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ABSTRACT

This paper considers the subspace tracking approach for low-
complexity space-time adaptive processing (STAP) in the non-
homogeneous compound-Gaussian environment. Specifically, a
normalized subspace tracking (NST) and an instantaneously nor-
malized subspace tracking (iNST) detectors are proposed to miti-
gate the effect of the time-varying texture (power) component on
the detection performance and track the subspace of the stationary
speckle component. On one hand, the two proposed detectors can
be considered as a fast implementation of the normalized eigen-
canceler by replacing the conventional eigen-decomposition with
the subspace tracking techniques. On the other hand, they improve
existing subspace tracking-based STAP detectors which mostly deal
with homogeneous environment and ignore the power variation
among rang bins. Extensive simulations confirm that the proposed
detectors are able to provide performance gain over conventional
subspace tracking-based STAP detectors in the compound-Gaussian
environment.

Index Terms— Space-time adaptive processing, compound-
Gaussian environment, subspace tracking, low computational com-
plexity, reduced-rank detection.

1. INTRODUCTION

Space-time adaptive processing (STAP) methods have been shown
to be effective in detecting air/ground moving objects [1–3]. Fur-
thermore, STAP for the compound-Gaussian environments has been
investigated over two decades [4–9] (and reference therein). A num-
ber of non-adaptive and adaptive STAP detectors are available for
detecting moving objects in such non-Gaussian environments. Due
to the additional time-correlated texture component, the optimum
detection in the compound-Gaussian yields an implicit form in most
cases. The solution to the optimum detector usually resorts to an
expectation-maximization (EM) procedure. On the other hand, sub-
optimal detectors in the compound-Gaussian case are usually ex-
pressed in simple and closed forms. Among these detectors are the
normalized adaptive matched filter (NAMF) with the conventional
sample covariance matrix (SCM) and the NAMF with the normal-
ized SCM (NSCM).

Same as in the Gaussian case, the SCM in the compound-
Gaussian environment imposes two major constraints: 1) the num-
ber of training data should be equal or larger than the dimension
of the space-time covariance matrix; and 2) the computationally-
demanding inversion of the space-time covariance matrix which
is usually a large-dimension matrix. Recognizing that the speckle
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in the compound-Gaussian environment has a low-rank structure,
reduced-rank detectors have been proposed in the literature, e.g.,
eigenvalue decomposition (EVD)-based eigencanceler [10]. The
reduced-rank detector employs a projection of the received signal
and steering vector into the null space of the clutter principle sub-
space. The EVD-based eigencanceler is able to reduce the training
requirement toO(2r), wherer is the rank of the clutter covari-
ance matrix. However, the computational complexity of this method
remains high asO(M3N3) , whereM is the number of spatial chan-
nels andN is the number of pulses. As the productMN becomes
large, such high computational complexity makes the EVD-based
eigencanceler prohibitive from real-time applications. To address
this issue, the subspace tracking technique has been introduced to
the STAP in [11,12] to deal with homogeneous environments. It has
been shown that the application of the subspace tracking technique
greatly reduces the computational complexity involved in STAP,
without significant performance sacrifice.

In this paper, we consider a low-complexity STAP strategy
which is based on the subspace tracking and designed for the non-
homogeneous compound-Gaussian environment. Existing subspace
tracking based STAP detectors fail to account for the power varia-
tion across range bins. To address this issue, two modified subspace
tracking STAP detectors, the normalized ST (NST) detector and
the instantaneously normalized ST (iNST) detector, are proposed
to mitigate the effect of the time-varying texture component and
to track the subspace of the speckle component. Specifically, the
NST detector introduces a normalization factor in the test statistic
and handle the power variation in the test statistic level, while the
iNST detector performs two normalization operations: first an in-
stantaneous normalization on the received signal at each range bin
and then the normalization at the test statistic. On one hand, the
proposed detectors are training-efficient, due to its exploitation of
the low-rank structure of the speckle component, as compared to the
covariance matrix based approach, e.g., the NAMF detectors with
the SCM and NSCM; on the other hand, they are also computation-
ally more efficient than the EVD-based eigencanceler, due to the
fast subspace tracking technique.

The rest of this paper is organized as follows. Section 2 contains
the signal model and briefly reviews prior solutions. Section 3 intro-
duces the two proposed STAP detectors for the compound-Gaussian
environment. Simulation results are provided for performance com-
parison in Section 4. Conclusions are finally drawn in Section 5.

