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Abstract

Consider L independent and identically distributed exponential random variables (r.vs) X1,X2,...,XL,
and positive scalars b1,b2,...,bL. In this letter, we present the probability density function (pdf),
cumulative distribution function and the Laplace transform of the pdf of the composite r.v Z =
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multiple channels with mismatched noise variances, 2) M-ary phase-shift keying with spatial
diversity and imperfect channel estimation, and 3) coded multi-carrier code-division multiple
access reception affected by an unknown narrow-band interference, and the statistics of the r.v Z
derived here enable us to carry out the performance analysis of such systems in closed-form.
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Abstract—Consider L independent and identically distributed
exponential random variables (r.vs) X1, X2, . . . , XL and positive
scalars b1, b2, . . . , bL. In this letter, we present the probabil-
ity density function (pdf), cumulative distribution function and
the Laplace transform of the pdf of the composite r.v Z =(∑L

j=1 Xj

)2

/
(∑L

j=1 bjXj

)
. We show that the r.v Z appears in

various communication systems such as i) maximal ratio combin-
ing of signals received over multiple channels with mismatched
noise variances, ii) M -ary phase-shift keying with spatial diversity
and imperfect channel estimation, and iii) coded multi-carrier
code-division multiple access reception affected by an unknown
narrow-band interference, and the statistics of the r.v Z derived
here enable us to carry out the performance analysis of such
systems in closed-form.

Index Terms—Exponential random variables, distribution of
ratio of two random variables, bivariate Laplace transform,
mismatched statistics, partial-band interference.

I. INTRODUCTION

Consider L independent and identically distributed (i.i.d)
exponential random variables (r.vs) X1, X2, . . ., XL, and L
positive numbers b1, b2, . . ., bL. In this letter, we are interested
in the statistical properties of the r.v Z defined as

Z =

(∑L
j=1Xj

)2

∑L
j=1 bjXj

. (1)

In particular, we are interested in the probability density
function (pdf), cumulative distribution function (cdf) and the
Laplace transform (LT) of the pdf (or simply, LT) of Z in (1).
Interestingly, in Section III, we show that the r.v Z in (1)
appears in various communication systems such as i) maximal
ratio combining (MRC) of signals received over multiple
channels with mismatched noise variances, ii) M -ary phase-
shift keying (PSK) with spatial diversity and imperfect channel
estimation, and iii) coded multi-carrier code-division multiple
access (MC-CDMA) reception affected by an unknown narrow-
band interference (NBI). Consequently, the statistics of the r.v
Z derived here enable us to carry out the performance analysis
of such systems in closed-form.

Ramesh Annavajjala (ramesh.annavajjala@gmail.com) is with the Mit-
subishi Electric Research Laboratories (MERL), Cambridge, MA, USA.

A. Chockalingam (achockal@ece.iisc.ernet.in) and Saif K. Mohammed
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Note that, when bi = b, for i = 1, . . . , L, Z in (1) reduces
to

Z =
1
b

L∑
j=1

Xj . (2)

That is, Z is a sum of L i.i.d exponential r.vs each with mean
1/b. The pdf, cdf and LT of Z are well-known and are given
by [1]

fZ(z) =
e−zbzL−1bL

Γ(L)
, (3)

FZ(z) =

z∫
0

fZ(u)du = 1− e−bz
L−1∑
n=0

bnzn

n!
, (4)

and LZ(s) = E
[
e−sZ

]
=
(

b

s+ b

)L
, (5)

where Γ(n) is the standard Gamma function [2]. Except for
the above case of equal bi’s, to the best of our knowledge,
expressions for the pdf, cdf and LT of Z for arbitrary positive
values of bi’s, and for an arbitrary L, do not seem to be
available in the literature. However, when Xi’s are independent
and non-identically distributed exponential r.vs with distinct
means [3] derives the cdf, pdf and the LT of (1) with L = 2.
On the other hand, with the following two assumptions

• The mean values E[Xi] are distinct
• For j 6= i, bj 6= bi and bjE[Xj ] 6= biE[Xi]

[4, Appendix-A] presents only the cdf of Z in (1) for an
arbitrary value of L. It is important to note that when all the
r.vs Xi’s have identical means, as considered here, the cdf
expression in [4, Appendix-A] is not applicable.

