK) is
given by

fγ|u1,...,uK (γth|u1, . . . , uK) =(
N +

∑K
k=1 Ωkuk
Ω0

)
e−

γth
Ω0

(N+
∑K
k=1 Ωkuk). (21)

Using (20) and (21) in (19), we can simplify LCR(γth) as (22),
shown in the next page. Using (18) in (22), and noting that Γk =
Ωk
N , k = 0, 1, . . . ,K, we obtain

LCR(γth) =
σ0e
− γthΓ0

√
2γth√

Γ0π

∞∫
u1=0

· · ·
∞∫

uK=0

du1 . . . duK

e
−
∑K
k=1 uk

(
1+

γth
Λ0,k

)√√√√1 +
K∑
k=1

uk

(
Γk +

γthΓ0σ2
k

Λ2
0,kσ

2
0

)
. (23)



γ̇(t) =
d

dt
γ(t) =

(N +
∑K
k=1 Ωkα

2
k(t))2Ω0α0(t)α̇0(t)− 2Ω0α2

0(t)
∑K
k=1 Ωkαk(t)α̇k(t)

(N +
∑K
k=1 Ωkα

2
k(t))2

=
2γ(t)

α0(t)
α̇0(t)−

2γ2(t)

α2
0(t)

K∑
k=1

αk(t)

Λ0,k
α̇k(t). (8)

∂(γ̇, γ, u1, u2, . . . , uK)

∂(γ̇, α2
0, α

2
1, α

2
2, . . . , α

2
K)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂γ̇
∂γ̇

∂γ̇

∂α2
0

∂γ̇

∂α2
1
· · · ∂γ̇

∂α2
K

∂γ
∂γ̇

∂γ

∂α2
0

∂γ

∂α2
1
· · · ∂γ

∂α2
K

∂u1
∂γ̇

∂u1
∂α2

0

∂u1
∂α2

1
· · · ∂u1

∂α2
K

...
...

...
...

...
∂uK
∂γ̇

∂uK
∂α2

0

∂uK
∂α2

1
· · · ∂uK

∂α2
K

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0

0 γ

α2
0
−Ω1γ

2

Ω0α
2
0
· · · −ΩKγ

2

Ω0α
2
0

0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

γ

α2
0

. (15)

fγ̇,γ,u1,...,uK (γ̇, γ, u1, . . . , uK) =
α2

0

γ
fγ̇,α2

0,α
2
1,...,α

2
K

(γ̇, α2
0, α

2
1, . . . , α

2
K)

∣∣∣∣∣
γ̇=γ̇,α2

k
=uk, ∀k=1,...,K, α2

0= γ
Ω0

(N+
∑K
k=1 Ωkuk)

. (16)

fγ̇,α2
0,α

2
1,...,α

2
K

(γ̇, α2
0, α

2
1, . . . , α

2
K) = fγ̇|α2

0,α
2
1,...,α

2
K

(γ̇|α2
0, α

2
1, . . . , α

2
K)

K∏
j=0

fα2
j
(α2
j ) =

e
− γ̇2

2σ2(α2
0,α

2
1,...,α

2
K

) e−
∑K
j=0 α

2
j√

2πσ2(α2
0, α

2
1, . . . , α

2
K)

. (17)

σ2(γ, u1, . . . , uK) =
4σ2

0γ
2Ω2

0

(N +
∑K
k=1 Ωkuk)2

(
1

γΩ0

(
N +

K∑
k=1

Ωkuk

)
+

K∑
k=1

ukσ
2
k

Λ2
0,kσ

2
0

)
=

4σ2
0γΩ0

(N +
∑K
k=1 Ωkuk)2

(
N +

K∑
k=1

uk

(
Ωk +

γΩ0σ2
k

Λ2
0,kσ

2
0

))
. (18)

fγ̇,γ,u1,...,uK (x, γth, u1, . . . , uK) = fγ̇|γ,u1,...,uK
(x|γth, u1, . . . , uK)fγ,u1,...,uK (γth, u1, . . . , uK)

