
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

A Parallel Quadratic Programming
Algorithm for Model Predictive Control

Brand, M.; Shilpiekandula, V.; Yao, C.; Bortoff, S.A.

TR2011-056 August 2011

Abstract

In this paper, an iterative multiplicative algorithm is proposed for the fast solution of quadratic
programming (QP) problems that arise in the real-time implementation of Model Predictive
Control (MPC). The proposed algorithm–Parallel Quadratic Programming (PQP)–is amenable
to fine-grained parallelization. Conditions on the convergence of the PQP algorithm are given
and proved. Due to its extreme simplicity, even serial implementations offer considerable speed
advantages. To demonstrate, PQP is applied to several simulation examples, including a stand-
alone QP problem and two MPC examples. When implemented in MATLAB using single-thread
computations, numerical simulations of PQP demonstrate a 5 - 10x speed-up compared to the
MATLAB active-set based QP solver quadprog. A parallel implementation would offer a further
speed-up, linear in the number of parallel processors.

World Congress of the International Federation of Automatic Control (IFAC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2011
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

A Parallel Quadratic Programming
Algorithm for Model Predictive Control

Matthew Brand, Vijay Shilpiekandula1, Chen Yao, Scott A. Bortoff

Mitsubishi Electric Research Laboratories (MERL), Cambridge MA
02139 USA.

Takehiro Nishiyama, Shoji Yoshikawa, Takashi Iwasaki

Advanced Technology R&D Center, Mitsubishi Electric Corporation,
Japan.

Abstract: In this paper, an iterative multiplicative algorithm is proposed for the fast solution
of quadratic programming (QP) problems that arise in the real-time implementation of Model
Predictive Control (MPC). The proposed algorithm — Parallel Quadratic Programming (PQP)
— is amenable to fine-grained parallelization. Conditions on the convergence of the PQP
algorithm are given and proved. Due to its extreme simplicity, even serial implementations offer
considerable speed advantages. To demonstrate, PQP is applied to several simulation examples,
including a stand-alone QP problem and two MPC examples. When implemented in MATLAB
using single-thread computations, numerical simulations of PQP demonstrate a 5− 10× speed-
up compared to the MATLAB active-set based QP solver quadprog. A parallel implementation
would offer a further speed-up, linear in the number of parallel processors.

Keywords: Quadratic Programming, Model Predictive Control, Reference Tracking.

1. INTRODUCTION

Model Predictive Control (MPC) is an optimization-based
control strategy (Rawlings and Mayne [2009])), which
has been successfully applied in a wide range of applica-
tions, such as chemical process control (Qin and Badgwell
[2003]), servo motion control (Wang [2009]), automotive
engine control (Bageshwar et al. [2004], Ferreau [2006]),
and multi-agent control in transportation networks (Ne-
genborn et al. [2006]). In MPC, at each sample time, an
online optimization problem is solved to minimize user-
specified costs over a finite horizon in forward time, and
a sequence of controls is obtained (Rossiter [2003]). How-
ever, only the first control is applied and the system is
driven to the next sample time, when the above procedure
is repeated. The cost function at each sample time can
have various structures, an example being a quadratic

1 Corresponding author, email: vijay.shilpiekandula@merl.com
2 All copyrights belong to the Mitsubishi Electric Research Labora-
tories, Cambridge, MA 02139, USA.

form, which makes the optimization problem a quadratic
programming (QP) problem.

One of the main drawbacks of MPC (Camacho and Bor-
dons [2004]) is that it requires long computation times
to solve the optimization problem at each sample point,
therefore, it is usually restricted to systems with slow
dynamics and large sampling intervals, such as chemical
processes (Qin and Badgwell [2003]).

Recently, many reports in the literature address applying
MPC to control applications with short sampling intervals,
by adapting fast optimization algorithms. In particular,
fast QP algorithms have been proposed for the MPC
problem to enable fast solution of the QP problem posed
at each sample time. For instance, Rao et al. [2004], Wang
and Boyd [2010] have proposed interior point methods that
are specifically tailored to take advantage of the special
structure of the QP problem in the MPC setting, thus
achieving significant savings in the required computations.
Milman and Davison [2008] modified the active set method
by giving priorities on the constraints associated with

more “recent” future. Richter et al. [2009], Zeilinger et al.
[2009] adopted a fast gradient method for the MPC of LTI
systems with input constraints.

Although significant speed-up has been reported in the
above references, many of the algorithms are heuristics
without any guarantees on convergence to the global
minimizers. In addition, parallel implementation of these
algorithms, when possible, will depend on specific prob-
lem structures and input data (Gondzio and Grothey
[2007]), (Gondzio and Sarkissian [2000]).

In this paper, we develop a fast iterative algorithm to
solve QP problems of MPC. The proposed new algorithm
is amenable to fine-grain parallelization, hence the name
Parallel Quadratic Programming (PQP).

