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Abstract

This paper considers the subspace tracking approach for low complexity space-time adaptive pro-
cessing (STAP) in the non-homogeneous compound-Gaussian environment. Specifically, a nor-
malized subspace tracking (NST) and an instantaneously normalized subspace tracking (iNST)
detectors are proposed to mitigate the effect of the time-varying texture (power) component on
the detection performance and track the subspace of the stationary speckle component. On one
hand, the two proposed detectors can be considered as a fast implementation of the normalized
eigencanceler by replacing the conventional eigen-decomposition with the subspace tracking
techniques. On the other hand, they improve existing subspace tracking-based STAP detectors
which mostly deal with homogeneous environment and ignore the power variation among rang
bins. Extensive simulations confirm that the proposed detectors are able to provide performance
gain over conventional subspace tracking-based STAP detectors in the compound-Gaussian en-
vironment.
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ABSTRACT in the compound-Gaussian environment has a low-rank structure,

reduced-rank detectors have been proposed in the literature, e.g.,
) ) . ) - V\é'igenvalue decomposition (EVD)-based eigencanceler [10]. The
complexity space-time adaptive processing (STAP) in t_h_e NONteduced-rank detector employs a projection of the received signal
homogeneous compound-Gaussian environment.  Specifically, ghd steering vector into the null space of the clutter principle sub-
§'pace. The EVD-based eigencanceler is able to reduce the training
fequirement toO(2r), wherer is the rank of the clutter covari-

nce matrix. However, the computational complexity of this method
Y¥mains high a& (M>N?) , where) is the number of spatial chan-
ABIs andV is the number of pulses. As the produdtN becomes

be considered as a fast implementation of the normalized eigerpérge, such high computational complexity makes the EVD-based

cr?ncelsr by replasng thehc_onventignalheigeg-dicorgpohsitio_n Witl&igencanceler prohibitive from real-time applications. To address
the subspace tracking techniques. On the other hand, they Improyg, issue, the subspace tracking technique has been introduced to

existing subspace tracking-based STAP detectors which mostly de e STAP in [11,12] to deal with homogeneous environments. It has

with homogeqeous environment an.d |gnore.the power variatiofeqy shown that the application of the subspace tracking technique
among rang bins. Extensive simulations confirm that the propose, reatly reduces the computational complexity involved in STAP
detectors are able to provide performance gain over convention '

sub§pace tracking-based STAP detectors in the compound-Gaussmﬁhlc:IUttsilgn‘;f;%ir: F\);éfogg]i?g :rszclr cl)f\lf\(/:-i:-ompl exity STAP strategy
environment. which is based on the subspace tracking and designed for the non-
Index Terms— Space-time adaptive processing, compound-homogeneous compound-Gaussian environment. Existing subspace
Gaussian environment, subspace tracking, low computational contracking based STAP detectors fail to account for the power varia-
plexity, reduced-rank detection. tion across range bins. To address this issue, two modified subspace
tracking STAP detectors, the normalized ST (NST) detector and
the instantaneously normalized ST (iNST) detector, are proposed
to mitigate the effect of the time-varying texture component and
track the subspace of the speckle component. Specifically, the
T detector introduces a normalization factor in the test statistic

malized subspace tracking (iNST) detectors are proposed to mit
gate the effect of the time-varying texture (power) component o
the detection performance and track the subspace of the station

1. INTRODUCTION

Space-time adaptive processing (STAP) methods have been sho
to be effective in detecting air/ground moving objects [1-3]. Fur- L L .
thermore, STAP for the compound-Gaussian environments has be@Hd handle the power variation in the tQSt statlstlg Ievel,_ while Fhe
investigated over two decades [4-9] (and reference therein). A nunfNS T detector perfo_rms_ two normallzapon operatlons: first an n-
ber of non-adaptive and adaptive STAP detectors are available forantaneous normallgathn on the recelved.s[gnal at each range bin
detecting moving objects in such non-Gaussian environments. DLqud then the normal|zat|on_ "’Tt the t_e;t statistic. Qn one _har_ld, the
to the additional time-correlated texture component, the optimunﬁ)mposed detectors are training-efficient, due to its exploitation of
detection in the compound-Gaussian yields an implicit form in mosfhe onv-rank strtu.ctLtj)re ofdthe speck:]e comp?hnerllltAe,\\Achgnlpa{ed to Fthhe
cases. The solution to the optimum detector usually resorts to arpvariance matrix based approach, €.g., the etectors wi

expectation-maximization (EM) procedure. On the other hand, subt-he SCM and NSCM; on the other hand, they are also computation-

optimal detectors in the compound-Gaussian case are usually € lly more efficient t'han the I_EVD-based eigencanceler, due to the
t subspace tracking technique.