The rest of this letter is structured as follows. We present
our main results on the statistical properties of the r.v Z in
Section II, and some example applications are considered in
Section III. Numerical and simulation results are provided in
Section IV. We conclude this paper in Section V.

II. MAIN RESULTS

In this section, we present our key contributions. Due to
page-length limitations, we provide here only the final results
in a self-contained fashion. The details are available in [5].
For clarity, we consider two cases: i) distinct values of bi’s
appearing in (1) and ii) repeated occurrence of some of the
bi’s in (1).
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FZ(z) =
L∑
j=1

λj
bjΓ(L− 1)

L−2∑
k=0

(−1)L−2−k
(
L− 2
k

)
Γ(k + 1)

k∑
l=0

1
l!
×{

bjΓ(L− 1− k + l)

[
1− e−bjz

L−2−k+l∑
m=0

(bjz)m

m!

]
−

2Γ(l + 2(L− 2− k) + 2)
bL−2−k
j zL−1−k

1− e−bjz
l+2(L−2−k)+1∑

p=0

(bjz)p

p!

}, (6)

fZ(z) =
L∑
j=1

λj
bjΓ(L− 1)

L−2∑
k=0

(
L− 2
k

)
(−1)kΓ(L+ k + 1)

zk+2bkj

(
1− e−bjz

L+k∑
l=0

bljz
l

l!

)
, (7)

and LZ(s) =
L∑
j=1

λj
bjΓ(L− 1)

L−2∑
k=0

(
L− 2
k

)
(−1)kbjΓ (L)

(
bj
s

)L

×
2F1

(
L,L+ k + 1;L+ k + 2;− bjs

)
L+ k + 1

, Real{s} > 0. (8)

A. Distinct Values of bi’s

With bi 6= bj ∀ i 6= j, the cdf, pdf and LT of pdf of Z in
(1) are respectively given by (6), (7), and (8), shown at the
top of this page, where λj =

∏L
i=1,i6=j

bj
bj−bi in (6)-(8), and

2F1(·, ·; ·; ·) is the hypergeometric function [2]. The proofs of
(6)-(8) are presented in [5, Appendix-A].

B. Repeated Occurrences of bi’s

Assume that there are N distinct values of bi (i.e.,
b1, . . . , bN ) with 0 < b1 < b2 < . . . < bN . Let bi occurs
ni times so that we have L =

∑N
i=1 ni. Then, the cdf, pdf

and LT of pdf of Z in (1) are respectively given by (9), (10),
and (11), shown in the next page, where µ(i, j) in (9)-(11) is
defined as

µ(i, j) =
1

bni−ji (ni − j)!
×
∑
l1≥0

· · ·
∑
li−1≥0

∑
li+1≥0

· · ·
∑
lN≥0︸ ︷︷ ︸

l1+...+li−1+li+1+...+lN=ni−j(
ni − j

l1, . . . , li−1, li+1, . . . , lN

) N∏
j=1,j 6=i

(−1)lj

×Γ(nj + lj)
Γ(nj)

(
bi

bi − bj

)nj+lj
b
lj
j . (12)

The proofs of (9)-(11) are presented in [5, Appendix-B]. As
a quick sanity check, with nj = 1 we have N = L, and it is
easy to show that (9), (10) and (11) reduce to (6), (7) and (8),
respectively.

III. APPLICATIONS

A. Example 1: Noise Variance Mismatch on MRC Receiver
Performance

In the first example, we consider a spatial diversity system
with L receiver antennas operating over i.i.d Rayleigh fading

channels. The complex-valued baseband received signal on the
lth branch is

rl = glX + nl, l = 1, . . . , L, (13)

where X is the transmitted symbol with E[|X|2] = Es, where
Es denote the average transmitted symbol energy, gl is a zero-
mean complex Gaussian r.v (CGRV) whose amplitude βl

4
=

|gl|2 has the pdf fβl(x) = e−x, x ≥ 0, and nl is a zero-mean
CG noise r.v added at the receiver front end. We assume that
E[|nl|2] = Nl. The instantaneous SNR on the lth branch is
denoted by γl, and is given by Esβl/Nl. The mean of γl is
γl = Es/Nl.