The proposed algorithm uses a multiplicative fixpoint that
is essentially the KKT first-order optimality conditions
expressed as a ratio. Decision variables are rescaled rather
than incremented as in gradient-based methods. Similar
multiplicative fixpoint algorithms have been used success-
ful in machine learning (e.g., Lee and Seung [1999], Sha
et al. [2007]), tomography (e.g., Shepp and Vardi [1982]),
image processing (e.g., Bertero et al. [2007]), and estima-
tion (e.g., Eggermont [1990]), however they rely on some
combination of strictly nonnegative coefficients, positive
definiteness, or favorable initialization for convergence, if
convergence is provable at all. PQP is provably convergent
without such restrictions. PQP is also related to ma-
trix splitting algorithms for linear complementarity prob-
lems (Luo and Tseng [1992]) and Uzawa methods (Benzi
et al. [2005]) for saddle-point problems; unlike these meth-
ods, the PQP update is given in closed form and can be
calculated independently for each variable.

Indeed, the main advantage of the PQP algorithm is
that it is completely parallelizable for any problem data
structure, and can readily exploit the full parallelism of
multiprocessor machines, including multi-core, SIMD, and
GPU (Kirk and Hwu [2010], Stratton et al. [2008]). Due
to its extreme simplicity – two matrix-vector products and
a scalar divide – the PQP update also offers considerable
speed advantages even when implemented on serial com-
puters. For example, it converges in half as many iterations
as Sha et al. [2007], and each iteration is faster. Under fa-
vorable sparsity conditions, QP solvers based on active set
methods Ferreau [2006] and Heath and Wills [2007]) and
precondition conjugate gradient methods Dostl [2009])
can exhibit similar serial-computer time complexity, but
these methods are not amenable to fine-grain paralleliza-
tion.

The rest of this paper is organized as follows. In Section 2,
we present the PQP algorithm; its convergence is proved

in Section 3. In Section 4, we apply PQP algorithm to
illustrative examples, and use simulations to benchmark
the performance of the PQP algorithm (against MATLAB
active-set solver) in serial computations. Finally, we sum-
marize the contributions of this paper and point out future
research directions.

2. PQP ALGORITHM

In this section, we first briefly review the conventional
MPC scheme (Rawlings and Mayne [2009], Rao et al.
[2004]) and then present the PQP algorithm to solve QP
problems in MPC.

2.1 MPC Scheme

In a conventional MPC scheme, at any sample time point,
an optimization problem is solved, to optimize system per-
formances forward in a finite time window. For example,
if we assume a linear time invariant model and linear
constraints, the following QP problem O(k) must be solved
at sample time k:

min
Uk=[uk,...,uk+N−1]

1

2
UT
k QUk +HTUk (1)

s.t. V Uk ≤W (2)

where uk+i ∈ Ru represents the control input at sample
time k + i, ∀i ∈ [1, N − 1], N is the window size for MPC
scheme, and Uk ∈ RuN , Q ∈ RuN×uN , V ∈ RmN×uN ,
mN is the number of constraints in (1), which is also the
dimension of the dual variable defined later. In addition,
V and W can be time-varying, i.e., functions of n, thus
leading to time-varying constraints and feasible sets.

We refer to the QP problem presented above as the
primal problem. As will be shown for the case of MPC
(see Appendix), for the set of “stacked” control inputs
Uk = [uk, ..., uk+N−1] at a sample time k, for the primal
problem (i) the cost function of Eq. (1) captures weighted
sums of terms involving control inputs and those involving
states (or outputs), and (ii) the constraint inequalities of
Eq. (2) capture control constraints and state (or output)
constraints.

A receding horizon implementation of MPC is as follows.
After an optimal solution U∗n =[u∗n, ..., u

∗
n+N−1] is obtained

for the primal QP problem O(k) of Eq. (1) subject to
the constraints of Eq. (2), only the first control input u∗n
is applied, which drives the system to the sample time
k + 1, when another QP problem O(k + 1) is solved. This
procedure is continued with the window shifted one sample
at a time over the receding horizon.

2.2 Assumptions

Before we proceed to solve the QP problem, we make the
following assumptions:

Assumption 1 : Q � 0, i.e. Q is positive definite in
Eq. (1). This assumption holds true for a broad class of
MPC problems, including those studied in this paper (see
Appendix).

Assumption 2 : The primal quadratic programming prob-
lem in Eq. (1) is feasible. This means there exists a solution
to the QP problem that satisfies the constraints. Note that
infeasible QP problems can arise from MPC problems,
for example, in cases with time-varying references. Such
problems can be made feasible by adding a single slack
variable to dilate the feasible region. For simplicity in this
paper, we assume that the problem data renders the QP
problem feasible at all sample times.

