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Abstract

Scalar quantization is the most practical and straightforward approach to signal quantization.
However, it has been shown that scalar quantization of oversampled or compressively sensed
signals can be inefficient in terms of the rate-distortion trade-off, especially as the oversampling
rate or the sparsity of the signal increases. In this paper, we modify the scalar quantizer to have
discontinuous quantization regions. We demonstrate that with this modification it is possible
to achieve exponential decay of the quantization error as a function of the oversampling rate
instead of the quadratic decay exhibited by current approaches. Our approach is universal in the
sense that prior knowledge of the signal model is not necessary in the quantizer design, only
in the reconstruction. Thus, we demonstrate that it is possible to reduce the quantization error
by incorporating side information on the acquired signal, such as sparse signal models or signal
similarity with known signals. In doing so, we establish a relationship between quantization
performance and the Kolmogorov entropy of the signal model.
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Abstract—Scalar quantization is the most practical and
straightforward approach to signal quantization. However, it
has been shown that scalar quantization of oversampled or
compressively sensed signals can be inefficient in terms of the
rate-distortion trade-off, especially as the oversampling rate or
the sparsity of the signal increases. In this paper, we modify the
scalar quantizer to have discontinuous quantization regions. We
demonstrate that with this modification it is possible to achieve
exponential decay of the quantization error as a function of
the oversampling rate instead of the quadratic decay exhibited
by current approaches. Our approach is universal in the sense
that prior knowledge of the signal model is not necessary
in the quantizer design, only in the reconstruction. Thus, we
demonstrate that it is possible to reduce the quantization error
by incorporating side information on the acquired signal, such
as sparse signal models or signal similarity with known signals.
In doing so, we establish a relationship between quantization
performance and the Kolmogorov entropy of the signal model.

Index Terms—universal coding, scalar quantization, dis-
tributed quantization, randomization, randomized embedding,
oversampling, robustness

I. INTRODUCTION

IN order to digitize a signal, two discretization steps are

necessary: sampling (or measurement) and quantization.

The first step, sampling, computes linear functions of the

signal, such as the signal’s instantaneous value or the signal’s

inner product with a measurement vector. The second step,

quantization, maps the continuous-valued measurements of

the signal to a set of discrete values, usually referred to as

quantization points. Overall, these two discretization steps do

not preserve all the information in the analog signal.

The sampling step of the discretization can be designed to

preserve all the information in the signal. Several sampling

results demonstrate that as long as sufficiently many samples

are obtained given the class of the signal sampled, it is

possible to exactly recover a signal from its samples. The most

celebrated sampling result is the Nyquist sampling theorem

which dictates that uniform sampling at a frequency greater

than twice the bandwidth of a signal is sufficient to recover the

signal using simple bandlimited interpolation. More recently,

compressive sensing theory has demonstrated that it is also

possible to recover a sparse signal from samples approximately

at its sparsity rate, rather than its Nyquist rate or the rate

implied by the dimension of the signal.

Unfortunately, the quantization step of the process, almost

by definition, cannot preserve all the information. The analog

measurement values are mapped to a discrete number of quan-

tization points. By the pigeonhole principle, it is impossible to
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represent an infinite number of signals using a discrete number

of values. Thus, the goal of quantizer design is to exploit those

values as efficiently as possible to reduce the distortion on the

signal.

One of the most popular methods for quantization is scalar

quantization. A scalar quantizer treats and quantizes each

of the signal measurements independently. This approach

is particularly appealing for its simplicity and its relatively

good performance. However, present approaches to scalar

quantization do not scale very well with the number of mea-

surements [1]–[4]. Specifically, if the signal is oversampled,

the redundancy of the samples is not exploited effectively by

the scalar quantizer. The trade-off between the number of bits

used to represent an oversampled signal and the error in the

representation does not scale well as oversampling increases.

In terms of the rate vs. distortion trade-off, it is significantly

more efficient to allocate representation bits such that they

produce refined scalar quantization with a critically sampled

representation as opposed to coarse scalar quantization with

an oversampled representation.