The output of a general linear diversity combiner with
weights (wl, w2, . . . , wL), where wl is the complex-valued
weight applied on the lth branch, is

r =
L∑
l=1

wlrl = X

L∑
l=1

wlgl + η, (14)

where η is zero-mean CGRV with conditional variance
E[|η|2] =

∑L
l=1 |wl|2Nl. With ideal MRC reception, we

require wl = g∗l /Nl [6]. Using these weights in (14) leads
to

r = X

L∑
l=1

βl
Nl

+ η, (15)

where, conditioned on β1, . . . , βN , E[η|β1, . . . , βN ] = 0 and
E[|η|2|β1, . . . , βN ] =

∑L
l=1 βl/Nl. The instantaneous output

SNR of (15) is

γideal-MRC =
E

[∣∣∣X∑L
l=1

βl
Nl

∣∣∣2 |β1, . . . , βN

]
E
[
|η|2 |β1, . . . , βN

]
=

L∑
l=1

Esβl
Nl

=
L∑
l=1

γl, (16)

establishing the well-known fact that the output SNR of an
ideal MRC receiver is equal to the sum of the individual branch
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FZ(z) =
N∑
i=1

ni∑
j=1

µ(i, j)
bjiΓ(j)Γ(L− j)

L−j−1∑
p=0

p∑
l=0

Γ(p+ 1)
l!

(−1)L−j−1−p

b1−ji

(
L− j − 1

p

)

×

{
biΓ(L− 1− p+ l)

{
1− e−biz

L−2−p+l∑
q=0

(biz)q

q!

}
−

2Γ(2(L− 2− p) + l + 2)

z(L−1−p)bL−2−p
i

1− e−biz
2(L−2−p)+l+1∑

r=0

(biz)r

r!


 , (9)

fZ(z) =
N∑
i=1

ni∑
j=1

µ(i, j)
bjiΓ(j)Γ(L− j)

L−j−1∑
k=0

(
L− j − 1

k

)
(−1)kΓ(L+ j + k)

bki z
k+j+1

×

(
1− e−biz

L+j+k−1∑
l=0

bliz
l

l!

)
, (10)

and LZ(s) =
N∑
i=1

ni∑
j=1

µ(i, j)
bjiΓ(j)Γ(L− j)

L−j−1∑
k=0

(
L− j − 1

k

)
(−1)kbjiΓ (L)

(
bi
s

)L
× 2F1

(
L,L+ k + j;L+ k + j + 1;− bis

)
L+ k + j

, Real{s} > 0. (11)

SNRs [6]. When the receiver does not have the knowledge of
Nl, l = 1, . . . , L, it simply uses wl = g∗l , leading to

r = X

L∑
l=1

βl + η, (17)

where now E[|η|2|β1, . . . , βN ] =
∑L
l=1 βlNl. The output SNR

of this non-ideal MRC receiver is

γnonideal-MRC =
Es

[∑L
l=1 βl

]2
∑L
l=1Nlβl

=

[∑L
l=1 βl

]2
∑L
l=1

βl
γl

. (18)

Using the Cauchy-Schwartz inequality, it can be readily shown
that γnonideal-MRC ≤ γideal-MRC, and the equality holds if
and only if Nl = N , ∀ l = 1, . . . , L. Upon noticing that
(18) is identical to (1) with bi = 1/γi, i = 1, . . . , L,
one can compute the outage probability of received SNR,

Pout = Prob(γnonideal-MRC < γT ) =
γT∫
0

fγnonideal-MRC(x)dx, where

γT is a pre-determined SNR threshold, in closed-form, using
(6) or (7) ((9) or (10)) for distinct values of γi (for repeated
values of γi). In a similar manner, the average received SNR,
γnonideal-MRC = E [γnonideal-MRC] = − d

dsLγnonideal-MRC(s)|s=0, as
well as the moment-generating function-based [1] average error
probability of various modulation schemes can be obtained by
either (8) or (11) (depending upon whether γi’s are distinct are
not).