= fγ̇|γ,u1,...,uK
(x|γth, u1, . . . , uK)fγ|u1,...,uK

(γth|u1, . . . , uK)

K∏
k=1

fuk (uk)

= fγ̇|γ,u1,...,uK
(x|γth, u1, . . . , uK)fγ|u1,...,uK

(γth|u1, . . . , uK) exp

(
−

K∑
k=1

uk

)
. (20)

LCR(γth) =

∞∫
u1=0

· · ·
∞∫

uK=0

exp

(
−

K∑
k=1

uk

)
fγ|u1,...,uK

(γth|u1, . . . , uK)du1 . . . duK

∞∫
x=0

xfγ̇|γ,u1,...,uK
(x|γth, u1, . . . , uK)dx

=
exp

(
− γthN

Ω0

)
Ω0

∞∫
u1=0

· · ·
∞∫

uK=0

exp

(
−

K∑
k=1

uk

(
1 +

γth

Λ0,k

))(
N +

K∑
k=1

Ωkuk

)
du1 . . . duK

∞∫
x=0

x exp
(
− x2

2σ2(γth,u1,...,uK)

)
dx√

2πσ2(γth, u1, . . . , uK)

=
exp

(
− γthN

Ω0

)
Ω0

√
2π

∞∫
u1=0

· · ·
∞∫

uK=0

exp

(
−

K∑
k=1

uk

(
1 +

γth

Λ0,k

))(
N +

K∑
k=1

Ωkuk

)
σ(γth, u1, . . . , uK)du1 . . . duK . (22)

In order to obtain a closed-form expression for LCR(γth) we
change the integration variables uk, k = 1, . . . ,K, of (23) to νk,
k = 1, . . . ,K through the transformation uk(1 + γth

Λ0,k
) = νk. We

also define, for k = 1, . . . ,K,

Wk =
1 + γth

Λ0,k

Γk + γthΓ0σ2
k

Λ2
0,kσ

2
0

=
f2

max,0(Λ0,k + γth)
Γk(f2

max,0Λ0,k + γthf2
max,k)

. (24)

Using (24), (23) reduces to

LCR(γth) =
σ0 exp

(
−γthΓ0

)√
2γth

√
Γ0π

{
K∏
k=1

Λ0,k

Λ0,k + γth

}
×

∞∫
ν1=0

· · ·
∞∫

νK=0

dν1 . . . dνKe
−
∑K
k=1 νk

√√√√1 +
K∑
k=1

νk
Wk

. (25)

The above integral is in the form of (50) in Appendix-B, whose
closed-form solution is given in (54). Using (50) and (54) of
Appendix-B, the final expression for LCR(γth) is given by

LCR(γth) =
σ0 exp

(
−γthΓ0

)√
2γth

√
Γ0π

{
K∏
k=1

Λ0,k

Λ0,k + γth

}



×
K∑
k=1

δk
exp(Wk)√
Wk

Γinc

(
Wk,

3
2

)
, (26)

where Γinc(u, n) =
∞∫

x=u

e−xxn−1dx is the complementary incom-

plete Gamma function [16] and

δk =
K∏

i=1,i6=k

Wi

Wi −Wk
. (27)

To the best of the authors’ knowledge, (26) is new, and has not
been reported in the literature.

III. SOME SPECIAL CASES OF INTEREST

In this section, we specialize the LCR and the AOD expressions
derived in the previous section for various cases of interest.

A. Multiple Equal Power Interferers

When all the interferers have equal average received power we
have Λ0,k = Λ0,1, k = 1, 2 . . . ,K. With this, (7) reduces to

Fγ(t)(γth) = 1− exp
(
−γth

Γ0

)(
Λ0,1

Λ0,1 + γth

)K
. (28)

Additionally, if we assume equal Doppler frequency for each
user, from (24), we have Wk = W1 = 1/Γ1, k = 1, 2 . . . ,K.
Then, using (57) of Appendix-B together with (25), (26) can be
simplified to

LCR(γth) =
fmax,0e

W1e−
γth
Γ0

Γ(K)
√
W1

√
2πγth

Γ0

(
Λ0,1

Λ0,1 + γth

)K
×
K−1∑
j=0

(−W1)K−1−j
(
K − 1
j

)
Γinc

(
W1, j +

3
2

)
. (29)

Using (28) and (29) in (3), a closed-form expression for AOD
can be obtained.