This trade-off can be reduced or eliminated using more so-

phisticated or adaptive techniques such as vector quantization,

Sigma-Delta (Σ∆) quantization [5]–[7], or coding of level

crossings [8]. These methods consider more than one sample

in forming a quantized representation, either using feedback

during the quantization process or by grouping and quantizing

several samples together. These approaches improve the rate

vs. distortion trade-off significantly. The drawback is that each

of the measurements cannot be quantized independently, and

they are not appropriate when independent quantization of the

coefficients is necessary.

In this work we develop the basis for a measurement

and scalar quantization framework that significantly improves

the rate-distortion trade-off without requiring feedback or

grouping of the coefficients. Each measured coefficient is

independently quantized using a modified scalar quantizer with

non-contiguous quantization intervals. Using this modified

quantizer we show that we can beat existing lower bounds

on the performance of oversampled scalar quantization, which

only consider quantizers with contiguous quantization inter-

vals [2], [4].

The framework we present is universal in the sense that

information about the signal or the signal model is not

necessary in the design of the quantizer. In many ways, the

quantization method is reminiscent of information theoretic

distributed coding results, such as the celebrated Slepian-Wolf

and Wyner-Ziv coding methods [9], [10]. While in this work

we only analyze 1-bit scalar quantization, we also discuss

how the results can be easily extended to multibit scalar

quantization.

One of the key results we derive in this paper is the exponen-
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tial quantization error decay as a function of the oversampling

rate. To the best of our knowledge, it is the first example of

a scalar quantization scheme that achieves exponential error

decay without further coding or examination of the quantized

samples. Thus, our method is truly distributed in the sense

that quantization and transmission of each measurement can

be performed independently of the others.

Our result has similar flavor with recent results in compres-

sive sensing, such as the Restricted Isometry Property (RIP)

of random matrices [11]–[14]. Specifically, all our proofs are

probabilistic and the results are with overwhelming probability

on the system parameters. The advantage of our approach is

that we do not impose a probabilistic model on the acquired

signal. Instead, the probabilistic model is on the acquisition

system, the properties of which are usually under the control

of the system designer.

The proof approach is inspired by the proof of the RIP of

random matrices in [14]. Similarly to [14] we examine how the

system performs in distinguishing pairs of signals as a function

of their distance. We then extend the result on distinguishing a

small ball around each of the signals in the pair. By covering

the set of signals of interest with such balls we can extend

the result to the whole set. The number of balls required to

cover the set and, by extension, the Kolmogorov entropy of the

set play a significant role in the reconstruction performance.

While Kolmogorov entropy is known to be intimately related

to the rate-distortion performance under vector quantization,

this is the first time it is used to characterise the rate-distortion

performance under scalar quantization.

We assume a consistent reconstruction algorithm, i.e., an

algorithm that reconstructs a signal estimate that quantizes to

the same quantization values as the acquired signal [3]. How-

ever, we do not discuss any practical reconstruction algorithms

in this paper. For any consistent reconstruction algorithm

it suffices to demonstrate that if the reconstructed signal is

consistent with the measurements, it cannot be very different

from the acquired signal. To do so, we need to examine

all the signals in the space we are interested in. Exploiting

and implementing these results with practical reconstruction

algorithms is a topic for future publications.

In the next section, which partly serves as a brief tutorial,

we provide an overview of the state of the art in scalar

quantization. In this overview we examine in detail the fun-

damental limitations of current scalar quantization approaches

and the reasons behind them. This analysis suggests one way

around the limitations, which we examine in Sec. III. In

Sec. IV we discuss the universality properties of our approach

and we examine how side-information on the signal can

be incorporated in our framework to improve quantization

performance. In this spirit, we examine compressive sensing

and quantization of similar signals. Finally, we discuss our

results and conclude in Sec. V.

II. OVERVIEW OF SCALAR QUANTIZATION

A. Scalar Quantizer Operation

A scalar quantizer operates directly on individual scalar sig-

nal measurements without taking into account any information

on the value or the quantization level of nearby measurements.

Specifically, the generation of the mth quantized measurement

from the quantized signal x ∈ R
K is performed using

ym = 〈x, φm〉 + wm (1)

qm = Q

(
ym

∆m

)
, (2)

where φm is the measurement vector and wm is the additive

dither used to produce a dithered scalar measurement ym,

which is subsequently scaled by a precision parameter ∆m and

quantized by the quantization function Q(·). The measurement

index is denoted using m = 1, . . . ,M , where M is the

total number of quantized coefficients acquired. The precision

parameter is usually not explicit in the literature but is in-

corporated as a design parameter of the quantization function

Q(·). We made it explicit in this overview in anticipation of

our development.