B. Example 2: M -PSK Receiver Performance with Imperfect
CSI

Here, we study the performance of coherent M -PSK mod-
ulation on independent and non-identically distributed (i.n.d)
Rayleigh fading channels with receive diversity and imperfect
channel state information (CSI). The low-pass equivalent base-
band received signal on the lth branch is

rl = glX + nl, (19)

where X belongs to the M -PSK constellation with an aver-
age energy E[|X|2] = Es, gl is a zero-mean CGRV with
E[|gl|2] = Ωl, and the noise nl is a zero-mean CGRV with
variance N0. Assuming a linear channel estimation process
(i.e., the channel estimate is obtained as a linear combination of
received known (or pilot) symbols), we model the true and es-
timated channel gains on each branch by a bi-variate complex-
Gaussian distribution. This assumption is satisfied by a variety
of channel estimation schemes such as minimum mean-square-
error (MMSE) and pilot symbol assisted modulation (PSAM)
based channel estimation schemes [7]. Let pl, a zero-mean
CGRV, denote the channel estimate on the lth branch with
E[|pl|2] = Λl. Then, by making use of the assumption that
pl and gl are jointly Gaussian, we can write gl in terms of pl
as [8]

gl = ρl

√
Ωl
Λl
pl +

√
(1− ρ2

l )Ωlvl, (20)

where vl is a zero-mean CGRV, independent of pl, with
E[|vl|2] = 1, and ρl = E[glp∗l ]/

√
E[|pl|2]E[|gl|2]. Here, we

assume that ρl is real with ρl > 0, ∀ l = 1, . . . , L, which
is satisfied by MMSE and PSAM-based channel estimation
models. Using (20) in (19), we have

rl = Xplρl

√
Ωl
Λl

+X
√

(1− ρ2
l )Ωlvl + nl

= Xplρl

√
Ωl
Λl

+ ηl, (21)

where ηl is a zero-mean CGRV with variance E[|η|]2 = N0 +
Es(1− ρ2

l )Ωl. The combiner output is

r =
L∑
l=1

p∗l rl = X

L∑
l=1

|pl|2ρl
√

Ωl
Λl

+
L∑
l=1

ηlpl. (22)
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The output SNR is then given by

γM-PSK =
Es

[∑L
l=1 |pl|2ρl

√
Ωl
Λl

]2
∑L
l=1 |pl|2 (N0 + Es(1− |ρl|2)Ωl)

. (23)

Upon letting Zl = |pl|2ρl
√

Ωl
Λl

, where Zl now is exponentially

distributed with mean Zl = ρl
√

ΩlΛl, (23) can be conveniently
written as

γM-PSK =

[∑L
l=1 Zl

]2
∑L
l=1 Zlbl

(24)

where

bl =
(
N0 + Es(1− |ρl|2)Ωl

Es

)√
Λl
Ωl

1
ρl
. (25)

With ρl
√

ΩlΛl = C, l = 1, . . . , L, where C is
a constant that does not depend on the branch index
l, the outage probability, the average received SNR of
γM-PSK in (24) and the average symbol error rate, Ps =

(1/π)
(M−1)π/M∫

0

LγM-PSK

(
sin2(π/M)/ sin2 θ

)
dθ, can be read-

ily evaluated with the help of (6)-(11), derived in Section II.

C. Example 3: Coded Multi-carrier CDMA System with Un-
known Partial-Band Interference

This example is concerned with the performance of a coded
multi-carrier DS-CDMA (or, simply, MC-CDMA) system af-
fected by a partial-band interference (PBI), as studied in [9] and
[10]. Unlike [10], we assume that the receiver does not have
the knowledge of the jammer side information, and exploit (6)-
(11), derived in Section II-A, to evaluate this system perfor-
mance in closed-form. For completeness, we now summarize
the system and the channel model from [9] and [10].

In a Ku-user uplink MC-CDMA system, the information
bit sequence of the kth user is denoted by {b(k)

n }, where the
subscript n denotes the time index. Each bit b(k)

n is encoded by
a channel code of rate rc, and the resulting code symbols are
interleaved. An ideal interleaver is assumed for the purpose
of analysis. Each code symbol d(k)

n is then spread, binary
phase modulated and transmitted over the L disjoint frequency
bands, each of width W1. An optional symbol mapper is
employed in [9] to perform coding across the sub-carriers. If
Tc and W , respectively, denote the chip duration and system
bandwidth of a comparable single carrier (SC) CDMA system,
then we have W = (1 + β)/Tc, where β ∈ (0, 1] is the
roll-off factor of the chip wave-shaping filter. The bandwidth
available per sub-carrier in a MC-CDMA system is then
W1 = W/L = (1+β)/(TcL) = (1+β)/Tc1 , where Tc1 = LTc
is the corresponding chip duration in the MC-CDMA system.