B. Single Interferer

With a single interferer we have K = 1, and (29) simplifies to

LCR(γth) = fmax,0

√
2πe−

γth
Γ0

√
γth

Γ0W1
×

Λ0,1e
W1Γinc

(
W1,

3
2

)
Λ0,1 + γth

.

(30)
Using (7) and (30), a closed-form expression for AOD is given
by

AOD(γth) =
(Λ0,1 + γth)e

γth
Γ0 − Λ0,1

fmax,0

√
2π γth

Γ0W1
Λ0,1eW1Γinc

(
W1,

3
2

) . (31)

C. No Interference

In the absense of CCI (i.e., noise-limited environment), we have
Ωk = 0, ∀k = 1, 2, . . . ,K. In other words, we set Λ0,1 →∞ in
(30) and (31), to arrive at

LCR(γth) = fmax,0

√
2πγth

Γ0
exp

(
−γth

Γ0

)
, (32)

and AOD(γth) =
exp

(
γth
Γ0

)
− 1

fmax,0

√
2π γthΓ0

, (33)

respectively. Note that (32) and (33) coincide with the LCR and
AOD of SNR on Rayleigh fading channels [1], [14].

D. Interference-Limited Environment

In an interference-limited regime, the average noise power N
is negligible compared with the total average interference power.
Letting N → 0 in (7), Fγ(t)(γth) can be written as

Fγ(t)(γth) = 1−
K∏
k=1

Λ0,k

γth + Λ0,k
. (34)

However, from (26) it is not obvious as to how the LCR
expression reduces for interference-limited regime. By letting
N → 0 and moving Γ0 into the

√
(·) expression, and noting

that Γk/Γ0 = 1/Λ0,k, we can re-write the last step of (23) as

LCR(γth) =
σ0

√
2γth√
π

∞∫
u1=0

· · ·
∞∫

uK=0

du1 . . . duK

×

√√√√ K∑
k=1

uk

(
1

Λ0,k
+

γthσ2
k

Λ2
0,kσ

2
0

)
e
−
∑K
k=1 uk

(
1+

γth
Λ0,k

)
.(35)

Similar to the derivation of (26), by defining

Zk =
1 + γth

Λ0,k

1
Λ0,k

+ γthσ2
k

Λ2
0,kσ

2
0

=
Λ0,kσ

2
0(Λ0,k + γth)

Λ0,kσ2
0 + γthσ2

k

, (36)

νk = uk

(
1 +

γth
Λ0,k

)
, (37)

and ωk =
K∏

i=1,i6=k

Zi
Zi −Zk

, (38)

(35) can be simplified to

LCR(γth) =
σ0

√
2γth√
π

{
K∏
k=1

Λ0,k

Λ0,k + γth

} ∞∫
ν1=0

· · ·
∞∫

νK=0

×

√√√√ K∑
k=1

νk
Zk
× e−

∑K
k=1 νkdν1 · · · dνK (39)

whose closed-form solution is readily obtained from (55) in
Appendix-B as

LCR(γth) = fmax,0π

√
γth
2

{
K∏
k=1

Λ0,k

Λ0,k + γth

}
K∑
k=1

ωk
Zk

. (40)

IV. CONCLUSION

The duration of outage is more important than the probability of
outage in analyzing the performance of a communication system
with multiple co-channel interferers. With this motivation, in this
paper, we presented the analytical LCR and AOD of the received
SINR on Rayleigh fading channels with CCI. A closed-form
expression for the LCR and the AOD is obtained for the general
case of unequal power multiple co-channel interferers traveling
at different speeds, and with additive white Gaussian noise.

