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Abstract—It is known that unit commitment problems with un-
certainties in power demands and the outputs of some generators
can be represented as factored Markov decision process models.
In this paper we propose a state space approximate dynamic
programming algorithm to solve such models. The algorithm
features a method to generate representative system configura-
tions (states) and a functional metric to measure the similarity
among system configurations. Experimental results show that the
algorithm outperforms two deterministic approaches in resulting
in both lower risks and operational costs, and that it can solve
larger problems than a stochastic approach based on decision
space approximate dynamic programming.

I. INTRODUCTION

A unit commitment (UC) problem is concerned with finding

optimal schedules for generators and their generations in order

to meet user demands over a time horizon in observance

of a number of operational constraints. A stochastic unit

commitment problem extends the conventional UC formulation

in that it admits and explicitly models the various sources of

uncertainties such as demand fluctuations, mechanic errors in

generator operations, varying wind velocities, intermittency of

solar energy devices, etc. This paper intends to address two

types of uncertainties, namely user demands and the generation

outputs of the renewables. It is known that user demand

cannot be precisely predicted because it varies with seasons

in a year, calendar days, overall climate, user consumption

patterns, and many other factors. In addition, the generations of

the renewables are highly volatile. For instance, the generation

of a wind turbine varies with several variables such as the

rated maximum power, cut-in and cut-out speed, generator

efficiency, air density, and wind velocities.

One consequence of introducing uncertainties to a UC

formulation is that the conventional UC solution methods,

based on dynamic programming, Lagrange relaxation, mixed

integer programming, etc. [1], cannot be directly used to

solve stochastic problems. The reason is that these methods

solve a UC problem for one realized instance of the uncer-

tain variables like user demand and the generation output,

whereas a stochastic UC problem requires a solution method

to optimize the operating costs for different realizations of

the uncertain variables and weight them by the probabilities

of the occurrence of the realizations. Therefore, introduction

of uncertainties to a UC problem adds extra computational

complexity to its solution methods that have to solve an

already difficult combinatorial optimization problem, despite

that it does increase the expressiveness of the formulation

model. Hence, one important direction in stochastic UC is to

develop efficient solution algorithms to find optimal or sub-

optimal schedules.

One such a proposal in [2] exploited a tree structure

to organize the possible realizations (called scenarios) of a

UC system. The scenarios tree is evaluated by a technique

related to Lagrangian relaxation. However, the tree structure

is limited to only a few scenarios. Recently [3] proposed to

use factored Markov decision processes (fMDPs) to model a

stochastic UC problem where the stochasticity in user demands

and the outputs of non-dispatchable generators such as wind

turbines is represented as relative probability distributions.

These distributions potentially open a way to model an infinite

number of possible system realizations. To address the solu-

tion complexity, [3] explored a decision-space approximate

dynamic programming method (DSADP) that computes a set

of representative commitment schedules (on/off decisions) of

generators by varying the target demands, and organizes and

evaluates them through an AND/OR tree data structure. Exper-

iments showed that the fMDP method achieves a better trade-

off between the costs and operating risk than the conventional

approaches. However, the AND/OR-tree grows exponentially

in the decision horizon and thus is impractical for long-horizon

applications.

In this paper, we propose a state-space approximate dynamic

programming (SSADP) algorithm for fMDP models. Here, a

state (or configuration) consists of generators’ commitment

schedules, their operational times, the realization of the outputs

of the non-dispatchable generators, and the realizations of the

demand. In order to handle the huge state space, the SSADP

method works with a reduced set of representative system



states, and uses a state aggregation approach with a suitable

metric to represent the value function of states outside of

this set. The size of the set is polynomial in the number

of generators and the decision horizon, thus eliminating the

limitation of the DSADP method. The representative states

are generated by solving multiple instances of the economic

dispatch problem for various levels of net power demand,

which typically reduces to ordinary quadratic programming

(QP). Our experiments show that, similarly to the DSADP

method, the SSADP method outperforms several popular de-

terministic methods in obtaining solutions with lower cost and

risk; and, furthermore, the SSADP method can solve much

larger problems than the DSADP method.