Mathematically, the signal at the output of the kth user’s
transmitter can be written as

Sk(t) =
√

2Ec
∞∑

n=−∞
d

(k)
bn/Ncc

(k)
n h(t− nLTc)

×
L∑

m=1

cos(2πfmt+ θ(k)
m ), (26)

where bxc is the largest integer that is less than or equal to
x, {c(k)

n } denotes the spreading sequence, fm is the center
frequency (in Hertz) of the mth sub-carrier, θ(k)

m denotes
the initial phase angle of the kth user’s mth sub-carrier,
N is the number of chips per code symbol per sub-carrier,
and Ec denotes the energy per chip. Also, h(t) denotes the
impulse response of the chip wave-shaping filter. Here, we
assume that X(f) = |H(f)|2 satisfies the Nyquist criterion,
where H(f) is the Fourier transform of h(t). Denoting by
SF the spreading factor associated with SC-CDMA, we have
SF = Ts/Tc = LTs/Tc1 = LN , where Ts is the code symbol
duration. With this, we can express N as N = SF /L.

We assume that the channel is frequency-selective over the
bandwidth W . However, the total bandwidth W is assumed to
be partitioned into L disjoint frequency bands in such a way
that each of these L bands experiences independent, frequency-
flat fading. In [11], conditions were derived for satisfying this
assumption. With this, the received signal of the kth user can
be written as

r(t) =
Ku∑
k=1

√
2Ec

∞∑
n=−∞

d
(k)
bn/Ncc

(k)
n h(t− nLTc − τk)

×
L∑

m=1

α(k)
m cos(2πfmt+ ψk,m)

+nW (t) + nJ(t), (27)

where τk is the random time delay corresponding to the kth
user, assumed to be uniformly distributed in [0, LTc), Ku is
the total number of active users in the system, α(k)

m denotes the
fade amplitude, φ(k)

m denotes the random phase on the mth sub-
carrier of the kth user, and ψ(k)

m = θ
(k)
m + φ

(k)
m is the resultant

phase on the mth sub-carrier. The term nW (t) denotes the
additive white Gaussian noise (AWGN) with a two-sided PSD
of η0/2, whereas nJ(t) represents Gaussian distributed PBI
with a PSD of SJ(f).

For the sake of analysis, we assume that the fades are
independent across the users, the carriers, and over time.
We further assume that α

(k)
m is Rayleigh distributed with

pdf f
α

(k)
m

(x) = 2xe−x
2
, for x ≥ 0, and φ

(k)
m is uniformly

distributed over (−π, π]. The power spectral density (PSD)
of the jammer, SJ(f), is assumed to be of the following
form [10]:

SJ(f) =

{
η
(l)
J

2 for f (l)
J −

W
(l)
J

2 ≤ |f | ≤ f (l)
J + W

(l)
J

2
0 otherwise

,

(28)
where, for l = 1, . . . , L, η(l)

J is the one-sided PSD of the
jammer with a bandwidth of W (l)

J at the center frequency f (l)
J .

Assuming perfect synchronization of carrier, code, and bit of
the first user (i.e., the user of interest), the received signal (27)
is first chip-matched filtered using the band-pass filters H∗(f−
fi)+H∗(f+fi), i = 1, . . . , L, and then low-pass filtered with√

2 cos(2πfit + φ
(1)
i ), i = 1, . . . , L. Each of these L outputs

are correlated using the local pseudo-noise sequences. If zi
denotes the output of the correlator on the ith sub-carrier, then
we have

zi = Si + Ii + Ji +Ni, (29)
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where Si is the desired signal, Ii is the signal due to the
other Ku − 1 interfering users, Ji is the contribution due to
the jammer and Ni is the output due to AWGN. From [10],
Ii and Ji are independent complex-Gaussian r.vs. From [11,
Eqn. (23)], the mean of zi, conditioned upon α(1)

i and d(1)
bn/Nc,

is
E[zi|α(1)

i , d
(1)
bn/Nc] = d(1)N

√
Ecα

(1)
i , (30)

where d(1) = ±1 is the transmitted code symbol. To obtain
the variance of zi, conditioned on α