pressed in simple and closed forms. Among these detectors are t h  thi ; ed as foll . .
normalized adaptive matched filter (NAMF) with the conventional The rest of this paper is organized as follows. Section 2 contains

sample covariance matrix (SCM) and the NAMF with the normal_the signal model and briefly reviews prior solutions. Section 3 intro_—
ized SCM (NSCM). duces the two proposed STAP detectors for the compound-Gaussian

&_nvironment. Simulation results are provided for performance com-

Same as in the Gaussian case, the SCM in the compound- " X s . ; h .
Gaussian environment imposes two major constraints: 1) the nuniparison in Section 4. Conclusions are finally drawn in Section 5.

ber of training data should be equal or larger than the dimension

of the space-time covariance matrix; and 2) the computationally- 2. SIGNAL MODEL AND PRIOR SOLUTIONS
demanding inversion of the space-time covariance matrix which

is usually a large-dimension matrix. Recognizing that the speckl@.1. Signal Model

P. Wang was with Mitsubishi Electric Research Laboratozies sum-  1he compound-Gaussian clutter is a product of a positive scalar
mer intern of 2010 when this work was conducted. Ar (texture) and a multi-dimensional complex Gaussian veztor



(speckle) with mean zero and covariance maRias with R = = Zszl xpxF andx, = \/%/K is the instanta-
X X

neously normalized training signal. In space-time adaptive process-
ing, the space-time covariance matrix usually exhibits a low rank
structure. According to the Brennan'’s rule, the rank of the space-
time covariance matrix is much smaller than the overall space-time
dimension. By exploiting this structure, the normalized eigen-

xp = Mzp €CV k=0,1,--- | K (1)

wherez;, ~ CN (0,R) andk is the index of range bins. The con-
ditional distribution ofx;, is

Xk [Ae ~ CN (O, AiR) 7 ) canceler was proposed as [7, 10]
2
which implies power variations over different range bins. It can be Thev — |s” (I-UU") x| (10)
shown that the compound-Gaussian model can be interpreted by the ’ [s7 (I-UU")s] [x (I-UUY) x]

well known spherically invariant random process (SIRP) and has

been verified extensively in the literature with measured data. ~ WhereU is obtained by perform the EVD of either the sample co-
The complete distribution af;, can be obtained as variance matrix or the normalized sample covariance matrix.
f(xz) = #hN (kaR’lxk) , (3) 3. SUBSPACE TRACKING-BASED DETECTORS FOR THE
™ |R| COMPOUND-GAUSSIAN ENVIRONMENT
where the functiorfn (-) is defined as Direct application of the subspace tracking technique to the compound-
. Gaussian environment fails to take into account the power variation
hy (z) = / sT2N exp(—m/sz)f)\ (s)ds, 4 over range bins and hence the subspace tracking technique cannot
0 accurately track the subspace of the speckle component. In this sec-

tion, two subspace tracking-based STAP detectors are proposed to
mitigate the effect of the power variation when the subspace tracking
is applied to the compound-Gaussian environment.

with fx(s) specifying the distribution of the texture component
The most common probability density functions (pdf) include the
Weibull and theK-distribution. Specifically, the Weibull pdf is

fx (s) = abs" " exp(—as®),s > 0,a,b > 0 (5) 3.1. Subspace Tracking for STAP

The subspace tracking first reduces the signal dimensian &fom
MN tor, where rankR) < r < M N. Denote byW of dimen-
qvtlg sion M N x r the subspace concentration matrix. The compressed
= 2U?F(U)Kv,l(as), s> 0,a,v>0 6) signal after subspace concentration process can be mathematically
expressed as:

with the shape parametér< b < 2, while theK-distribution pdf is

Ix(s)

whereT (-) is the gamma function anif,, (-) is the modified Bessel i =Wk, 11)
function of the second-kind. Due to the independence between with W given by the following optimization function
andzy, the clutter covariance matrix is given by 9
W = arg minHyk — WWkaH : (12)

R. :E{xkka} = E{}}R=PR, @) w
The optimization problem in (12) can be numerically solved with
whereR = F {zkz{j} andP, = F {Ai} specifies the texture subspace tracking algorithms such as the the conventional projection
power. SincePAR = (Px/q)(gR), we constrain the speckle co- approximation subspace tracking (PAST) [13] and fast approximated
variance matrix tar {R} = N. power iteration (FAPI) [11, 14].