2.3 Dual Problem

To facilitate better handling of the general constraints of
the QP problem posed in (1), in what follows, we will
propose the PQP algorithm as a multiplicative update law
using the Lagrange dual form of the problem in Eq. (1).

For the primal problem of (1), consider the dual form given
below:

min
y

{
F (y) =

1

2
yTQy + yTh

}
(3)

s.t. y ≥ 0 (4)

where y ∈ RNy is the dual variable, and Q < 0 (i.e.
Q is positive semi-definite) and h are obtained under
Assumption 1 as

Q = VQ−1V T (5)

h = W + VQ−1H (6)

The optimum U∗ of the primal problem in Eq. (1) can
be recovered from the optimum y∗ of the dual problem in
Eq. (6) using the following relation:

U∗ =−Q−1(H+ V T y∗) (7)

2.4 PQP Update Law

The PQP algorithm solves the dual QP problem in Eq. (3)
by implementing repeated iterations of the following mul-
tiplicative update rule:

yi ← yi

[
h−i + (Q−y)i

h+
i + (Q+y)i

]
, (8)

for the ith element yi of the dual variable y, starting
from an initial guess y0 > 0. Here Q+ = max(Q, 0) +
diag(r); Q− = max(−Q, 0) + diag(r); h+ = max(h, 0);
h− = max(−h, 0); max(a, b) is taken elementwise; diag(a)
is a diagonal matrix formed from vector a; and r is a non-
negative vector specified later in Section 3.

Note that all terms in the update law of Eq. (8) are non-
negative and thus all iterates remain in the non-negative
cone. Furthermore, if ∀iQii + ri > 0, where Qii denotes
the ith diagonal element of Q, the bracketed ratio in the
update law of Eq. (8) is bounded away from zero and
infinity.

Updates of this form were shown by Brand and Chen [2011]
to solve very large (105 variables) strictly convex radiation
therapy QPs in less than 1 second on a GPU 3 ; here we
develop a variant for semi-definite quadratic programs that
arise in MPC duals.

2.5 Algorithm Steps

Given the details of the PQP algorithm presented above,
implementing it involves the following steps:

Step 1 Formulate a QP problem of the form O(k)
shown in Eqs. (1) and (2).

Step 2 If the problem variables are constrained to be
in the non-negative cone, proceed to Step 3.
If the problem has general constraints of
the form of Eq. (2), formulate the dual QP
problem of the form shown in Eqs. (3) and
(4).

Step 3 With an initial guess y0 > 0, use the update
rule of Eq. (8) to solve the dual problem of
Eqs. (3) and (4) to a specified tolerance.

Step 4 Recover the primal problem solution using
Eq. (7).

Step 1 can be implemented in many ways depending
on the particular MPC problem. For example, refer to
Section 4 and Appendix for a QP formulation for MPC
servo problems involving reference tracking. While Step
2 and Step 4 involve well-understood matrix and matrix-
vector operations, in general, it is not obvious if Step
3 can guarantee convergence for any chosen update rule
for the QP problem. In the following section, we derive
a detailed proof specifying conditions that guarantee the
convergence of the update rule of Eq. (8) used in Step 3.

3 Current versions of MATLAB quadprog cannot handle such large-
size QP problems.

3. PROOF OF CONVERGENCE

To prove convergence to optimum y∗ of the dual problem 4,
we begin with a series expansion of F (y) around y:

F (x) = F (y) + (x− y)T∇F (y) +
1

2
(x− y)TQ(x− y)

For y > 0, we modify the last term to define an auxiliary
function

G(x, y) = F (y) + (x− y)T∇F (y) +
1

2
(x− y)TK(y)(x− y)

with K(y) a diagonal matrix

K(y) = diag(Q+y + h+)diag(y)−1

The proof argument is:

(1) G(x, y) upper-bounds F (x) with equality at x = y.
(2) The multiplicative update yields the solution yk+1 =

arg minx G(x, yk)
(3) Given a positive initial guess y0 > 0, the sequence of

updates y1, y2, y3, · · · monotonically reduces F .
(4) The sequence asymptotically converges to the mini-

mizer of F in the non-negative cone.

It then follows from Lagrange duality that the solution of
the bounded, feasible, and convex primal problem can be
recovered from the minimizer of dual problem F .

The remainder of this section fleshes out this argument in
lemmas:

Lemma 3.1. For some non-negative vector r ≥ 0 that
depends only on Q, G upper-bounds F, i.e.

∃r≥0∀x≥0,y>0F (x) ≤ G(x, y).