II. BACKGROUND

Let N (K) be the number of available dispatchable (undis-

patchable) generator units, and T be the planning horizon, in

suitable units (typically, one hour). The objective function of

a stochastic unit commitment problem, presented in Equation

II.1, is to minimize the total cost comprising of the generation

costs ∑ fi(xi
t ,u

i
t ,yt ,dt) of meeting demand dt , the generator

switching costs ∑hi(xi
t ,u

i
t ,u

i
t+1) of changing generator states

to ui
t+1, and the penalty costs gt(ut ,yt ,dt) resulted from failing

to meet the demand dt . Here, ui
t ∈ {0,1} represents the

commitment status (on or off) for unit i at step t, xi
t represents

the number of time steps that unit i has been on/off, dt is

the realizations of the random demand Dt (1 ≤ t ≤ T ) from

a known stochastic process, and yk
t is the output of the k-th

non-dispatchable generator from known stochastic processes.

The configuration and the operational times of all control-

lable units at time t are respectively ut = [u1
t ,u

2
t , . . . ,u

N
t ] and

xt = [x1
t ,x

2
t , . . . ,x

N
t ]. Similarly, yt = [y1

t ,y
2
t , . . . ,y

K
t ]. In addition,

Eu0,x0,y0,d0 denotes the expectation operator with regard to the

initial configuration u0, operational time x0, the initial demand

d0, and the initial output y0.

J∗ = minu1,u2,...,uT Eu0,x0,y0,d0{∑T−1
t=0 [∑N

i=1 fi(xi
t ,u

i
t ,yt ,dt)

+ ∑N
i=1 hi(xi

t ,u
i
t ,u

i
t+1)+ gt(ut ,yt ,dt)]}

(II.1)

Note that by adding the operating cost and risk compensa-

tion cost together, the objective above represents a trade-off

between fuel costs and risk. The penalty function gt(ut ,yt ,dt)
denotes the equivalent cost of the risk of being unable to

meet demand dt under the output yt and the configuration

ut . It is proportional to the probability that the total capacity

of the committed units in ut plus the generation yt of the

non-dispatchable generators is less than the demand dt . The

function is defined in Equation II.2 where capi denotes the

maximum capacity of generator i, and the coefficient α
specifies the relative preference between minimizing operating

cost and risk of failure to meet demand.

gt(ut ,yt ,dt) = αPr(∑N

i = 1
ui

tcapi + ∑K

k = 1
yk

t < dt)

(II.2)

A UC problem has to observe several constraints in mini-

mizing the total cost. The load balance constraint states that the

total generation of the the dispatchable and non-dispatchable

generators must be equal to the demand at any time step. The

positive excess spinning reserve constraint indicates that the

total committed spinning capacity should be greater than the

sum of the load and the required spinning reserve specified by

regulators. Other constraints are concerned with the minimum

and maximum generation capacity of the units, minimum up

and down time constraints, and unit availability.

As shown in [3], the stochastic unit commitment problem

with demand fluctuation and the generation variations of the

non-dispatchable units can be described by means of a factored

Markov decision process (fMDP). The model is factored

because the system states or decisions are the cross-products

of the states or decisions of the individual generators. The

fMDP model components are specified as follows.

State: The system state at time t is represented as

(ut ,xt ,yt ,dt) where dt is the instantiated demand, and yt is

the outputs of non-dispatchable generators.

Action: An action ut at the system level is its intended

commitment status of all generators at the next time step.

State transition: Given the current state (ut ,xt ,yt ,dt)
and an action ut+1, the transition probability

Pr(ut+1,xt+1,yt+1,dt+1|ut ,xt ,yt ,dt) is factorized to

Pr(ut+1,xt+1|ut ,xt)Pr(dt+1|dt)∏K
k=1 Pr(yk

t+1|yk
t ). If

ut+1 achieves its intended commitment status of all

generators, Pr(ut+1,xt+1|ut ,xt) is 1.0; it is 0.0 otherwise

(impossible transition) [4]. The transition probabilities

Pr(Dt+1 = dt+1|Dt = dt) and Pr(Y k
t+1 = yk

t+1|Y k
t = yk

t )
are repectively for demands and the generation of non-

dispatchable generators.