2.2. Prior Solutions 3.2. NST STAP Detector

The optimum solution to the binary hypothesis testing problem inThe NST detector is proposed to replace the EVD of the normalized
the compound-Gaussian clutter needs to integrate the pdf over tiigencanceler of (10) by some subspace tracking techniques. The
distribution of the texture, which results in no close-form solutions.NST detector, on one hand, improves existing subspace tracking-
However, suboptimal solutions are available and include the NAMpased STAP detector in [11] for the compound-Gaussian environ-
with standard sample covariance matrix and the NAMF with the norment; on the other hand, it reduces the computational complexity of

malized sample covariance matrix, given by the normalized eigencanceler fra{ 11> N*) to aboutO (3M Nr+
3r?).
’SHR_lx 2 Since we are particularly interested in a low-complexity STAP in
Tsnawe = 0 8) the compound-Gaussian environment, we choose the modified FAPI
’ (SHR—ls) <X51R71XO> ’ algorithm [12] to track the clutter principle subspace. The modi-

fied FAPI algorithm uses two consecutive approximations within the
conventional FAPI algorithm and further reduces the computational
complexity. It is noted that the FAPI was derived from the approx-
imated power iteration (API) algorithm [15]. In API, the auxiliary
matrix Z is updated as

with R = % Ele xpx, and

‘SHR_l)(o

sHﬁfls> <x§1f{*1xo>

‘ 2

TN-NAMF = ( ) )

1 _
2= ;01 L - gyl | Zia0 ", (13)



Algorithm 1 NST-based STAP Procedure Algorithm 2 iINST-based STAP Procedure

Initialization: Wy = L, v Zo =1,. Initialization: W, = L 2o =1,.
Q(n—r)xr (_)("_T‘)XT
e ubspace Tracking Procedure): e ubspace Tracking Procedure):
Step 1 (Subsp Tracking P d Step 1 (Subsp Tracking P d
1:fork=1,2,--- ,Kdo L fork=1,2,---,Kdo
2 ye= Wi x; 20 X = ——E—
W/ xdxp /K
3: hy =Zk_1y% ) [_I} k;/
4: gL = __hy 3 YE = Wk—lxk
B+yThy, 4 hy =Zp 1yx
5 e = lxkll* = llyxl? 5 gk = gob—
| oy b
. _ } =2 2
R v TSP 6 ek = 1%kl = llyxl
. _ 2 ) _ c
7= 17 | T S AT e
8 ¥ =MnMkYk t+ Tk8k . _ § 5"
o: - Zkalyz 8: 77’; =1—7|gxll
- 9: = + Tk
10 e = ﬁ (Zkflgk — ((hZ)Hgk) gk) and 10: yz _ %kkHyiy;CTkgk
e b ) : =7
(]/.8). Zy = 3 if]kfl lgkhk) 110 e = 7~ (Zi-rgr — ((hy)"gr) gx) and
11 e, = mexx — Wr_1Y} 18): Zy = + (Zk—1 — grh;
12: Wk :kal —|—e;€g;€1 . (/ ) k~ ﬂ( o /gk k)
_ 12: e, = MXp — Wi 1y}
13: end for 13 We=W ; CH
Step 2 (STAP Detection): 3 k= Whot ot €8
14: W — W 14: end for
|8 (1-WWH ) | Hy Step 2 (STAP Detection):
15: Tist = > T W =
NST = [ (T=WW H )s] 7 (I-WWH )] ;(JVNST 15: W = Wi Ip—— .
. 1 — 17 fl > A
16: T}NST [SH(IfwwH)s} [xéi(lfwwH)xo] I§0’VINST
where