Proof. It will suffice to show that K(y) − Q < 0 (is
positive semi-definite) because

G(x, y)− F (x) = (x− y)T (K(y)−Q)(x− y)

Clearly the bound is tight at x = y. For x 6= y we split
K(y)−Q into a sum of a positive semi-definite matrix and
a non-negative matrix as follows:

K(y)−Q = diag(Q+y + h+)diag(y)−1 − (Q+ −Q−)

= {diag(Q+y)diag(y)−1 −Q+}
+{diag(h+)diag(y)−1 + Q−}

= Kpsd + Knn

with
Kpsd = {diag(Q+y)diag(y)−1 −Q+}

and

Knn = diag(r) + diag(h+)diag(y)−1 + max(−Q, 0) ≥ 0

It is well known from variation methods that Kpsd < 0.
See, for example, the proof in Sha et al. [2007]. We now

select r ≥ 0 to make Knn < 0. For example, selecting any
r ≥ max(−Q, 0)1, where 1 = [1, 1, 1, ..., 1]T , makes Q−

diagonally dominant and thus positive semi-definite. Then
Knn and K(y)−Q are positive semi-definite as well. �

Remark: It can be shown, at greater length, that conver-
gence can be obtained with smaller values of r, including,
in many special but useful cases, r = 0.

Lemma 3.2. The multiplicative update rule of Eq. (8)
yields the minimum of G(x, y).

Proof. G(x, y) is a nonconcave quadratic in x and thus
has a global minimum where

∇xG(x, y) = ∇F (y) + K(y)(x− y) = 0 . (9)

Solving for x we recover the update:

x = y −K(y)−1∇F (y)

= y −K(y)−1(Qy + h)

= y −K(y)−1(Q+y + h+ −Q−y − h−)

= y −K(y)−1(Q+y + h+) + K(y)−1(Q−y + h−)

= y − y + K(y)−1(Q−y + h−)

= diag(y)diag(Q+y + h+)−1(Q−y + h−)

which is the same as the updated value of the dual variable
as given in Eq. (8). �
Lemma 3.3. For any non-optimal yk, if ∃i|yki (Q+yk +
h+)i 6= 0, then the update reduces the objective:

F (yk+1) ≤ G(yk+1, yk) < G(yk, yk) = F (yk) .

Proof. Lemma 3.1 gives the first inequality; here we
prove the second, strict inequality. G(yk+1, yk) is non-
concave in yk+1 by construction, and strictly convex w.r.t.
any variable yk+1

i satisfying yki (Q+yk + h+)i 6= 0, because

∂yk+1
i

yk+1
i

G(yk+1, yk) = K(yk)ii = (Q+yk + h+)i/y
k
i > 0 .

Since K(yk)ii > 0 and yk 6= y∗, it follows that yk+1
i =

{arg minx G(x, yk)}i 6= yki , because

∆yki = yk+1
i − yki = −{K(yk)−1∇F (yk)}i 6= 0 ; (10)

Together these facts imply that yk is not a minimizer of
G(x, yk), thus G(yk+1, yk) < G(yk, yk). �
Theorem 1. Given ∀i Qii + ri > 0, Q < 0, and r chosen
as per lemma 3.1, the update converges monotonically and
asymptotically from any positive y0 > 0 to the minimum
of F in the non-negative cone.

Proof. The condition ∀i Qii + ri > 0 satisfies the
requirement of lemma 3.3 for monotonic descent in F
within the positive cone. From Eq. (10) we know that y is
a stationary point iff ∀iyi∂yi

F (y) = 0. Note that this is the

also the KKT condition at a QP solution y∗, so any y∗ is a
stationary point of the update. It remains to show that the
update has no other fixpoints in the positive cone. Since
∀iyi > 0 (albeit possibly infinitesimally so), such fixpoints
would require ∇F = 0; due to convexity of F , this can
only occur at y∗ and only if ∀iy∗i > 0. Consequently any
fixpoint of the update is a solution of the QP. �

Remark: Although all iterates remain in the positive
cone, elements of y that correspond to inactive constraints
in the primal QP are seen to rapidly (albeit asymptoti-
cally) decay to zero.

4. CASE STUDY

In this section, we apply the proposed PQP algorithm to
three simulation examples – a stand-alone QP problem and
two MPC problems – and compare its performance with
the MATLAB QP solver quadprog. In our simulations,
both the PQP algorithm and quadprog are implemented
on MATLAB running on a 2.4 GHz Intel CoreTM2 CPU.
For benchmarking purposes, MATLAB is restricted to
handle only single-thread computations, thus ensuring a
single core is used.

4.1 Example I: Stand-alone QP

The first simulation example is a two-dimensional QP
problem, as formulated below:

min
X∈R2

1

2
XTRX + hTX (11)

s.t. 0 ≤ l1 ≤ X (1) ≤ u1

0 ≤ l2 ≤ X (2) ≤ u2 (12)

where the state X is restricted in the first quadrant and
subjected to box constraints. R ∈ R2 is chosen as a
positive definite matrix, which satisfies the convergence
requirements of the PQP algorithm. Comparing Eqs. (11)-
(12) with Eqs. (3)-(4), we can see that this problem is
specifically formulated for the use of PQP. It does not
need to be transformed back and forth between primal
and dual space, which makes PQP algorithm particularly
efficient. Simulation experiments were performed using a
wide range of parameter values (R, h, u1, u2, l1, and l2),
and initial conditions (inside and outside the box in
the non-negative cone) using both PQP algorithm and
MATLAB quadprog. An average of speed-up of more than
10× was achieved with PQP algorithm when compared
with MATLAB quadprog.