Cost: Given an MDP state (ut ,xt ,yt ,dt) and an action ut+1,

the immediate one-step cost c(ut ,xt ,ut+1,yt ,dt) is

c(ut ,xt ,ut+1,yt ,dt) = ∑N
i=1 fi(xi

t ,u
i
t ,yt ,dt)

+∑N
i=1 hi(xi

t ,u
i
t ,u

i
t+1)+ gt(ut ,yt ,dt)

(II.3)

The fuel costs fi(xi
t ,u

i
t ,yt ,dt) are computed by solving

the economic dispatch (ED) problem of minimizing ∑i Fi(pi
t)

where Fi(pi
t) is the cost of producing pi

t units of electricity by

generator i, subject to the generation limits for all generators



and the load balance constraint for the realization of the non-

dispatchable variables yt and demand dt . Typically, the cost

function Fi(pi
t) is quadratic in pi

t , and the ED can be solved

by means of quadratic programming (QP). The ED calculates

the optimal generation amounts pi
t of the committed units so

that the cost of generation is minimized.

The straightforward solution to an fMDP is to expand the

factored states and solve the resulting flat MDP by means of

dynamic programming. It starts from the terminal step with

the cost-to-go function JT (uT ,xT ,yT ,dT ) = 0, and proceeds

backwards to the first step by using the Bellman Equation

(Equation II.4)[5]. The cost-to-go function J0(u0,x0,y0,d0) of

the initial state corresponds to the minimum in Equation II.1:

J∗= J0(u0,x0,y0,d0). Obviously, this full state space sweeping

strategy is impractical. Therefore existing methods have been

working on an approximate (reduced) decision and/or state

space but attempted to achieve high-quality solutions [6]. One

such a method is DSADP [3]. It precalculated a collection of

schedules (i.e., decisions), which approximates the decision

space, for a set of demands and alternated the schedules for

different demand realizations. The decisions and the demand

realizations are organized in an AND/OR tree structure [7].

However, the tree grows exponentially in the planning horizon

in the worse case of complexity.

Jt(ut ,xt ,yt ,dt) = minut+1{c(ut ,xt ,ut+1,yt ,dt)
+∑dt+1,yt+1

Pr(dt+1,yt+1|dt ,yt)Jt+1(ut+1,xt+1,yt+1,dt+1)}
(II.4)

III. STATE SPACE APPROXIMATE DYNAMIC PROGRAMMING

This section presents our state space approximate dynamic

programming algorithm (SSADP) in details.

A. Algorithm overview

A system state or a configuration (ut ,xt ,yt ,dt) in the fMDP

is comprised of four elements – the commitment status, the

operating times, the output of non-dispatchable generators,

and the user demand. Hence, the system state space grows

exponentially with the generators’ number. To provide com-

putationally efficient solutions, our SSADP method takes two

steps to reduce the state space. At the first step, the SSADP

algorithm aggregates the output of the non-dispatchable gen-

erators into the demand variable, by subtracting these outputs

from the total demand to arrive at the net demand. The

aggregation reduces the state space by one factoring variable.

Nonetheless, this reduction does not change the exponential

growth of the reduced state space in the number of the

generating units. At the second step of reducing the state space,

the SSADP method selects a collection of target demands by

varying the target reserves. For every demand, a deterministic

UC problem can be solved via any deterministic approaches

to obtain its commitment schedules and system states. These

schedules and configurations can provide representative op-

tions to the stochastic UC problem as follows – for any

demand realization, the SSADP method can choose a schedule

from the representative set that is optimal or suboptimal in

the deterministic sense. In addition, if the demand realization

follows a different pattern from the sampled demands, in time

the demand realization may pick a schedule resulting from

one target demand at one time step, and switch to another

schedule resulting from another target demand at the next time

step. This schedule switching feature signifies that a stochastic

planner is conditional on the realized demands.

After the system schedules and states are generated, the

SSADP method seeks to perform value updates over them.

One issue arises when the reachable configurations of a given

state do not belong to the generated state space. The SSADP

features a similarity metrics quantifying the similarity among

states/configurations. When a state’s value is not available, the

value of its most similar state is used instead.