2. SIGNAL MODEL AND PRIOR SOLUTIONS

2.1. Signal Model

The compound-Gaussian clutter is a product of a positive scalar
λk (texture) and a multi-dimensional complex Gaussian vectorzk



(speckle) with mean zero and covariance matrixR as

xk = λkzk ∈ C
N×1, k = 0, 1, · · · , K (1)

wherezk ∼ CN (0,R) andk is the index of range bins. The con-
ditional distribution ofxk is

xk |λk ∼ CN
(

0, λ2
kR

)

, (2)

which implies power variations over different range bins. It can be
shown that the compound-Gaussian model can be interpreted by the
well known spherically invariant random process (SIRP) and has
been verified extensively in the literature with measured data.

The complete distribution ofxk can be obtained as

f (xk) =
1

πN |R|hN

(

x
H
k R

−1
xk

)

, (3)

where the functionfN (·) is defined as

hN (x) =

∫ ∞

0

s−2N exp(−x/s2)fλ (s) ds, (4)

with fλ(s) specifying the distribution of the texture componentλ.
The most common probability density functions (pdf) include the
Weibull and theK-distribution. Specifically, the Weibull pdf is

fλ (s) = absb−1 exp(−asb), s ≥ 0, a, b > 0 (5)

with the shape parameter0 < b ≤ 2, while theK-distribution pdf is

fλ (s) =
av+1sv

2v−1Γ(v)
Kv−1(as), s ≥ 0, a, v > 0 (6)

whereΓ (·) is the gamma function andKv (·) is the modified Bessel
function of the second-kind. Due to the independence betweenλ
andzk, the clutter covariance matrix is given by

Rx = E
{

xkx
H
k

}

= E
{

λ2
k

}

R = PλR, (7)

whereR = E
{

zkz
H
k

}

and Pλ = E
{

λ2
k

}

specifies the texture
power. SincePλR = (Pλ/q)(qR), we constrain the speckle co-
variance matrix totr {R} = N .

2.2. Prior Solutions

The optimum solution to the binary hypothesis testing problem in
the compound-Gaussian clutter needs to integrate the pdf over the
distribution of the texture, which results in no close-form solutions.
However, suboptimal solutions are available and include the NAMF
with standard sample covariance matrix and the NAMF with the nor-
malized sample covariance matrix, given by

TS-NAMF =

∣

∣

∣
sHR̂−1x0

∣

∣

∣

2

(

sHR̂−1s
) (

xH
0 R̂−1x0

) , (8)

with R̂ = 1
K

∑K
k=1 xkx

H
k , and

TN-NAMF =

∣

∣

∣
sHR̃−1x0

∣

∣

∣

2

(

sHR̃−1s
) (

xH
0 R̃−1x0

) , (9)

with R̃ = 1
K

∑K
k=1 x̃kx̃

H
k and x̃k = xk√

xH

k
xk/K

is the instanta-

neously normalized training signal. In space-time adaptive process-
ing, the space-time covariance matrix usually exhibits a low rank
structure. According to the Brennan’s rule, the rank of the space-
time covariance matrix is much smaller than the overall space-time
dimension. By exploiting this structure, the normalized eigen-
canceler was proposed as [7,10]

TN-EVD =

∣

∣sH
(

I − UUH
)

x0

∣

∣

2

[

sH
(

I − UUH
)

s
] [

xH
0

(

I − UUH
)

x0

] (10)

whereU is obtained by perform the EVD of either the sample co-
variance matrix or the normalized sample covariance matrix.

3. SUBSPACE TRACKING-BASED DETECTORS FOR THE
COMPOUND-GAUSSIAN ENVIRONMENT

Direct application of the subspace tracking technique to the compound-
Gaussian environment fails to take into account the power variation
over range bins and hence the subspace tracking technique cannot
accurately track the subspace of the speckle component. In this sec-
tion, two subspace tracking-based STAP detectors are proposed to
mitigate the effect of the power variation when the subspace tracking
is applied to the compound-Gaussian environment.