4.2 Example II: MPC for Stochastic Control of a LTI
System

In this example, we integrate PQP into an MPC scheme
for a linear time-invariant (LTI) system (Wang and Boyd

[2010])
Xk+1 = AXk + BUK + ωk (13)

where Xk ∈ R12,UK ∈ R3, and ωk is an i.i.d random noise
every element of which is uniformly distributed between
[−0.5, 0.5]. The MPC solves a QP problem at each sample
time, e.g., at sample time k:

min
{Xj ,Uj−1}

1

2

k+N∑
j=k+1

(
XT

j RxXj + HT
x Xj+

UT
j−1RuUj−1 + HT

u Uj−1

)
(14)

s.t. Xj+1 = AXj + BUj

Xmin ≤ Xj ≤ Xmax

Umin ≤ Xj ≤ Umax (15)

where N = 25 is the window size, and Xmin = −Xmax = 2,
Umin = −Umax = 1. The cost parameters are chosen as
Rx = Ru = I,Hx = Hu = 0, and it can be verified that the
chosen parameters satisfy the conditions of convergence of
Section 3, hence the PQP algorithm will converge to the
optimal solution of the posed QP problem.

Eqs. (14)-(15) can be transformed into the form of
Eqs. (1)-(2), where the state and constraint dimensions
are 300 and 750 respectively. The MPC scheme was run
for 100 sample points, solving Eq. (14) at each sample
point using both PQP algorithm and the active-set based
MATLAB function quadprog. Over multiple (> 20) simu-
lation runs, the average PQP computation time is about
103.5 ms, while that of quadprog is about 531.8 ms per
MPC window, indicating a speed-up on the order of 5×
for PQP .

The speed-up is not as significant as in the first example,
because additional computation is needed for transfor-
mation between primal space and dual space. Further,
since the number of constraints (750) is much larger than
that of states (300), and PQP algorithm is applied in the
dual space, where problem dimension actually increases to
750/750 from 300/750 in the primal problem.

4.3 Example III: MPC for Time-varying Reference Tracking
of a LTI System

Finally, we apply PQP to an MPC scheme for solving a
time-varying reference tracking problem. Consider a servo
tracking problem for an LTI system with the following
state and output equations at any time sample k:

xk+1 = Axk + Buk (16)

yk = Cxk (17)

where with the state vector xk ∈ Rn, the output vector
yk ∈ Rm, the control vector uk ∈ Ru, and the system
matrices A, B, and C are selected accordingly. Further,

without any loss of generality, we focus here on the
tracking problem for this LTI system under the commonly
used assumptions of detectability and reachability (Wang
[2009]).

Our objective is to minimize within each MPC horizon (i)
the tracking error between the output yk (= position xp,k)
and the reference signal rk, and also (ii) the control energy
characterized by the magnitude of uk. The constraints in
the problem are chosen as (i) the state constraints: (a)
the output positions xp,k are required to be always within
a tolerance band ∆max around the reference, which we
refer to as a tube constraint, (b) the velocities xv,k are
bounded and (ii) the control constraints: the control uk at
each sample point must be within the actuator saturation
limits umin and umax.

An MPC scheme is proposed for this problem to solve the
QP problem at any sample time k as

min
Uk=[uk,...uk+N−1]

J(Uk, xk) (18)

where

J(Uk, xk) =

N−1∑
i=1

{(yk+i − rk+i)
T
S (yk+i − rk+i) +

+uT
k+iRuk+i}

+(xk+N − xf)TP (xk+N − xf) (19)

s.t. ∀i ∈ [1, N − 1]

xk+i = Axk+i−1 + Buk+i−1 (20)

rk+i −4max ≤ xp,k+i ≤ rk+i +4max (21)

vmin ≤ xv,k+i ≤ vmax (22)

umin ≤ uk+i ≤ umax (23)

where S � 0, R � 0, are weights on the tracking error
cost and the control cost, respectively, in the bracketed
term of the horizon cost function, and the last term in
the horizon cost function is a terminal cost representing
a weighted deviation of the terminal state xn+N in the
window from a desired terminal state xf . As is well-
known and established, the terminal cost is added to
ensure asymptotic stability of the unconstrained closed-
loop system (Wang [2009], Borrelli [2003]).

The above MPC problem can be transformed to the
general primal QP problem of the form given in Eqs. (1)-
(2) (see Appendix for details), allowing us to apply the
proposed PQP algorithm to solve it.