APPENDIX A
ON THE EQUIVALENCE OF ZCR AND THE SINR LCR

Let X(t) = S(t) − γthI(t) denote the difference between the
signal power S(t) and the interference-plus-noise power I(t) that
is scaled by the threshold γth. The time derivative of X(t) is
denoted by Ẋ(t) and is equal to Ṡ(t) − γthİ(t). Denote the



auxiliary random processes A(t) = Ṡ(t) and B(t) = I(t). With
these, the joint pdf of X(t), Ẋ(t), A(t) and B(t) is written as

fX,Ẋ,A,B(x, y, a, b) =

∂
(
X, Ẋ,A,B

)
∂
(
S, I, Ṡ, İ

)
−1

× fS,I,Ṡ,İ(u, v, z, w)
∣∣∣
u=x+γthb,v=b,z=a,w=(a−y)/γth

,(41)

where, for simplicity, we have dropped the time index and
∂(X,Ẋ,A,B)
∂(S,I,Ṡ,İ) is the Jacobian which is computed as

∂
(
X, Ẋ,A,B

)
∂
(
S, I, Ṡ, İ

) =

∣∣∣∣∣∣∣∣
1 −γth 0 0
0 0 1 −γth
0 0 1 0
0 1 0 0

∣∣∣∣∣∣∣∣ = γth. (42)

Upon using (42) in (41), the joint pdf of X, Ẋ,A and B simplifies
to

fX,Ẋ,A,B(x, y, a, b) =
1
γth

fS,I,Ṡ,İ

(
x+ γthb, b, a,

a− y
γth

)
.

(43)
The joint pdf of X and Ẋ is obtained from (43) by integrating
over A and B as

fX,Ẋ(x, y) =

∞∫
a=−∞

∞∫
b=0

1
γth

fS,I,Ṡ,İ

(
x+ γthb, b, a,

a− y
γth

)
da db.

(44)
The zero crossing rate of Ẋ at the level X = 0 is

ZCR(0) =
∫ ∞
y=0

yfX,Ẋ(0, y)dy =

∞∫
a=−∞

∞∫
b=0

∫ ∞
y=0

dy da db

× y

γth
fS,I,Ṡ,İ

(
γthb, b, a,

a− y
γth

)
. (45)

Returning to the SINR process γ(t) = S(t)/I(t), we have
γ̇(t) = −S(t)İ(t)/I2(t) + Ṡ(t)/I(t). With the auxiliary random
processes A(t) = Ṡ(t) and B(t) = I(t), the Jacobian ∂(γ,γ̇,A,B)

∂(S,I,Ṡ,İ)
is

∂ (γ, γ̇, A,B)

∂
(
S, I, Ṡ, İ

) =

∣∣∣∣∣∣∣∣
1
I − S

I2 0 0
− İ
I2

2Sİ
I3 − Ṡ

I2
1
I − S

I2

0 0 1 0
0 1 0 0

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1
I 0 0
− İ
I2

1
I − S

I2

0 1 0

∣∣∣∣∣∣
=

1
I

∣∣∣∣ 1I − S
I2

1 0

∣∣∣∣
=

S

I3
. (46)

Using (46), the joint pdf of γ, γ̇, A and B is obtained as

fγ,γ̇,A,B(x, y, a, b) =

∂ (γ, γ̇, A,B)

∂
(
S, I, Ṡ, İ

)
−1

× fS,I,Ṡ,İ(u, v, z, w)
∣∣∣
u=xb,v=b,z=a,w=(a−by)/x

=
b2

γ
fS,I,Ṡ,İ

(
xb, b, a,

a− by
x

)
. (47)

Similar to (44) and (45), the level crossing rate of γ̇ at the level
γ = γth is

LCR(γth) =
∫ ∞
y=0

yfγ,γ̇(γth, y)dy

=

∞∫
a=−∞

∞∫
b=0

∫ ∞
y=0

yb2

γth
fS,I,Ṡ,İ

(
γthb, b, a,

a− by
γth

)
dy da db

=

∞∫
a=−∞

∞∫
b=0

∫ ∞
t=0

t dt da db

γth
fS,I,Ṡ,İ

(
γthb, b, a,

a− t
γth

)
.(48)