3.1. Subspace Tracking for STAP

The subspace tracking first reduces the signal dimension ofxk from
MN to r, where rank(R) < r ≪ MN . Denote byW of dimen-
sionMN × r the subspace concentration matrix. The compressed
signal after subspace concentration process can be mathematically
expressed as:

yk = W
H
xk, (11)

with W given by the following optimization function

W = arg min
Ŵ

∥

∥

∥
yk − ŴŴ

H
xk

∥

∥

∥

2

. (12)

The optimization problem in (12) can be numerically solved with
subspace tracking algorithms such as the the conventional projection
approximation subspace tracking (PAST) [13] and fast approximated
power iteration (FAPI) [11,14].

3.2. NST STAP Detector

The NST detector is proposed to replace the EVD of the normalized
eigencanceler of (10) by some subspace tracking techniques. The
NST detector, on one hand, improves existing subspace tracking-
based STAP detector in [11] for the compound-Gaussian environ-
ment; on the other hand, it reduces the computational complexity of
the normalized eigencanceler fromO(M3N3) to aboutO(3MNr+
3r2).

Since we are particularly interested in a low-complexity STAP in
the compound-Gaussian environment, we choose the modified FAPI
algorithm [12] to track the clutter principle subspace. The modi-
fied FAPI algorithm uses two consecutive approximations within the
conventional FAPI algorithm and further reduces the computational
complexity. It is noted that the FAPI was derived from the approx-
imated power iteration (API) algorithm [15]. In API, the auxiliary
matrixZ is updated as

Zk =
1

β
Θ

H
k

[

Ir − gky
H
k

]

Zk−1Θ
−H
k , (13)



Algorithm 1 NST-based STAP Procedure

Initialization: W0 =

[

Ir

0(n−r)×r

]

, Z0 = Ir.

Step 1 (Subspace Tracking Procedure):
1: for k = 1, 2, · · · , K do
2: yk = WH

k−1xk

3: hk = Zk−1yk

4: gk = hk

β+yH

k
hk

5: ǫ2k = ‖xk‖2 − ‖yk‖2

6: τk =
ǫ2
k

1+ǫ2
k
‖gk‖2+

√
1+ǫ2

k
‖gk‖2

7: ηk = 1 − τk ‖gk‖2

8: y′
k = ηkyk + τkgk

9: h′
k = ZH

k−1y
′
k

10: ǫk = τk

ηk

(

Zk−1gk −
(

(h′
k)Hgk

)

gk

)

and

(18): Zk = 1
β

(Zk−1 − gkh
′
k)

11: e′
k = ηkxk − Wk−1y

′
k

12: Wk = Wk−1 + e′
kg

H
k

13: end for
Step 2 (STAP Detection):
14: W = WK

15: TNST =
|sH(I−WWH)x0|2

[sH(I−WWH)s][xH
0 (I−WWH)x0]

H1

≷
H0

γNST

where
Θk = W

H
k−1Wk, (14)

andgk of lengthr has the same definition as that in [14]. It is im-
portant to observe that the last term in (13),Θ−H

k , not only incurs
O(r3) operation but also may enhance noise ifΘk is noisy. Mo-
tivated by this observation, two consecutive approximations of (13)
are made. First, recalling thatΘ is nearly orthonormal [14], it is
reasonable to approximateΘ−H

k as

Θ
−H
k ≈ Θk. (15)

Then, observing thatW comprises of orthonormal column vectors.
the second approximation

Θk ≈ Ir, (16)

holds. With both approximations,Zk in (13) now takes the following
form:

Zk =
1

β
Θ

H
k

[

Ir − gky
H
k

]

Zk−1. (17)

It should be pointed out that the total computational complexity of
the modified FAPI isO

(

3NMr + 3r2
)

, which is aboutO(2r3) less
operation as compared to the conventional FAPI. Incorporating (17)
into the procedure of the FAPI [14], we can find the update function
for Zk using (17) is given as follows.

Zk =
1

β

(

Zk−1 − gkh
′
k

)

, (18)

where the definitions ofh′
k andǫk are the same as those in [14] and

given in Algorithm 1.
With the identified clutter principal subspace using the modified

FAPI technique, the NST detector is shown as

TNST =

∣

∣sH
(

I − WWH
)

x0

∣

∣

2

[sH (I − WWH) s][xH
0 (I − WWH)x0]

H1

≷
H0

γNST,

(19)

Algorithm 2 iNST-based STAP Procedure

Initialization: W0 =

[

Ir

0(n−r)×r

]

, Z0 = Ir.