O = Wil Wy, (14)
andg; of lengthr has the same definition as that in [14]. It is im-
portant to observe that the last term in (IG),ZH, not only incurs
O(r*) operation but also may enhance nois®if is noisy. Mo-
tivated by this observation, two consecutive approximations of (13
are made. First, recalling th& is nearly orthonormal [14], it is
reasonable to approxima&;H as

whereW = W is the estimated principle clutter subspace based
on K training signals angnsr is a threshold subject to the probabil-
ity of false alarm. Compared with the normalized eigencanceler, the
ST detector shares the same test statistic but replaces the EVD with
he subspace tracking algorithm to track the clutter principle sub-
space with less computational complexity. Compared with the con-
ventional subspace tracking based STAP detector [11], the additional
0" ~0 (15) normalization factor in the denominator of the NST test statistic is
critical to handle power variation effect in the compound-Gaussian
Then, observing tha®v comprises of orthonormal column vectors. environment, especially when the number of training signals is small
the second approximation (see Section 4 for the discussion).

ek ~ I’V‘7 (16) .
3.3. INST STAP Detector

holds. With both approximation&,. in (13) now takes the following

form: In fact, the above modified FAPI algorithm works well when the

7 o [1 ap; 17 training signalsx; are homogeneous, i.e., they are all complex
K=ok { T BkYk ] ko1 (17) Gaussian random vectors with zero mean and covariance riRirix

It should be pointed out that the total computational complexity of " the compound-Gaussian scenario, this homogeneous assumption
the modified FAPI i) (3N Mr + 3r2), which is about)(2r°) less is no longer valid and the normalization at the test statistic level
operation as compared to the conventional FAPL. Incorporating (17)'@Ybe not sufficient to suppress the power variation. As such, one

into the procedure of the FAPI [14], we can find the update function°re normalization at the signal level is required, especially in the
for Z, using (17) is given as follows. case of strong power variation cross range bins. A simple solution

for this purpose is an instantaneous normalization at the signal level,

_ 1

Zy, = % (Zi—1 — grhy) (18) &
Kp = —k (20)
where the definitions df, ande, are the same as those in [14] and ke xHxy, '
given in Algorithm 1. K

With the identified clutter principal subspace using the modified_, . - . . .
FAPI technique, the NST detector is shown as which produces training signals with approximately equal power.

Then, the modified FAPI algorithm is applied to the normalized
|s" (1— WwwH) xO|2 H, training signalsx;. to track the clutter principle subspace of the
2 . L
T 2 INST, speckle component. DenoM/ as the estimated clutter principle
[ (I - WWH)s]lxg" (I - WWH) x0] m, subspace by applying the subspace tracking algorithm to the nor-
(19) malized training signalsk,. The iINST detector can be expressed

TsT =
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Fig. 1. Probability of detection versus SINR with moderate powerFig. 2. Probability of detection versus SINR with moderate power

variation ¢ = 5 andv = 0.2) and limited training signalsi = variation ¢ = 5 andv = 0.2) and sufficient training signaldq{ =
MN). 2M N).
as in the figure) further improves the detection performance by about
o 2 6 dB with respect to the FAPI and MFAPI detectors. It is also seen
’sH (I — WWH) xo‘ Hy that, in each class of detectors, the EVD-based detector provides an
TinsT = p— P 2 YiNST, upper bound for the two subspace tracking based detectors. The per-
[SH (I - WWH) S} [Xé{ (I - WWH) XO} Ho formance losses between the EVD-based detector and the subspace

(21)  tracking-based approach are about 2-3 dB in the NST and iNST cat-
egories, while the performance loss increases to about 4-5 dB in the
where~inst is a threshold subject to the probability of false alarm. conventional category without any normalization.
In general, the iINST detector is similar to the NST except that the  Then, we increase the number of training signalsifo =
instantaneous normalization step is performed before applying theas N = 128 while keeping the same level of power variation
subspace tracking technique. The implementation of the iINST desmong training signals. Simulation results are shown in Fig. 2.