(1)
i , we assume that the

interference from other users, the PBI, and the AWGN are
independent of each other. With this, we have

Var{zi|α(1)
i } , σ2

i

= Var{Ii|α(1)
i }+ Var{Ji|α(1)

i }+

Var{Ni|α(1)
i }

≈ NRIi(0) +NRJi(0) +Nη0/2, (31)

where RIi(τ) and RJi(τ) are the autocorrelation functions of
the interference and jammer, respectively. In (31), the approx-
imation in the last step is due to ignoring the contribution of
RIi(τ) and RJi(τ) when τ 6= 0 [11, Eqns. (25)-(27)]. For
simplicity, let f (l)

J = fl and W (l)
J = W1, ∀ l = 1, . . . , L. Then,

with the help of [11]

σ2
i =

NEc(Ku − 1)
(

1− β
4

)
2

+
Nη

(i)
J

2
+
Nη0

2
, i = 1, . . . , L.

(32)
Note that the total jammer power is given by PJ =∑L
l=1 η

(l)
J W

(l)
J =

∑L
l=1 P

(l)
J , where P

(l)
J = η

(l)
J W

(l)
J . The

jammer-to-signal power ratio (JSR) is defined as

JSR =
PJ

Ec/Tc
=

L∑
l=1

η
(l)
J W

(l)
J Tc

Ec
=

L∑
l=1

JSRl, (33)

where JSRl = η
(l)
J W

(l)
J /(Ec/Tc) = η

(l)
J W

(l)
J Tc/Ec.

When the effective noise variances, {σ2
l }Ll=1, are known to

the receiver, for each code symbol, the L outputs, zl, l =
1, . . . , L, are processed using MRC to result in an output ZMRC.
However, in the absence of {σ2

l }Ll=1, the receiver processing
is termed as sub-optimum MRC (sMRC), and the output Z is
denoted by ZsMRC, and is given by

ZsMRC =
L∑
l=1

α
(1)
l zl = d(1)N

√
Ec

L∑
l=1

[
α

(1)
l

]2
+ ξ, (34)

where ξ is a zero-mean Gaussian r.v with a conditional variance
σ2
ξ =

∑L
l=1(α(1)

l σl)2. The instantaneous SNR, γsMRC, at the
output of sMRC is

γsMRC =

[∑L
l=1

(
α

(1)
l

)2
]2

∑L
l=1

[
α

(1)
l

]2
γl

, (35)

where γl = N2Ec/(2σ2
l ) is the average signal-to-interference-

plus-noise ratio (SINR) on the lth sub-carrier. Using (32), we
simplify γl as

γl =
1
L
× rcγb

1 + rc
SF γb(Ku − 1)(1− β/4) + rc

SF γb
JSRlL
(1+β)

, (36)

where l = 1, . . . , L, Eb = SFEc/rc and γb = Eb/N0 is the
SNR per information bit. For simplicity, let us define

γ =
1
L
× rcγb

1 + rc
SF γb(Ku − 1)(1− β/4)

(37)

and, for l = 1, . . . , L,

ρl =
1

1 + β
× JSRlLγbrc/SF

1 + rc
SF γb(Ku − 1)(1− β/4)

. (38)

Eqn. (37) captures the average SINR in the absence of PBI,
whereas (38) takes into account the jammer’s contribution.
Using (37) and (38), γl of (36) has the following compact
form

γl =
γ

1 + ρl
,

1
bl
. (39)

When the receiver has perfect knowledge of {σ2
l }Ll=1, the SINR

γMRC is given by [10]

γMRC =
L∑
l=1

γl

[
α

(1)
l

]2
=

L∑
l=1

γ

1 + ρl

[
α

(1)
l

]2
. (40)

We now derive the average pairwise error probability (PEP)
with BPSK signaling. The probability that the transmitted
codeword x = (x1, x2, . . . , xN ), xi ∈ {−