Figure III.1 illustrates how SSADP works. It shows two time

steps at t and t +1. The two large solid eclipses represent the

full state space. The target demands D1 ∼ D4 are selected to

generate the system configurations, denoted by plus signs. The

set of the plus signs is the generated state space that SSADP

works with. When performing value updates for state s2, the

two reachable states s5 and s6, represented as stars, are not

calculated at Step t +1. The SSADP uses the similarity metric

to search the most similar states. Found are those represented

by pluses at Step t + 1 and enclosed in the small dashed

eclipses of states s5 and s6. The values of the most similar

states are used for the un-calculated states s5 and s6.

Figure III.1. State-Space Approximate dynamic programming (SSADP)



B. State space generation

The complete procedure of generating the state space con-

sists of three steps – generating a set of target demands,

solving optimal configuration problems to obtain their solution

schedules, and adding the maximum system capacity to the set

of the states and schedules.

Step 1. Generate demands Dβ = (1 + β )D for β in [β ,β ]
where β is a target reserve level, D̄ is the expected demand,

and [β ,β ] (β (β ) is a negative (positive) number ) represents

the range within which the target reserve level can vary. If β
is uniformly sampled from the range, the demands constitute

a uniform coverage of the demand space. The notation Dβ is

viewed as a vector of demands over time periods. Let Dβ
t be

its component at Step t.

Step 2. For each demand Dβ
t , an optimal configuration prob-

lem is formulated to minimize the production cost of meeting

the demand. Its objective function is the production cost at

Step t. For thermal generators, the production cost is quadratic

in the production amount p, so the formulated problem can be

solved using quadratic program (QP). The QP only considers

one single time step t; therefore it cannot accommodate the

temporal constraints and the transitional costs. The constraints

are to abide by the generators’ minimum/maximum capacity

and the load constraint. Specifically, for each demand Dβ
t , N

(the number of the generators) QPs are formulated. In the i-th

QP, it is mandated that the i-th generator is off, while others

are on. This is the input configuration to the QP.

If the QP is infeasible (for example, the committed ca-

pacity is smaller than the demand), it does not introduce

useful configurations. Otherwise, the QP solution schedule is

examined for the on-generators in its input schedule. If the

production of a generator is strictly positive, its commitment

status remains unchanged; otherwise its status is set back to

off in order to reduce excessively committed capacities even

if its commitment status is on in the input configuration. The

adjusted schedule is the output of the QP. The output schedule

and the demand together form a configuration and is added to

the set Sβ
t . It is noted that any open source or commercial

software package can be used to solve the QPs.

Let the notation Sβ
t denote the set of schedules based on the

demand Dβ
t . After the schedules are identified by varying the

demands and the time steps, the sets {Sβ
t |β ∈ [β ,β ]} contain

the configurations for the demand Dβ at time t (∈ [1, ...,T ]).

It is worthy to note that the optimal configuration problem

does not consider the temporal constraints such as the up/down

times. This is mainly due to efficiency consideration – the

number of the variables is equal to the number of committed

generators at one step. Certainly, the optimal configuration

problem can be set up to observe the temporal constraints.

In so doing, the number of the variables in a QP is equal to

the total number of the committed generators over all time

steps. If the decision has to be made along a long horizon, the

computational cost of solving the optimal configuration prob-

lem itself would be rather high. However, one consequence

of ignoring the temporal constraints is that the configurations

calculated do not have the component of the operational times.

To make them valid states, in the calculated configurations, the

committed (uncommitted) generators are argumented with an

operating time +1 (-1). This is an approximation of operational

times to the real-world scenarios. The approximation is justi-

fied by the fact that the majority of the startup and shutdown

costs of a power plant is caused mainly by switching on/off

the generators rather than running them in the on/off status

persistently.

Step 3. To complete the set Sβ
t , a special configuration in

which all generators are set to on and its demand is the total

system generation capacity is added to Sβ̄
t where β̄ is the

maximum β . Such a configuration represents the maximum

demand that the system can meet when all generators are

turned on and generate according to their maximum capacity.

Obviously, when a demand realization exceeds the system

generation capacity, a blackout occurs.

The number of the states generated above is polynomial in

the number N of the generators. In fact, since Step 2 generates

at most Nβ ∗ N configurations for one decision step where

Nβ is the number of selected β s and Step 3 adds one more

configuration, the total number of states for one decision step

is at most (Nβ ∗N +1). The overhead of obtaining these states

is solving Nβ ∗N QPs.