tector is summarized in Algorithm 2. When the training signals are sufficient, the performance of sub-
space tracking-based detectors both converge to the upper bound of
4. NUMERICAL EVALUATION the EVD-based detectors in all three classes of detection. In other

words, with sufficient training signals, the performance loss due to

In this section, we evaluate three classes of detectors: 1) the convelfie subspace tracking algorithm is negligible. It is also noted that
tional subspace tracking detectors designed for the homogeneous éhe NST detectors, i.e., the NFAPI and NMFAPI, give the same
vironment [11] (denoted as black curves); 2) the NST detectors witfperformance as the conventional FAPI and MFAPI. In other words,
the FAPI and the introduced modified FAPI algorithms (denoted aghere is no performance gain of the NST detectors by introducing the
red curves); and 3) the iNST detectors with the FAPI and the introhormalization only at the test statistic level. In contrast, the iNST
duced modified FAPI algorithms (denoted as blue curves) ikthe detectors, i.e., the iNFAPI and iNMFAPI, show better detection
distributed compound-Gaussian backgrounds. Within each class gerformance than the conventional subspace tracking and the NST
detectors, the computationally extensive EVD-based eigencancelggtectors with about 2-3 dB performance gain.
is also implemented and its performance provides a reference on Next, we consider a scenario witfrong power variation and
performance loss due to application of the subspace tracking techimited training signals, where thi€-distributed clutter is generated
nique. Several scenarios with different levels of power variation (i.e.with parameter$ = 8 andv = 0.125 and the number of training
changing parametetsandv in the K-distribution of clutter) and dif- ~ signals isK' = M N = 64. Simulation results are shown in Fig. 3.
ferent sets of training signals (i.e., differeft) are considered as Again, the subspace tracking detectors give detection performance
follows. with a certain gap with respect to their upper bounds provided by

We first consider a scenario withoderate power variation and the EVD-based detector in all three classes of detection. The per-
limited training signals. More specifically, thé-distributed clutter ~ formance improvement from the conventional detectors to the NST
is generated with parametess= 5 andv = 0.2 and the number detectors and from the NST detectors to the iINST detectors can be
of training signals iSX = M N = 64. Simulation results for three clearly observed. From Figs. 1 and 3, it can be concluded that the
classes of detectors are shown in Fig. 1. It is seen that the NSformalization at the test statistic level of the NST detector is more
detectors with the FAPI and modified FAPI algorithms (i.e., NFAPI critical to improve the detection performance in the case of limited
and NMFAPI in the figure) improve detection performance of thetraining signals.
conventional FAPI and modified FAPI approaches (i.e., FAPl and Finally, we increase the number of training signal ko =
MFAPI in the figure) by about 3dB. while the INST detectors with 2M N = 128 and maintain the level of power variation. Simu-
the FAPI and modified FAPI algorithms (i.e., INFAPI and iINMFAPI lation results are shown in Fig. 4. The result verifies that, with
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Fig. 3. Probability of detection versus SINR with strong power Fig. 4. Probability of detection versus SINR with strong power
variation ¢ = 8 andv = 0.125) and limited training signals variation § = 8 andv = 0.125) and sufficient training signals

(K = MN).

sufficient training signals, the performance loss due to application
of the subspace tracking algorithm is quite small by comparing

(K = 2MN).

Aerospace and Electronic Systems, vol. 28, no. 1, pp. 208-216,
January 1992.

the performance of the subspace tracking detectors and that of thg3] J. Ward, “Space-time adaptive processing for airborne radar,

EVD-based detector in all three classes of detectors. Moreover, in
this case, the normalization at the test statistic level is not enough
to suppress the power variation in the compound-Gaussian environsg
ment by comparing performance of the NST detectors (the NFAPI
and NMFAPI) and that of the conventional detectors (FAPI and
MFAPI). The performance improvement is possible by using the
INST detectors with the additional instantaneous normalization at 5]
the signal level. Comparison between Fig. 4 and Fig. 2 shows thatI
the performance gain from the NST detectors to the INST detectors
increases from about 2-3 dB to about 3-4 dB, which implies that
the instantaneous normalization is more critical in the case of strong[6

power variation.

5. CONCLUSION

In this paper, motivated by the progress in the subspace tracking,
we propose a low-complexity STAP strategy via subspace tracking

in the nonhomogeneous compound-Gaussian environment. Specif-
ically, the normalized and instantaneously normalized subspacd8]
tracking-based detectors are proposed to track the subspace of the
speckle component and mitigate the effect of the time-varying tex-
On one hand, the proposed subspace tracking
detectors are training efficient due to its exploit of the low-rank [9]
structure of the speckle component, as compared to the conventional
covariance matrix based detectors, e.g., the NAMF; on the other
hand, they are computationally more efficient than the EVD-baseﬁO]

ture component.

eigencanceler, thanks to the fast subspace tracking algorithms.
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