√
Es,+

√
Es},

is erroneously decoded as y = (y1, y2, . . . , yN ), yi ∈
{−
√
Es,+

√
Es}, is given by (41), shown at the top of the next

page, where Q(x) =
∞∫
x

e−u
2/2du/

√
2π. Let x and y differ in

d positions, n1, n2, . . . , nd. With this, (41) simplifies to [1]

Prob
(
d,n(d)

)
= E

Q
 ∑L

l=1

∑d
k=1 α

2
l (nk)√∑L

l=1

∑d
k=1

α2
l (nk)

γl(nk)


=

1
π

π
2∫

0

Lγcoded-MC-CDMA-PBI

(
1

2 sin2 θ

)
dθ, (42)

where n(d) = (n1, n2, . . . , nd), γl(nk) = Es/(2σ2
l (nk)) is the

average SINR on the l sub-carrier for the nkth code symbol
and

γcoded-MC-CDMA-PBI =

[∑L
l=1

∑d
k=1 α

2
l (nk)

]2
∑L
l=1

∑d
k=1

α2
l (nk)

γl(nk)

. (43)

Once again, the uncoded as well as the coded performances
of an MC-CDMA systems with PBI, characterized by the
statistics of γsMRC in (35) and the PEP in (42), respectively, can
be quantified with the help of (6)-(11). It is worth mentioning
that unlike the Chernoff bound based average PEP in [9], [10],
(42) presents an exact expression that is applicable to both
optimum and sub-optimum receivers.

IV. RESULTS AND DISCUSSION

In this section, we present some numerical and simulation
results to illustrate the usefulness of our analytical results in
Section II as applied to the systems exemplified in Section III.

The outage probability of MRC receiver output SNR is
shown in Figs. 1 and 2, as a function of the outage threshold
γT , with L = 4 receive antennas. The average received SNR
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Prob (x→ y) = Prob

(
L∑
l=1

N∑
n=1

(rl(n)− αl(n)xn)2 >

L∑
l=1

N∑
n=1

(rl(n)− αl(n)yn)2

)

= Prob

(
L∑
l=1

N∑
n=1

(yn − xn)ηl(n)αl(n) >
L∑
l=1

N∑
n=1

(xn − yn)xnα2
l (n)

)

= E

Q
 ∑L

l=1

∑N
n=1 α

2
l (n)xn(xn − yn)√∑L

l=1

∑N
n=1 α

2
l (n)σ2

l (n)(yn − xn)2

 . (41)
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Fig. 1. The impact of unknown average noise power on the outage probability
performance of the mismatched MRC receiver. The number of branches is
L = 4 with γ1 = 10 dB, γ2 = 20 dB, γ3 = 30 dB, and γ4 = 40 dB.
For comparison purposes, outage performance of the ideal MRC (i.e., with
knowledge of the average noise power) is also shown.
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Fig. 2. Outage probability of MRC receiver with mismatched noise powers.
The number of branches is L = 4 with γ1 = 10 dB, γ2 = γ3 = 20 dB,
and γ4 = 30 dB. For comparison purposes, outage performance of the ideal
MRC (i.e., with knowledge of the average noise power) is also shown.

per branch (in dB) in Fig. 1 is set to γ1 = 10, γ2 = 20,
γ3 = 30 and γ4 = 40, whereas they are set to γ1 = 10,
γ2 = γ3 = 20 and γ3 = 30 in Fig. 2. An excellent match
between the analytical and simulation results is observed in
Figs. 1 and 2. At an outage probability of 10−3, the noise
variance-agnostic MRC receiver in Fig. 1 has a loss of about 13
dB, whereas the loss is approximately 7 dB with the parameters
chosen in Fig. 2.
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(a) BPSK Modulation
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(b) 16-QAM Modulation

Fig. 3. Average BER of BPSK and 16-QAM modulations with mismatched
MRC receiver. With up to L = 3 antennas at the receiver, we set b1 = 1

γ1
,

b2 = 1
4γ1

and b3 = 1
6γ1

, where γ1 is the average received SNR on the first
branch.