Upon comparing (48) with (45), we conclude that the ZCR of
X(t) = S(t)− γthI(t) at a level X(t) = 0 is equal to the LCR
of γ(t) = S(t)/I(t) at a level γ(t) = γth. When the signal
process is independent of the interference process, (45) and (48)
are simplified as

ZCR(0) =
∫ ∞
t=0

t dt

γth

×
∞∫

a=−∞

∞∫
b=0

fS,Ṡ (γthb, a) fI,İ

(
b,
a− t
γth

)
da db

= LCR(γth). (49)

APPENDIX B
A USEFUL INTEGRAL WITH A CLOSED-FORM SOLUTION

Consider the following integral:

I =

∞∫
u1=0

· · ·
∞∫

uK=0

√√√√a0 +
K∑
k=1

uk
λk

×e−
∑K
k=1 ukdu1 . . . duK , (50)

here a0, λ1, . . . , λK are positive real numbers. The above integral
can be interpreted as the expected value of

√
a0 + Z, where Z =∑K

k=1
Uk
λk

. Here, U1, . . . , UK are i.i.d exponential r.vs each with
unity-mean. Since the Laplace transform (LT) of the PDF of Uk,
LUk(s) = E[exp(−sUk)], is given by 1

1+s , and the LT of the PDF
of a sum of independent r.vs is simply the product of individual
LTs, the LT of the PDF of Z, LZ(s), can be written as

LZ(s) =
L∏
i=1

λi
λi + s

=
K∑
k=1

ckλk
1

λk + s
, (51)

where the second equality in the above is due to partial-fractions
expansion, and cks can be found easily as

ck =
1
λk

lim
s→−λk

{LZ(s)× (s+ λk)} =
K∏

i=1,i6=k

λi
λi − λk

. (52)

Upon inverting (51), the PDF, fZ(z), of Z is

fZ(z) =
K∑
k=1

ckλk exp(−λkz), z ≥ 0. (53)



With the help of (53), (50) can be evaluated as

I = E
[√

a0 + Z
]

=
K∑
k=1

ckλk

∞∫
x=0

√
a0 + x exp(−λkx)dx

=
K∑
k=1

ck
exp(a0λk)√

λk

∞∫
z=a0λk

exp(−z)z 1
2 dz

=
K∑
k=1

ck
exp(a0λk)√

λk
Γinc

(
a0λk,

3
2

)
, (54)

where the third equality in the above equation is due to the
change of integration variable from x to z by z = (a0 + λk)x,

and Γinc(u, n) =
∞∫

x=u

exp(−x)xn−1dx is the complimentary

incomplete Gamma function [16].
When a0 = 0, using Γinc

(
0, 3

2

)
=
√
π

2 [16], (54) reduces to

E


√√√√ K∑
k=1

Uk
λk

 =
√
π

2

K∑
k=1

ck√
λk
. (55)

We are also interested in the case of λ1 = λ2 = · · · = λK . In
this case, the PDF of Z can be conveniently expressed as

fZ(z) =
λK1 exp(−λ1z)zK−1

Γ(K)
, z ≥ 0. (56)

Now, upon re-evaluating the integral of (54), we obtain

I =
λK1

Γ(K)

∞∫
y=0

√
a0 + ye−λ1yyK−1dy

=
ea0λ1

Γ(K)
√
λ1

∞∫
t=a0λ1

√
te−t(t− a0λ1)K−1dt

=
ea0λ1

Γ(K)
√
λ1

K−1∑
j=0

(−1)K−1−j(a0λ1)K−1−j
(
K − 1
j

)

×
∞∫

t=a0λ1

e−ttj+
1
2 dt

=
ea0λ1

Γ(K)
√
λ1

K−1∑
j=0

(−1)K−1−j(a0λ1)K−1−j
(
K − 1
j

)
×Γinc

(
a0λ1, j +

3
2

)
, (57)

where the second step of the above equation is due to the change
of integration variable y to t by t = (a0 + y)λ1, and the last
equality is due to the definition of complimentary incomplete
Gamma function [16].