The measurement vectors can vary, depending on the prob-

lem at hand. Typically they form a basis or an overcomplete

frame for the space in which the signal of interest lies [3],

[4], [15]. More recently, compressive sensing demonstrated

that it is possible to undersample sparse signals and still be

able to recover them using incoherent measurement vectors,

often randomly generated [12], [16]–[19]. Random dither is

sometimes added to the measurements to reduce certain quan-

tization artifacts and to ensure that the quantization error has

tractable statistical properties. The dither is usually assumed

to be known and is taken into account in the reconstruction.

If dither is not used, wm = 0 for all m.

The quantization function Q(·) is typically a uniform quan-

tizer, such as the one shown in Fig. 1(a) for a multi-bit

quantizer or in Fig. 1(b) for a binary (1-bit) quantizer. The

number of bits required depends on the number of quantization

levels used by the quantizer. For example Fig. 1(a) depicts an

8-level, i.e., a log2(8) = 3-bit quantizer. The number of levels

necessary, in turn, depends on the dynamic range of the scaled

measurements, i.e., the maximum and minimum possible val-

ues, such that the quantizer does not overflow significantly. A

B-bit quantizer can represent of 2B quantization values, which

determines the trade-off between accuracy and bit-rate.

The scaling performed by the precision parameter ∆m

controls the trade-off between quantization accuracy and the

number of quantization bits. Larger ∆m will cause a larger

range of measurement values to quantize to the same quan-

tization level, thus increasing the ambiguity and decreasing

the precision of the quantizer. Smaller values, on the other

hand, increase the precision of the quantizer but produce a

larger dynamic range of values to be quantized. Thus more

quantization levels and, therefore, more bits are necessary to

avoid saturation. Often non-uniform quantizers may improve

the quantization performance if there is prior knowledge about

the distribution of the measurements. These can be designed

heuristically, or using a design method such as the Lloyd-Max

algorithm [20], [21]. Recent work has also demonstrated that

overflow, if properly managed, can in certain cases be desirable

and effective in reducing the error due to quantization [22],

[23]. Even with these approaches, the fundamental accuracy

vs. distortion trade-off remains in some form.
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A more compact, vectorized form of (1) and (2) will often

be more convenient in our discussion

y = Φx + w (3)

q = Q
(
∆−1y

)
, (4)

where y, q, and w are vectors containing the measurements,

the dither coefficients, and the quantized values, respectively,

∆ is a diagonal matrix with the precision parameters ∆m in

its diagonal, Q(·) is the scalar quantization applied element-

by-element on its input, and Φ is the M × K measurement

matrix that contains the measurement vectors φm in its rows.

B. Reconstruction from Quantized Measurements

A reconstruction algorithm, denoted R(·), uses the quan-

tized representation generated by the signal to produce a

signal estimate x̂ = R(q). The performance of the quantizer

and the reconstruction algorithm is measured in terms of

the reconstruction distortion, typically measured using the ℓ2
distance: d = ‖x − x̂‖2. The goal of the quantizer and the

reconstruction algorithm is to minimize the average or the

worst case distortion given a probabilistic or a deterministic

model of the acquired signals.

The simplest reconstruction approach is to substitute the

quantized value in standard reconstruction approaches for

unquantized measurements. For example, if Φ forms a basis

or a frame, we can use linear reconstruction to compute

x̂ = Φ† (∆q − w) ,

where (·)† denotes the pseudoinverse (which is equal to the

inverse of Φ is a basis). Linear reconstruction using the

quantized values can be shown to be the optimal reconstruction

method if Φ is a basis. However, it is suboptimal in most other

cases, e.g., if Φ is an oversampled frame, or if compressive

sensing reconstruction algorithms are used [2], [3], [24].

A better approach is to use consistent reconstruction, a re-

construction method that enforces that the reconstructed signal

quantizes to the same value, i.e., satisfies the constraint q =
Q

(
∆−1 (Φx̂ + w)

)
. Consistent reconstruction was originally

proposed for oversampled frames in [3], where it was shown

to outperform linear reconstruction. Subsequently consistent

reconstruction, or approximations of it, have been shown in

various scenarios to improve compressive sensing or other

reconstruction from quantized measurements [22], [23], [25]–

[32]. It is also straightforward to demonstrate that if Φ is a

basis, the simple linear reconstruction described above is also

consistent.