C. Approximate dynamic programming

In DP updates over the reduced state space, the decision

choices can be implicitly derived from the configurations in

the approximate state space. Recall that since each system con-

figuration specifies the generators’ on/off status, it essentially

prescribes action choices for all generators. Collectively, the

action component of the configurations determines a decision

space. This is the decision space that will be used in the

SSADP updates. Therefore, the number of decision choices

is polynomial in the number of generators since the number

of decisions is not larger than the number of configurations at

any time step (different system configurations may result in

the same machine configurations due to different demands).



Since the full decision space is exponential in the number

of generating units, the SSADP considers a much smaller

decision set.

To make the decision choices explicit, a DP update is

formulated in Equation III.1 where uβ ′
t+1 is the generators’

on/off status of a configuration in the union
⋃

β Sβ
t+1, and sβ

t

is a system state/configuration generated for demand (1+β )D̄
at time t. Note that given a state sβ

t , its next actions uβ ′
t+1 can

be any one from the union
⋃

β Sβ
t+1. That is why the equation

uses two different notations β and β ′.

Vt(s
β
t ) = min

uβ ′
t+1

{R(sβ
t ,uβ ′

t+1)

+∑s′ Pr(s′|sβ
t ,uβ ′

t+1)Vt+1(s′)+ αG(sβ
t ,uβ ′

t+1)}
(III.1)

The main issue in SSADP is lack of the values of the

configurations that are not generated in the reduced state space.

Specifically, in Equation III.1, given a state sβ
t and an action

uβ ′
t+1, the value Vt+1(s′) of the next state s′ is unavailable if

s′does not belong to the set of the generated configurations.

The SSADP method proposes a similarity metric to address

this issue. Given two states/configurations s and s′, the metric

τ(s,s′) measures the similarity between them. When the value

Vt+1(s′) is undetermined, the value of the state that minimizes

the metric τ(s,s′) is used. Such a state is the most similar state

to s′. That is, if s∗ = minsτ(s,s′), then Vt+1(s′) = Vt+1(s∗).

Clearly, the SSADP performance relies on the metric that

measures the similarity of two states. From a cost perspective,

if the cost-to-go value Vt+1(s1) is closer to Vt+1(s2), state s1 is

more similar to s2. However, these costs are not known unless

the DP step is solved exactly. The principle in designing a met-

ric is that the metric should mimic the cost to some extent, and

meanwhile calculating the metric should be computationally

inexpensive. Following these principles, we propose a metric

that takes into account the committed capacity, the transitional

capacity, the demand difference, and a risk-related compo-

nent. Let us write states s1 = (u1
1,u

2
1, ...,u

N
1 ,x1

1,x
2
1, ...,x

N
1 ,d1)

and s2 = (u1
2,u

2
2, ...,u

N
2 ,x1

2,x
2
2, ...,x

N
2 ,d2) and define the metric

τ(s1,s2) as follows.

• The Committed Capacity (CC) of a state (say s1) is the

sum of the maximum capacities for those on-generators,

i.e. CC(s1) = ∑N
i=1 ui

1capi. The Committed Capacity Dif-

ference (CCD) of two states s1 and s2 is the difference of

CC(s1) and CC(s2), i.e., CCD(s1,s2)= |CC(s1)−CC(s2)|.
The CCD measures the similarity of two states in meeting

the demand up to their maximum committed capacity.

Smaller CCD means more similar states.

• The Transitional Capacity (TC) of two states s1 and s2

is the sum of the capacities for those generators that are

on in one state and off in the other, i.e., TC(s1,s2) =

∑ui
1+ui

2=1 capi. The TC is 0.0 if two states have the same

commitment schedules. The TC emulates the transition

cost from one state to the other.

• The Demand Difference (DD) of two states s1 and

s2 is the difference of their associated demands, i.e.,

DD(s1,s2) = |d1 −d2|. The DD emulates the cost differ-

ence when the system meets different demands.

• The Risk-related Cost Difference (RCD) of two states s1

and s2 is the difference of their cost associated with risk,

i.e., RCD(s1,s2) = |risk(s1)− risk(s2)|G where risk(s) is

the stepwise risk determined by state s (calculated as

before), and G is an adjustable positive number. Large

G value represents more penalty in the cost.