200 400 600 800 1000 1200 1400

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sample Index (k)

O
u

tp
u

t
P

o
s
it
io

n
 x

(t
)

(m
)

x(t) MATLAB QUADPROG

x(t) PQP

r(t)−∆
max

r(t)

r(t)+∆
max

Fig. 1. Comparison of position signal xp,k generated by
PQP when compared with that by quadprog com-
mand. A window size N = 25 was used. The PQP
computation time for this simulation is about 12.1 ms,
while that for MATLAB quadprog is 703.1 ms, indi-
cating a speed-up of about 60× while still maintaining
the required precision.

In what follows, we will have one simulation example of
this problem. In this example, the system matrices in a
continuous-time representation are selected as:

Ac =

[
0 1
0 −0.1

]
, Bc =

[
0

0.02

]
(24)

Cc = [1 0]

where all numerical values are in SI units, and the system
discretization is performed at a sampling frequency of
1.125 kHz to generate the discrete-time system matrices
A, B, C of Eq. (16).

The MPC problem was solved for 1500 time samples, with
different sizes for the horizon window N . An example set
of window sizes N is [25, 50, 75, 100]. A relative tolerance
of 10−6 for the computed cost function was used as a
termination condition for the quadprog algorithm. To
match the precision of the tracked output computed from
both the algorithms, a relative tolerance of 10−6 was found
to be adequate as a termination condition on the cost
function for the PQP algorithm.

An illustrative sample subset of results obtained with
either algorithm is shown in Figs. 1 and 2. Fig. 1 shows the
tracked output of the system, xp,k. As seen in the zoomed
version showed in Fig. 2, the proposed MPC scheme is
indeed feasible, as there always exists admissible controls
that maintain system position xp,k within the tolerance

Window QP Size Avg. Avg.
Size (States/ time (ms) time (ms)
N Constraints) PQP quadprog

25 50/150 11.88 697.69

50 100/300 25.02 782.14

75 150/450 45.96 830.13

100 200/600 75.00 858.80

Table 1. Comparison of computation times
between the proposed PQP algorithm and

quadprog for different window sizes

tube around the given reference signal. Further, the MPC
solutions obtained from PQP and quadprog agree well
within the specified relative tolerance. A detailed error
analysis, exploring the effects of MPC parameters on the
performance of PQP in terms of the precision and rate of
convergence is currently under study. For proof of linear
convergence rate and discussion, please refer to Brand and
Chen [2011].

Table 1 shows the average computation time per MPC
window for PQP and quadprog for different window sizes.
The average computation time was computed over the
total horizon length of 1500 samples. On average, PQP
shows about more than 10× speed-up over quadprog.

All three simulation examples detailed above show sig-
nificant (5× to 10×) speed-ups of the proposed PQP
algorithm over existing MATLAB QP solver quadprog
even when it is implemented sequentially on a 2.4 GHz

500 520 540 560 580 600 620

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Sample Index (k)

O
u

tp
u

t
P

o
s
it
io

n
 x

(t
)

(m
)

x(t) MATLAB QUADPROG

x(t) PQP

r(t)−∆
max

r(t)

r(t)+∆
max

Fig. 2. Zoomed image showing tracking plots of Fig. 1
in detail, with the PQP solution closely overlapping
with the quadprog solution. A tolerance band of
∆max = 0.01 m was used.

Intel CoreTM2 CPU (and slowed by Matlab’s cumbersome
for loops). Further speed-up is expected from a parallel
implementation; Brand and Chen [2011] reports that GPU
implementations further multiply the speed-up by a factor
of 20×−80×. SIMD machines, which are perfectly suited
to the data-flow of the update, may offer significantly
greater speed-ups.

It must be noted that the presented version of the PQP
algorithm has not taken advantage of special structures in
the MPC framework, which are the main sources of speed-
ups reported in the literature (see Rao et al. [2004],Wang
and Boyd [2010]). New variations of the proposed PQP
algorithm, exploiting special structures of the MPC frame-
work, have resulted in additional 5× to 10× speed-ups.
These PQP algorithm variations and their effects will be
covered in a future paper from our group.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a simple, easy-to-use algorithm
with multiplicative updates for solving QP problems. The
algorithm is parallelizable and has been demonstrated to
achieve speed-ups for MPC schemes, while still maintain-
ing the required computational precision. We established
and proved the convergence conditions of the PQP al-
gorithm. Simulation results illustrate significant speed-
up of the proposed algorithm over existing QP solvers,
even when it is implemented in sequential fashion. Future
work will focus on exploiting primal problem sparsity, and
implementing the PQP algorithm using multi-processor
parallel computing devices, thus exploiting its full paral-
lelizability.