C. Reconstruction Rate and Distortion Performance

The performance of scalar quantizers is typically measured

by their rate vs. distortion trade-off, i.e., how increasing the

number of bits used by the quantizer affects the distortion in

the reconstructed signal due to quantization. The distortion can

be measured as worst-case distortion, i.e.,

dwc = max
x

∥∥x − R
(
Q

(
∆−1 (Φx + w)

))∥∥
2
,

or, if x is modeled as a random variable, average distortion,

davg = Ex

[ ∥∥x − R
(
Q

(
∆−1 (Φx + w)

))∥∥
2

]
,

where x̂ = R
(
Q

(
∆−1 (Φx + w)

))
is the signal recon-

structed from the quantization of x.

In principle, under this sampling model, there are two ways

to increase the bit-rate and reduce the quantization distortion.

The first is to increase the number of bits used per quantized

coefficient. In terms of the description above, this is equivalent

to decreasing the precision parameter ∆m. For example,

reducing ∆m by one half will double the quantization levels

necessary and, thus, increase the necessary bit-rate by 1 bit per

coefficient. On the other hand, it will decrease by a factor of

2 the ambiguity on each quantized coefficient, and, thus, the

reconstruction error. Using this approach to increase the bit-

rate, an exponential reduction in the average error is possible

as a function of the bit-rate

d = O(cr), c ≤ 1, (5)

where r = MB is the total rate used to represent the signal

at M measurements and B bits per measurement.

The second way is to increase the number of measurements

at a fixed number of bits per coefficient. In [2], [4] it is

shown that the distortion (average or worst-case) cannot reduce

at a rate faster than linear with respect to the oversampling

rate, which, at a fixed number of bits per measurement, is

proportional to the bit-rate; i.e.,

d = Ω(1/r), (6)

much slower than the rate in (5). It is further shown in [2],

[3] that linear reconstruction does not reach this lower bound,

whereas consistent reconstruction approaches do. Thus, the

rate-distortion trade-off does not scale favorably when increas-

ing the number of measurements at a constant bit-rate per

measurement. A similar result can be shown for compressive

acquisition of sparse signals [24].

Despite the adverse trade-off, oversampling is an effective

approach to achieve robustness [3], [4], [33]–[37] and it is

desirable to improve this adverse trade-off. Approaches such

as Sigma-Delta quantization can be shown to improve the

performance at the expense of requiring feedback when com-

puting the coefficients. Even with Sigma-Delta quantization,

the error decay cannot become exponential in the oversampling

rate [5], unless further coding is used [38]. This can be an issue

in applications where simplicity and reduced communication

is important, such as distributed sensor networks. It is, thus,

desirable to achieve scalar quantization where oversampling

provides a favorable rate vs. distortion trade-off, as presented

in this paper.

The fundamental reason for this trade-off is the effective

use of the available quantization bits when oversampling. A

linearly oversampled K-dimensional signal occupies only a

K-dimensional subspace (or affine subspace, if dithering is

used) in the M -dimensional measurement space, as shown

in Fig. 2(a). On the other hand, the 2MB bits used in the

representation create quantization cells that equally occupy

the whole M -dimensional space, as shown in Fig 2(b). The
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Fig. 1. Examples of Quantization Functions. Typical (a) multibit and (b) binary (1-bit) quantization functions used in scalar quantization. Proposed (c)
multibit and (d) binary quantization functions, used in this work.

oversampled representation of the signal will quantize to a

particular quantization vector q only if the K-dimensional

plane intersects the corresponding quantization cell. As evident

in Fig 2(c), most of the available quantization cells are not

intersected by the plane, and therefore most of the available

quantization points q are not used. Careful counting of the

intersected cells provides the bound in (6) [2], [4]. The bound

does not depend on the spacing of the quantization intervals,

or their size. A similar bound can be shown for a union of K-

dimensional subspaces, applicable in the case of compressive

sensing [24], [32].