The overall similarity of two states s1 and s2 is defined as a

weighted sum of the CCD, TC, DD, and RCD, i.e.,

τ(s1,s2) = γ1 ∗CCD(s1,s2)+ γ2 ∗TC(s1,s2)
+γ3 ∗DD(s1,s2)+ γ ∗RCD(s1,s2)

(III.2)

where γ1, γ2, γ3 and γ are parameters to adjust the weights

of different components in the metric. Such a metric is non-

negative in that τ(s1,s2) >= 0.0, identical of indiscernibles in

that τ(s1,s2) = 0 if and only if s1 = s2, and symmetrical in

that τ(s1,s2) = τ(s2,s1).

D. Applying optimal schedules of representative states

The output, also called policies, of the SSADP planning

approach, is a collection of system configurations annotated

by time steps. When a decision is needed at a time step,

with the current system state, one can choose and perform the

policy of its most similar state in the collection, or derive one

action by means of Equation III.3. The policies selected this

way are conditioned upon the realizations of the demands and

generation outputs in the components of sβ
t , so they represent

a conditional scheduler.

π(sβ
t ) = argmin

uβ ′
t+1

{R(sβ
t ,uβ ′

t+1)

+∑s′ Pr(s′|sβ
t ,uβ ′

t+1)Vt+1(s′)+ αG(sβ
t ,uβ ′

t+1)}
(III.3)

In addition to computational merit, the SSADP approach has

a significant advantage over the DSADP method – it does not

require knowledge of the initial system state in the planning

phase, while the DSADP method does. The reason is that the

DSADP method relies on the initial state to find system states

and evaluate them. In SSADP, when its planning phase is

completed, the resultant policies can be used for any initial

status. Given a state with commitment schedules, operating



times, renewable generations, and the user demand profiles, the

SSADP method can use Equation III.3 to determine a decision.

IV. EXPERIMENTAL RESULTS

We experimented with the proposed method on two variants

of the test problem adopted from [4]. Our results showed

that the SSADP solutions provide a better balance between

generation cost and risk of failure to meet demand than

deterministic methods. For large problems, the SSADP method

is more efficient than the DSADP method.

A. Experimental Conditions

The variants extended the original problem in [4] with

uncertainties in the demand. No non-dispatchable generators

were used, so the net demand is equal to the total demand. The

generation cost of a committed unit is computed as a quadratic

function of the produced amount of power by the unit. We

assumed that the demand follows a Gaussian distribution (Dt ∼
N(D̄t ,σ2

t )) with a standard deviation of 5% of the expected

demand at any time step, and it follows an AR(1) procedure

over time steps. 1000 MCMC demand samples are generated

and used for assessing the quality of the schedules from the

various algorithms. The risk compensation cost gt(ut ,dt) is

given by α ·CFSO · ∫ ∞
∑i ui

tcapi

1√
2πσ 2

t
exp(− (D−D̄t )

2

2σ 2
t

) · dD where

α is the proportionality constant, CFSO is the full system

operating costs (the cost of the system in which all units are

turned on and generate according to their maximum capacity),

and the integral is the failure probability (risk).

The SSADP method was implemented and compared

against three existing algorithms: the priority list method

[1], the unit decommitment algorithm [4], and the non-

deterministic DSADP algorithm [3]. To decrease the risk level,

we increase α in Equation II.2 for SSADP and increase

the target reserve level for deterministic approaches. The

experiments were performed on a desktop computer with Intel

Core 2 Duo E6600 CPU (2.40GHz) in MATLAB 7.9.0.

B. 20-unit example

In this experiment we used 20 generators for 24-hour plan-

ning [4]. Figure IV.1 shows the performances of the priority

list, the unit decommitment, the DSADP, and the SSADP

methods in terms of the blackout risk and the effective extra

cost. In the SSADP, the target reserve β starts from -50% to

80% with an increment 20%. The y-axis shows the risk that

the system fails to meet the demand, whereas the x-axis shows

the effective extra cost in percentage, which is calculated in

three steps for each of the implemented algorithms. First, for

each demand trial, the algorithm calculates the cost of meeting

the demand using their schedules obtained from the planning

phase. Second, the costs across the demand trials are averaged.