6. APPENDIX

Derivation of Eq. (1) for MPC reference-tracking
problem:
For the system defined in Eq. (20), consider the problem
of tracking a reference vector Γk given as:

Γk = [rk, rk+1, ..., rk+N]
T

(25)

Over the horizon of window length N , the following vectors
are defined:
(i) a stacked state vector Xk = [xk+1, ..., xk+N]

T

(ii) a stacked output vector Yk = [yk+1, ..., yk+N]
T

, and

(iii) a stacked control vector Uk = [uk, ...uk+N−1]
T

.

Using Eq. (16), we have the set of state equations stacked
over the horizon window N as follows:

Xk = Ψxk + ΩUk (26)

where,

Ψ =
[
A, A2, ..., AN

]T ∈ RnN×n

and

Ω =


B 0 · · · 0
AB B 0 · · ·
A2B AB B 0 · ·
· · · · 0 ·
· · · · B 0

AN−1B AN−2B · · AB B

 ∈ RnN×uN

Similarly, we have the output stacked as follows:

Yk = ΦXk

where

Φ =


C 0 · · · 0

0
. . .

...
...

. . . 0
0 . . . 0 C

 ∈ RmN×nN

In implementing the MPC formulation of Eq. (18), the
tuning parameters include (i) weight S on the tracking
error cost, (ii) weight R on the control cost, (iii) weight
P on the error cost between terminal state and (iv) the
desired terminal state xf . Specifically, it can be shown
that asymptotic stability of the unconstrained closed loop
system results from using P = PT � 0 as the solution of
the discrete-time algebraic Riccati equation (Borrelli et al.
[2010]), given as follows:

P = ATPA + S −KT (R + BTPB)K

K = (R + BTPB)−1BTPA (27)

where S = CTSC; S � 0 and R � 0 are the user-defined
tuning penalties on the states and controls, respectively,
in the infinite-horizon optimal control formulation solved
by the algebraic Riccati equation.

For the above-defined P , Eq. (26) can be used to reduce
the primal QP problem posed in Eq. (19) to the general
form of Eq. (1)

min
Un=[un,...un+N−1]

T

1

2
UT
nQUn +HTUn

V Un ≤W

with Q ∈ RuN×uN and H ∈ RuN×1, respectively, appear-
ing in the primal cost function, given as follows:

Q= 2L1 + 2ΩTL2Ω (28)

H= 2xT
nΨTL2Ω− 2ΓT

k L3ΦΩ− 2xT
f PL4Ω (29)

where the matrices L1 ∈ RuN×uN , L2 ∈ RnN×nN , L3 ∈
RmN×mN , and L4 ∈ Rn×nN are defined as follows:

L1 =


R 0 · · · 0

0
. . .

...
...

. . . 0
0 . . . 0 R

 ; L2 =


S 0 · · · 0

0
. . .

...
... S 0
0 . . . 0 P

 ;

L3 =


S 0 · · · 0

0
. . .

...
... S 0
0 . . . 0 0

 ; L4 = [0 . . . 0 In×n] ;

and, V ∈ RuN×uN and W ∈ RuN×uN , respectively,
appearing in the primal constraints, given as follows:

V = [Ω, − Ω, I, − I]
T

W = [Xkmax −Ψxk, −Xkmin + Ψxk, Ukmax, −Ukmin]
T

(30)

For our problem of reference tracking with tube constraints
imposed on position outputs, velocity constraints, and
control constraints, the constraint limits appearing in
Eq. (30) above are given as follows:

Xkmax =

[
rk+1 +4max, vmax, ...,
rk+N +4max, vmax

]T
Xkmin =

[
rk+1 −4max, vmin...,
rk+N −4max, vmin

]T
Ukmax = [umax, ..., umax]

T

Ukmin = [umin, ..., umin]
T

This completes our derivation of the QP formulation for
the MPC servo problem of reference tracking.�

It should be noted here that for P,R, S � 0, we have
L1 � 0 and L2 < 0. These relations, along with Eq. (28),
imply that Q � 0, i.e. Q is positive definite, which
validates Assumption 1 used in Section 2 in our PQP
formulation.

Further, from Eqs. (28)-(29), it is clear that the only term
in the cost function of Eq. (1) that depends explicitly on
the reference is the linear term containing H. However,
Q does not have an explicit dependence on the time-
varying reference; Q is predetermined by the physical
properties of the system (i.e. the state matrices) and
penalties selected for the terminal cost function. More
speed-up of the current algorithm can be achieved by
exploiting this feature of the MPC formulation.

As for the constraints in the primal problem, since we have
tube constraints on the position output of the system, the

state constraints also change with changes in the reference.
The dual formulation used in Section 2 conveniently allows
handling these general primal constraints by mapping
them into dual variables in the dual space.

REFERENCES

Bageshwar, V., Garrard, W., and Rajamani, R. (2004).
Model predictive control of transitional maneuvers for
adaptive cruise control vehicles. IEEE Transactions on
Vehicular Technology, 53 (5), 1573–1585.