To overcome the adverse trade-off, a scalar quantizer should

be able to use most of the 2MB available quantization vectors,

i.e., intersect most of the available quantization cells. Note that

no-matter how we choose the quantization intervals, the shape

of the quantization cells is rectangular and aligned with the

axes. Thus, improving the trade-off requires a strategy other

than changing the shape and positioning of the quantization

cells. The approach we use in this paper is to make the

quantization cells non-continuous by making the quantization

function non monotonic, as shown in Figs. 1(c) and 1(d).

This is, in many ways, similar to the binning of quantization

cells explored experimentally in [39]. The advantage of our

approach is that it facilitates theoretical analysis and can scale

down to even one bit per measurement. In the remainder of this

paper we demonstrate that our proposed approach achieves,

with very high probability, exponential decay in the worst-

case quantization error as a function of the oversampling rate,

and, consequently, the bit-rate.

III. RATE-EFFICIENT SCALAR QUANTIZATION

A. Analysis Overview

Our approach uses the scalar quantizer described in (1)

and (2) with the quantization function in Figs. 1(c) and 1(d).

The quantization function is explicitly designed to be non-

monotonic, such that non-contiguous quantization regions

quantize to the same quantization value. This allows the

subspace defined by the measurements to intersect the majority

of the available quantization cells which, in turn, ensures

efficient use of the available bit-rate. Although we do not

describe a specific reconstruction algorithm, we assume that

the reconstruction algorithm produces a signal consistent with

the measurements, in addition to imposing a signal model or

other application-specific requirements.

Our end goal is to determine an upper bound for the

probability that there exist two signals x and x′ with distance

greater than d that quantize to the same quantization vector

given the number of measurements M . If no such pair exists,

then any consistent reconstruction algorithm will reconstruct

a signal that has distance at most d from the acquired signal.

We wish to demonstrate that this probability vanishes very fast

as the number of measurements increases. Furthermore, we

wish to show that for a fixed probability of such a signal pair

existing, the distance to guarantee such probability decreases

exponentially with the number of measurements. An important

feature of our development is that the probability of success

is on the acquisition system randomization, which we control,

and not on any probabilistic model for the signals acquired.

To achieve our goal we first consider a single measurement

on a pair of signals x, and x′ with distance d = ‖x − x′‖2,

and analyze the probability a single measurement of the two

signals is consistent, i.e., quantizes to the same quantization

value for both. Our result is summarized in Lemma 3.1.

Lemma 3.1: Consider signals x, and x′ with d = ‖x−x′‖2

and the quantized measurement function

q = Q

( 〈x, φ〉 + w

∆

)
,

where Q(x) = ⌈x⌉ mod 2, φm ∈ R
K contains i.i.d.

elements drawn from a normal distribution with mean 0 and

variance σ2, and wk is i.i.d., uniformly distributed in [0,∆].
The probability that the quantized measurement of the two

signals produces consistent—i.e., equal—quantized values is

P (x,x′ cons.|d) =
1

2
+

+∞∑

i=0

e
−

“

π(2i+1)σd
√

2∆

”2

(π(i + 1/2))
2

≤ 1

2
+

1

2
e
−

“

πσd√
2∆

”2

.

We prove this lemma in Sec. III-B.

Next, in Sec. III-C, we consider a single measurement on

two ǫ-balls, Bǫ(x) and Bǫ(x
′), centered at x and x′, i.e., on

all the signals of distance less than ǫ from x and x′. Using

Lemma 3.1, we lower-bound the probability that no signal in

Bǫ(x) is consistent with any signal in Bǫ(x
′). This leads to

Lemma 3.2.

Lemma 3.2: Consider signals x, and x′ with d = ‖x−x′‖2,

the ǫ-balls Bǫ(x) and Bǫ(x
′) and the quantized measurement

function in Lemma 3.1.

The probability that no signal in Bǫ(x) produces equal

quantized measurement with any signal in Bǫ(x
′) (i.e., the
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Fig. 2. Oversampled Signals and Quantization. (a) Oversampled signals occupy only a small subspace in the measurement space. (b) The quantization grid
quantizes all the measurement space. (c) The signal subspace intersects very few of the available quantization cells.

probability that the two balls produce inconsistent measure-

ments) is lower bounded by

P (Bǫ(x),Bǫ(x
′) incons.|d) ≥

1 −
(

P (x,x′ cons.|d) +
2cpǫ

∆
+ γ

(
K

2
,
( cp

2σ

)2
))

,

for any choice of cP ≤ ∆/2ǫ, where γ(s, x) is the regularized

upper incomplete gamma function.