Step 1 (Subspace Tracking Procedure):
1: for k = 1, 2, · · · , K do
2: x̃k = xk√

xH

k
xk/K

3: yk = WH
k−1x̃k

4: hk = Zk−1yk

5: gk = hk

β+yH

k
hk

6: ǫ2k = ‖x̃k‖2 − ‖yk‖2

7: τk =
ǫ2
k

1+ǫ2
k
‖gk‖2+

√
1+ǫ2

k
‖gk‖2

8: ηk = 1 − τk ‖gk‖2

9: y′
k = ηkyk + τkgk

10: h′
k = ZH

k−1y
′
k

11: ǫk = τk

ηk

(

Zk−1gk −
(

(h′
k)Hgk

)

gk

)

and

(18): Zk = 1
β

(Zk−1 − gkh
′
k)

12: e′
k = ηkx̃k − Wk−1y

′
k

13: Wk = Wk−1 + e′
kg

H
k

14: end for
Step 2 (STAP Detection):
15: W̃ = WK

16: TiNST =
|sH(I−W̃W̃H)x0|2

[sH(I−W̃W̃H)s][xH
0 (I−W̃W̃H)x0]

H1

≷
H0

γiNST

whereW = WK is the estimated principle clutter subspace based
onK training signals andγNST is a threshold subject to the probabil-
ity of false alarm. Compared with the normalized eigencanceler, the
NST detector shares the same test statistic but replaces the EVD with
the subspace tracking algorithm to track the clutter principle sub-
space with less computational complexity. Compared with the con-
ventional subspace tracking based STAP detector [11], the additional
normalization factor in the denominator of the NST test statistic is
critical to handle power variation effect in the compound-Gaussian
environment, especially when the number of training signals is small
(see Section 4 for the discussion).

3.3. iNST STAP Detector

In fact, the above modified FAPI algorithm works well when the
training signalsxk are homogeneous, i.e., they are all complex
Gaussian random vectors with zero mean and covariance matrixR.
In the compound-Gaussian scenario, this homogeneous assumption
is no longer valid and the normalization at the test statistic level
maybe not sufficient to suppress the power variation. As such, one
more normalization at the signal level is required, especially in the
case of strong power variation cross range bins. A simple solution
for this purpose is an instantaneous normalization at the signal level,
i.e.,

x̃k =
xk

√

xH

k
xk

K

, (20)

which produces training signals with approximately equal power.
Then, the modified FAPI algorithm is applied to the normalized
training signalsx̃k to track the clutter principle subspace of the
speckle component. DenotẽW as the estimated clutter principle
subspace by applying the subspace tracking algorithm to the nor-
malized training signals̃xk. The iNST detector can be expressed
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Fig. 1. Probability of detection versus SINR with moderate power
variation (b = 5 andv = 0.2) and limited training signals (K =
MN ).

as

TiNST =

∣

∣

∣
sH

(

I − W̃W̃H
)

x0

∣

∣

∣

2

[

sH
(

I − W̃W̃H
)

s
] [

xH
0

(

I − W̃W̃H
)

x0

]

H1

≷
H0

γiNST,

(21)

whereγiNST is a threshold subject to the probability of false alarm.
In general, the iNST detector is similar to the NST except that the
instantaneous normalization step is performed before applying the
subspace tracking technique. The implementation of the iNST de-
tector is summarized in Algorithm 2.

4. NUMERICAL EVALUATION

In this section, we evaluate three classes of detectors: 1) the conven-
tional subspace tracking detectors designed for the homogeneous en-
vironment [11] (denoted as black curves); 2) the NST detectors with
the FAPI and the introduced modified FAPI algorithms (denoted as
red curves); and 3) the iNST detectors with the FAPI and the intro-
duced modified FAPI algorithms (denoted as blue curves) in theK-
distributed compound-Gaussian backgrounds. Within each class of
detectors, the computationally extensive EVD-based eigencanceler
is also implemented and its performance provides a reference on
performance loss due to application of the subspace tracking tech-
nique. Several scenarios with different levels of power variation (i.e.,
changing parametersb andv in theK-distribution of clutter) and dif-
ferent sets of training signals (i.e., differentK) are considered as
follows.