In Fig. 3 the average probability of error of mismatched
MRC receiver is compared against the ideal MRC receiver. In
particular, Fig. 3(a) shows the error performance with BPSK
modulation whereas Fig. 3(b) the performance with 16-QAM
modulation. With up to 3 receiver antennas, we set b1 = 1/γ1,
b2 = 1/(4γ1), and b3 = 1/(6γ1), where γ1 is the average
received SNR on the first branch, and plot the error rates
in Fig. 3 as a function of γ1. As expected, Figs. 3(a) and
3(b) confirm that knowledge of the noise variance is not
required with single-antenna reception. However, at an error
rate of 10−4, Figs. 3(a) and 3(b) reveal that lack of noise
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variance knowledge leads to a loss of approximately 1 and
2 dB respectively with two and three receive antennas.

The average symbol error rate of M -PSK modulation with
diversity and imperfect CSI is shown in Fig. 4 with L = 3
antennas and M ∈ {2, 4, 8}. In Fig. 4, we set ρ2

1 = 0.99,
ρ2

2 = 0.95, ρ2
3 = 0.95 and Ωl = 1, l = 1, . . . , 3. With

the constant C = 1, we use Λl that satisfies ρl
√

ΩlΛl =
C, l = 1, . . . , 3. Performance of the ideal MRC receiver
that knows the knowledge of noise variances is contrasted
against the mismatched MRC receiver that ignores them. Since
the per-branch effective noise variance (from Section III-B),
N0 +Es(1−ρ2

l )Ωl, l = 1, . . . , L, increases with the operating
SNR, from Fig. 4 we observe that both the optimum and
mismatched MRC receivers suffer from error floor. However,
upon comparing the high SNR performance of mismatched and
optimum receivers, we conclude from Fig. 4 that knowledge
of noise variances is still beneficial to improve the error floor
of mismatched receiver.

Finally, the PEP of a coded MC-CDMA system with PBI,
described in Section III-C, is plotted in Fig. 5 as a function of
the total average received SINR γTotal ,

∑L
k=1 γ/(1 + ρk).

Here, we consider L = 4 sub-carriers and the distance between
the two codewords of interest, d, is 2. For simplicity, the system
parameters in Section III-C are chosen in such a way that the
average SINR on the sub-carrier i, i = 1, . . . , L, is equal to
the 2i

L(L+1) fraction of the total average SINR over the entire
bandwidth. We also assume that on a given sub-carrier the
two codewords at the differing positions have identical average
SINRs. The PEP in Fig. 5 shows that the analysis, based on
(42) and (11), matches excellently with the simulation results.
At a PEP of 10−3, comparing the ideal performance in Fig. 5,
we conclude that there is a loss of approximately 1.0 dB in
SINR due to lack of knowledge of average interference power
at the receiver.
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Fig. 4. Average symbol error rate of M -PSK modulation, M ∈ {2, 4, 8},
with L = 3 diversity branches. Here, we set ρ21 = 0.99, ρ22 = 0.95, ρ23 = 0.9
and C = Ωl = 1, l = 1, . . . , L. For comparison purposes, average symbol
error performance of the ideal MRC (i.e., with knowledge of the effective
average noise powers, N0 + Es(1− ρ2l )Ωl, l = 1, . . . , L) is also shown.

V. CONCLUSION

We presented the pdf, the cdf, and the LT of the pdf

of the r.v Z defined as Z =
(∑L

j=1Xj

)2

/
(∑L

j=1 bjXj

)
,
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Fig. 5. Average pairwise error probability of coded MC-CDMA system with
L = 4 sub-carriers. The two codewords differ in d = 2 positions. The system
parameters in Section III-C are chosen such that the average SINR on the
sub-carrier i, i = 1, . . . , 4, is equal to the i/10 fraction of the total average
SINR over the entire bandwidth. It is also assumed that on a given sub-carrier
the two codewords at the differing positions have identical average SINRs.

where X1, X2, . . . , XL are i.i.d exponential r.vs with unit
mean and b1, b2, . . . , bL are positive scalars. To illustrate the
usefulness of this contribution we presented three application
examples: i) impact of mismatched noise variances on MRC
receiver performance ii) M -ary PSK receiver performance
with diversity and imperfect channel estimation, and iii) the
performance of coded multi-carrier CDMA systems with an
unknown narrow-band interference.
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