Finally we construct a covering of the signal space under

consideration using ǫ-balls. We consider all pairs of ǫ-balls

in this covering and using Lemma 3.2 we lower bound the

probability than no pair of signals with distance greater than

d produces consistent measurements. This produces the main

result of this work, proven in Sec. III-D.

Theorem 3.3: Consider the set of signals

S =
{
x ∈ R

K
∣∣ ‖x‖2 ≤ 1

}

and the measurement system

qm = Q

( 〈x, φm〉 + wm

∆

)
, m = 1, . . . ,M,

where Q(x) = ⌈x⌉ mod 2, φm ∈ R
K contains i.i.d.

elements drawn from a standard normal distribution, wk is

i.i.d., uniformly distributed in [0, ∆].
For any cr > 1/2, arbitrarily close to 1/2, there exists a

constant co and a choice of ∆ proportional to d such that

with probability greater than

P ≥ 1 −
(

co

√
K

d

)2K

(cr)
M

the following holds for all x,x′ ∈ S

‖x − x′‖2 ≥ d ⇒ q 6= q′,

where q and q′ are the vectors containing the quantized

measurements of x and x′, respectively.

The theorem trades-off how large is the leading term(
co

√
K

d

)2K

with how close is cr to 1/2, i.e., how fast the

probability in the statement approaches 1 as a function of the

number of measurements. Using an example, we also make

this result concrete and show that for K > 8, we can achieve

co = 60, cr = 3/4.

Our results do not assume a probabilistic model on the

signal. Instead they are similar in nature to many probabilistic

results in compressive sensing [11]–[14], [16]–[18]. With

overwhelming probability the system works on all signals

presented to it. It is also important to note that the results

are not asymptotic, but also hold for any finite K and M .

Further, note that the alternative is not that the system provides

incorrect results, only that we cannot guarantee that it will

provide correct results. Thus, we fix the probability that we

cannot guarantee the results to an acceptable value, P0, and

demonstrate the desired exponential decay of the error.

Corollary 3.4: Consider the set of signals, the measurement

system and the consistent reconstruction process implied by

Thm. 3.3. With probability P ≥ 1 − P0, the following holds

for all x,x′ ∈ S

‖x − x′‖2 ≥ co

√
K

P
1
2k
0

(cr)
M
2K ⇒ q 6= q′

The corollary makes explicit the exponential decay of

the worst-case error as a function both of the number of

measurements M and the number of bits used. This means

that the worst-case error decays significantly faster than

the linear decay demonstrated with classical quantization of

oversampled frames [1], [3] and defeats the lower bound

in [2]. Furthermore, we achieve that rate by quantizing each

coefficient independently, unlike existing approaches [8], [38].

Since this is a probabilistic result on the system probability

space, it further implies that a system that satisfies the desired

exponential decay property exists.

One of the drawbacks of this approach is that it requires the

quantizer to be designed in advance with the target distortion

in mind, i.e., the choice of the scaling parameter ∆ of the

quantizer affects the distortion. This might be an issue if the

target accuracy and oversampling rate is not known at the

quantizer design stage, but, for example, needs to be estimated

from the measurements adaptively during measurement time.

This drawback, as well as one way to overcome it, is discussed

further in Sec. V.

The remainder of this section presents the above results in

sequence.
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B. Quantized Measurement of Signal Pairs

We first consider two signals x and x′ with ℓ2 distance d =
‖x− x′‖2. We analyze the probability that a single quantized

measurement of the two signals produces the same bit values,

i.e., is consistent for the two signals. Since we only discuss

the measurement of a single bit, we omit the subscript m
from (1) and (2) to simplify the notation in the remainder of

this section. The analysis does not depend on it. We use q
and q′ to denote a single quantized measurement of x and x′,
respectively.