We first consider a scenario withmoderate power variation and
limited training signals. More specifically, theK-distributed clutter
is generated with parametersb = 5 andv = 0.2 and the number
of training signals isK = MN = 64. Simulation results for three
classes of detectors are shown in Fig. 1. It is seen that the NST
detectors with the FAPI and modified FAPI algorithms (i.e., NFAPI
and NMFAPI in the figure) improve detection performance of the
conventional FAPI and modified FAPI approaches (i.e., FAPI and
MFAPI in the figure) by about 3dB. while the iNST detectors with
the FAPI and modified FAPI algorithms (i.e., iNFAPI and iNMFAPI
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Fig. 2. Probability of detection versus SINR with moderate power
variation (b = 5 andv = 0.2) and sufficient training signals (K =
2MN ).

in the figure) further improves the detection performance by about
6 dB with respect to the FAPI and MFAPI detectors. It is also seen
that, in each class of detectors, the EVD-based detector provides an
upper bound for the two subspace tracking based detectors. The per-
formance losses between the EVD-based detector and the subspace
tracking-based approach are about 2-3 dB in the NST and iNST cat-
egories, while the performance loss increases to about 4-5 dB in the
conventional category without any normalization.

Then, we increase the number of training signals toK =
2MN = 128 while keeping the same level of power variation
among training signals. Simulation results are shown in Fig. 2.
When the training signals are sufficient, the performance of sub-
space tracking-based detectors both converge to the upper bound of
the EVD-based detectors in all three classes of detection. In other
words, with sufficient training signals, the performance loss due to
the subspace tracking algorithm is negligible. It is also noted that
the NST detectors, i.e., the NFAPI and NMFAPI, give the same
performance as the conventional FAPI and MFAPI. In other words,
there is no performance gain of the NST detectors by introducing the
normalization only at the test statistic level. In contrast, the iNST
detectors, i.e., the iNFAPI and iNMFAPI, show better detection
performance than the conventional subspace tracking and the NST
detectors with about 2-3 dB performance gain.

Next, we consider a scenario withstrong power variation and
limited training signals, where theK-distributed clutter is generated
with parametersb = 8 andv = 0.125 and the number of training
signals isK = MN = 64. Simulation results are shown in Fig. 3.
Again, the subspace tracking detectors give detection performance
with a certain gap with respect to their upper bounds provided by
the EVD-based detector in all three classes of detection. The per-
formance improvement from the conventional detectors to the NST
detectors and from the NST detectors to the iNST detectors can be
clearly observed. From Figs. 1 and 3, it can be concluded that the
normalization at the test statistic level of the NST detector is more
critical to improve the detection performance in the case of limited
training signals.

Finally, we increase the number of training signal toK =
2MN = 128 and maintain the level of power variation. Simu-
lation results are shown in Fig. 4. The result verifies that, with
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Fig. 3. Probability of detection versus SINR with strong power
variation (b = 8 and v = 0.125) and limited training signals
(K = MN ).

sufficient training signals, the performance loss due to application
of the subspace tracking algorithm is quite small by comparing
the performance of the subspace tracking detectors and that of the
EVD-based detector in all three classes of detectors. Moreover, in
this case, the normalization at the test statistic level is not enough
to suppress the power variation in the compound-Gaussian environ-
ment by comparing performance of the NST detectors (the NFAPI
and NMFAPI) and that of the conventional detectors (FAPI and
MFAPI). The performance improvement is possible by using the
iNST detectors with the additional instantaneous normalization at
the signal level. Comparison between Fig. 4 and Fig. 2 shows that
the performance gain from the NST detectors to the iNST detectors
increases from about 2-3 dB to about 3-4 dB, which implies that
the instantaneous normalization is more critical in the case of strong
power variation.

5. CONCLUSION

In this paper, motivated by the progress in the subspace tracking,
we propose a low-complexity STAP strategy via subspace tracking
in the nonhomogeneous compound-Gaussian environment. Specif-
ically, the normalized and instantaneously normalized subspace
tracking-based detectors are proposed to track the subspace of the
speckle component and mitigate the effect of the time-varying tex-
ture component. On one hand, the proposed subspace tracking
detectors are training efficient due to its exploit of the low-rank
structure of the speckle component, as compared to the conventional
covariance matrix based detectors, e.g., the NAMF; on the other
hand, they are computationally more efficient than the EVD-based
eigencanceler, thanks to the fast subspace tracking algorithms.
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