Benzi, M., Golub, G.H., and Liesen, J. (2005). Numerical
solution of saddle point problems. Acta Numerica, 1,
1–137.

Bertero, M., Lanteri, H., and Zanni, L. (2007). Iterative
image reconstruction: A point of view. In Proceed-
ings of the Interdisciplinary Workshop on Mathematical
Methods in Biomedical Imaging and Intensity-Modulated
Radiation Therapy (IMRT).

Borrelli, F. (2003). Constrained Optimal Control of Linear
and Hybrid Systems. Sringer, Lecture Notes in Control
and Information Sciences.

Borrelli, F., Bemporad, A., and Morari., M.
(2010). Predictive control. Springer, In Press.
http://www.mpc.berkeley.edu.

Brand, M. and Chen, D. (2011). Parallel quadratic
programming for image processing. In Reviews.

Camacho, E.F. and Bordons, C. (2004). Model Predictive
Control. Springer.

Dostl, Z. (2009). Optimal Quadratic Programming Algo-
rithms: With Applications to Variational Inequalities.
Springer Publishing Company, Incorporated.

Eggermont, P. (1990). Multiplicative iterative algorithms
for convex programming. J. Linear Algebra and Appli-
cations, 130, 25–42.

Ferreau, H. (2006). An online active set strategy for
fast solution of parametric quadratic programs with
applications to predictive engine control. Master’s
Thesis, University of Heidelberg.

Gondzio, J. and Grothey, A. (2007). Parallel interior-point
solver for structured quadratic programs: Application
to financial planning problems. Annals of Operations
Research, 152, 319–339.

Gondzio, J. and Sarkissian, R. (2000). Parallel interior-
point solver for structured linear programs. Mathemat-
ical Programming, 96, 561–584.

Heath, W. and Wills, A. (2007). Zames-falb multipliers
for quadratic programming. IEEE Transactions on
Automatic Control, 52, 1948–1951.

Kirk, D. and Hwu, W. (2010). Programming Massively
Parallel Processing. Morgan Kaufmann.

Lee, D.D. and Seung, H.S. (1999). Learning the parts of
objects with nonnegative matrix factorization. Nature,

401, 788–791.
Luo, Z.Q. and Tseng, P. (1992). On the linear convergence

of descent methods for convex essentially smooth min-
imization. SIAM J. Control and Optimization, 30(2),
408–425.

Milman, R. and Davison, E.J. (2008). A fast mpc algo-
rithm using nonfeasible active set methods. Journal of
optimization theory and applications, 139, 591–616.

Negenborn, R.R., Schutter, B.D., and Hellendoorn, H.
(2006). Multi-agent model predictive control for trans-
portation networks: Serial versus parallel schemes. Pro-
ceedings of the 12th IFAC Symposium on Information
Control Problems in Manufacturing (INCOM’2006),
339–344.

Qin, S.J. and Badgwell, T.A. (2003). A survey of industrial
model predictive control technology. Control Engineer-
ing Practice, 11(7), 733–764.

Rao, C.V., Wright, S.J., and Rawlings, J.B. (2004). Ap-
plication of interior point methods to model predictive
control. Journal of optimization theory and applications,
90(3), 723–757.

Rawlings, J.B. and Mayne, D.Q. (2009). Model Predictive
Control: Theory and Design. Nob Hill Publishing, LLC.

Richter, S., Jones, C., and Morari, M. (2009). Real-time
input-constrained mpc using fast gradient methods. In
Proc. IEEE Conference on Decision and Control, 7387–
7393. Shanghai, China.

Rossiter, J.A. (2003). Model-based Predictive Control: A
Practical Approach. Prentice Hall International.

Sha, F. et al. (2007). Multiplicative updates for non-
negative quadratic programming. Neural Computation,
19(8), 2004–2031.

Shepp, L. and Vardi, Y. (1982). Maximum likelihood
reconstruction for emission tomography. IEEE Trans.
Medical Imaging 1, 1, 113–122.

Stratton, J., Stone, S., and Hwu, W. (2008). Mcudal
an efficient implementation of cuda kernels for multi-
core cpus. In Proc. 21st International Workshop on
Languages and Compilers for Parallel Computing, 16–
30.

Wang, L. (2009). Model Predictive Control System Design
and Implementation using MATLAB. Springer-Verlag.

Wang, Y. and Boyd, S. (2010). Fast model predictive
control using online optimization. IEEE Transactions
on Control Systems Technology, 18(2), 267–278.

Zeilinger, M.N., Jones, C., and Morari, M. (2009). Real-
time mpc-stability through robust design. In Proc.
IEEE Conference on Decision and Control, 3980–3986.
Shanghai, China.

	Title Page
	Title Page
	page 2

	A Parallel Quadratic Programming Algorithm for Model Predictive Control
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