Third, the average cost translates into a percentage as a ratio of

its difference from a reference cost divided by the reference

cost. In this example, the reference cost refers to the point

in the SSADP curve of the figure where the effective extra

cost is 0.0 (because it is relative to itself). The reference cost

1207519.31 is obtained when the risk coefficient α is 1.0. It

can be seen that the SSADP method achieves a better cost/risk

balance than the DSADP method – for the same risk level,

the SSADP costs less; for the same cost level, the SSADP

is more reliable. Further, the SSADP method saves costs by

several percents from the schedules of the priority list and the

unit decommitment method at comparable risk levels.
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Figure IV.1. Performances of the algorithms on a 20-unit problem

We analyzed how the Maximum Committed Capacities

(MCCs) of generated configurations distribute in the demand

space and presented the results in Figure IV.2. In the figures,

the x-direction shows the time steps, while the y-direction

shows the target demands, the MCCs of the states, and the

system MCC (the sum of the maximum capacities of all

generators). The data shows that the states identified by the

QP method covers the demand space in a fine granularity. This

may demonstrate the effectiveness of the SSADP method in

finding representative states.
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Figure IV.2. SSADP state space approximation where lines are for selected
demands while crosses for MCCs of generated states

In terms of computational efficiency, to construct policies



for different risk-related penalty coefficients α , on the average,

the priority list, the unit decommitment, SSADP and DSADP

method respectively took 0.5, 47.7, 1822.31, and 2763.1 CPU

seconds. Hence, the non-deterministic method took longer than

the deterministic method. Meanwhile, the SSADP method is

faster than the DSADP method, but due to the fact that this

is not a large UC problem, the difference is not significant.

C. 40-unit example

Our next test example has 40 units for a weekly planning

(168 hours). To create the example, we duplicate the 20 units

and repeat the 24-hour demand profile seven times. Figure

IV.3 shows the performances of the SSADP, priority list, and

the unit decommitment methods. The curve for the DSADP is

missing because it does not complete plan construction after

a reasonably long period of time (20 hours). The conclusion

is similar – the SSADP method outperforms the deterministic

approaches in providing a better balance between the operating

costs and the blackout risks. In terms of computational effi-

ciency, to construct policies for different risk-related penalty

coefficients α , on the average, the priority list, the unit

decommitment and the SSADP method respectively took 6.5,

2993.5, and 3947.9 seconds. The unit decommitment methods

took much longer than the priority list method because it

has to carry out dynamic programming of 168 steps to find

an optimal configuration for one generator at each of its

decommitment iterations. It is also noted that the SSADP

method is significantly faster than the DSADP method (more

than 20 hours) that suffers from the potentially exponential

growth problem.
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Figure IV.3. The performances of the algorithms on a 40-unit problem

V. CONCLUSIONS AND FUTURE WORK
We have proposed an approximate dynamic programming

method to solve stochastic unit commitment problems where

uncertainties exist in the power demands and the generation

outputs of intermittent renewable energy sources. The method

works with a reduced state space whose size is polynomial

in the number of generators and the number of selected

target demand levels. We also proposed a functional metric

to measure the similarity of the states in the reduced space.

We proposed an approximate dynamic programming method in

which when a state’s value is not updated, its most similar state

can be found and its value can be used instead. The proposed

method yields lower costs and lower operational risk than the

deterministic methods, and can solve larger problems than

a previously developed decision space approximate method

that relies on a tree structure and suffers from an exponential

growth problem.

In the future, the SSADP approach can be improved in

a number of ways. First, to improve the solution quality, a

more sophisticated functional metric is possible. The current

metric design does not consider the operational time that is

a component of a system state. Incorporating it to a metric

would enable the metric to account for the cost difference

resulting from the operational times. This is especially true

when the startup or shutdown costs of a generator depend on

their operational durations. Second, to improve the efficiency

of SSADP, a clustering technique can be used on top of

the proposed metric. The idea is to build the clusters from

the generated representative system configurations. Intuitively

a cluster is a collection of system states within which the

similarity of any two states is smaller than a threshold. In value

updates for a given state, if its successor states do not belong

to the reduced state space, the procedure of searching for the

most similar state can be performed at the cluster level rather

than at the state level. Therefore, the complexity reduces to

the number of the clusters. It should greatly reduce the search

time and thus accelerate the SSADP method.
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