REFERENCES

[1] G. L. Stuber, Principles of Mobile Communications, Boston, MA: Kluwer
Academic Publishers, 1996.

[2] A. A. Abu-Dayya and N. C. Beaulieu, “Outage Probabilities of Cellular
Mobile Radio Systems with Multiple Nakagami Interferers,” IEEE Trans.
Veh. Technol., vol. 40, pp. 757-768, November 1991.

[3] Y. -D. Yao and A. U. H. Sheikh, “Investigations into Cochannel Interference
in Microcellular Mobile Radio Systems,” IEEE Trans. Veh. Technol., vol. 41,
no. 2, pp. 114-123, May 1992.

[4] Q. T. Zhang, “Outage Probability of Cellular Mobile Radio in the Presence
of Multiple Nakagami Interferers with Arbitrary Fading Parameters,” IEEE
Trans. Veh. Technol., vol. 44, pp. 661-667, August 1995.

[5] A. Annamalai, C. Tellambura and V. K. Bhargava, “Simple and Accurate
Methods for Outage Analysis in Cellular Mobile Radio Systems-A Unified
Approach,” IEEE Trans. Commun., vol. 49, no.2, pp. 303 -316, February
2001.

[6] J. Lai and N. B. Mandayam, “Minimum Duration Outages in Rayleigh
Fading Channels,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1755-1761,
October 2001.

[7] K. Ohtani, K. Daikoku and H. Omori, “Burst error performance encountered
in digital land mobile radio channel,” IEEE Trans. Veh. Technol., vol. 30,
Nov. 1981, pp. 143-159.

[8] M. Zorzi, “Outage and error events in bursty channels,” IEEE Trans. Comm.,
vol. 46, no. 3, Mar. 1998, pp. 349-356.

[9] F. Graziosi, M. Ruggieri and F. Santucci, “Performance evalutaion of packet
mobile communications through level crossing rates,” Wireless Personal
Communications, Kluwer Academic Publishers, vol. 21, 2002, pp. 141-162.

[10] C. -D. Iskander and P. T. Mathiopoulos, “Analytical Level Crossing Rates
and Average Fade Durations for Diversity in Nakagami Fading Channels,”
IEEE Trans. Commun., vol. 50, no. 8, pp. 1301-1309, August 2002.

[11] A. Abdi and M. Kaveh, “Level Crossing Rate in Terms of the Characteristic
Function: A New Approach for Calculating the Fading Rate in Diversity
Systems,” IEEE Trans. Commun., vol. 50, no. 9, pp. 1397-1400, September
2002.

[12] Z. Cao and Y. -D. Yao, “Definition and Derivation of Level Crossing Rate
and Average Fade Duration in an Interference-Limited Environment,” in
Proc. IEEE Veh. Technol. Conf. (VTC’Fall 2001), Atlantic City, NJ, pp.
1608-1611, October 2001.

[13] Y. -C. Ko, M. R. Burr, M. -S. Alouini and A. Abdi, “Average Outage
Duration of Interference-Limited Wireless Communication Systems,” in
Proc. IEEE Veh. Technol. Conf. (VTC’Spring 2002), Birmingham, AL, pp.
1284-1288, May 2002.

[14] W. C. Jakes, Jr., Microwave Mobile Communications, New York: Wiley,
1974.

[15] S. O. Rice, “Mathematical analysis of random noise,” reprinted in Selected
Papers on Noise and Stochastic Processes. N. Wax, Ed., New York: Dover,
1954, pp. 133-294.

[16] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,
5th ed. San Diego, CA; Academic, 1994.


	Title Page
	Title Page
	page 2


	Level Crossing Rates and Average Outage Durations of SINR with Multiple Co-Channel Interferers
	page 2
	page 3
	page 4
	page 5
	page 6