We first compute the desired probability conditional on the

projected distance l, i.e., the distance between the measure-

ments of the signals

l ≡ |y − y′| = |〈x, φ〉 + w − (〈x′, φ〉 + w)|
⇒ l = |〈x − x′, φ〉| (7)

The addition of dither makes the probability that the two

signals quantize to consistent bits depend only on the distance

l and not on the individual values y and y′, as depicted in

Fig. 3(a). In the top part of the figure an example measurement

is depicted. Depending on the amount of dither, the two

measurements can quantize to different values (as shown in

the second line of the plot) or to the same values (as shown

in the third line). Since the dither is uniform in [0,∆], the

probability the two bits are consistent given l equals

P (q = q′|l)

=

{
1 − l mod ∆

∆ , if 2i∆ ≤ l ≤ (2i + 1)∆
l mod ∆

∆ , if (2i + 1)∆ ≤ l ≤ 2(i + 1)∆,

=

{
1 + 2i − l

∆ , if 2i∆ ≤ l ≤ (2i + 1)∆
l
∆ − (2i + 1), if (2i + 1)∆ ≤ l ≤ 2(i + 1)∆,

(8)

for some integer i. P (q = q′|l) is plotted in Fig. 3(b).

Furthermore, from (7) and the distribution of φ, it follows

that l is distributed as the magnitude of the normal distribution

with variance (σd)2

f(l|d) =

√
2

π

e−( l
2σd )

2

σd
, l ≥ 0.

Thus, the two quantization bits are the same given the distance

of the signals d with probability

P (q = q′|d) =

∫

l≥0

P (q = q′|l) · f(l|d)dl. (9)

In order to evaluate the integral, we make it symmetric

around zero by mirroring it and dividing it by two. The two

components of the expanded integral are shown in Fig. 3(c).

These are a periodic triangle function with height 1 and width

2∆ and a Normal distribution function with variance (σd)2.

Using Parseval’s theorem, we can express that integral in

the Fourier domain (with respect to l). Noting that the periodic

triangle function can also be represented as a convolution of

a single triangle function with an impulse train, we obtain:

P (q = q′|d) =

∫

ξ

F{P (q=q′|l)}
︷ ︸︸ ︷
+∞∑

i=−∞

sinc2
(

i
2

)
δ
(
ξ − i

2∆

)

2

F{f(l|d)}
︷ ︸︸ ︷
e−2(πξσd)2 dξ

=
+∞∑

i=−∞

sinc2
(

i
2

)

2
e
−

“

πiσd√
2∆

”2

where F{·} denotes the Fourier transform, sinc(x) ≡ sin(πx)
πx ,

and ξ is the frequency with respect to l. Since sinc(x) = 0 if

x is a non-zero integer, sin2(πx/2) = 1 if x is an odd integer,

and sinc(0) = 1,

P (q = q′|d) =
1

2
+

+∞∑

i=0

e
−

“

π(2i+1)σd
√

2∆

”2

(π(i + 1/2))
2 , (10)

which proves the equality in Lemma 3.1.

A very good lower bound for (10) can be derived using the

first term of the summation:

P (q = q′|d) ≥ 1

2
+

4

π2
e
−

“

πσd√
2∆

”2

An alternative lower bound can also be derived by explicitly

integrating (9) up to l ≤ ∆:

P (q = q′|d) ≥ 1 −
√

2

π

σd

∆

An upper bound can be derived using

e
−

“

π(2i+1)σd
√

2∆

”2

≤ e
−

“

πσd√
2∆

”2

in the summation in (10), noting that P (q = q′|d = 0) = 1.

P (q = q′|d) ≤ 1

2
+

1

2
e
−

“

πσd√
2∆

”2

,

which proves the inequality and concludes the proof of

Lemma 3.1. Fig. 4 plots these bounds and illustrates their

tightness. A bound for the probability of inconsistency can

be determined from the bounds above using P (q 6= q′|d) =
1 − P (q = q′|d).

Using these results it is possible to further analyse the

performance of this method on finite sets of signals. However,

for many signal processing applications it is desirable to

analyse infinite sets of signals, such as signal spaces. To

facilitate this analysis the next section examines how the

system behaves on pairs of ǫ-balls in the signal space.

C. Consistency of ǫ-Balls

In this section we examine the performance on pairs of sets

of signals. Specifically, the sets we consider are ǫ-balls in R
K

with radius ǫ and centered at x, defined as

Bǫ(x) =
{
s ∈ R

K
∣∣ ‖s − x‖2 ≤ ǫ

}
.

We examine balls Bǫ(x) and Bǫ(x
′) around two signals x

and x′ with distance d = ‖x − x′‖2, as above. We desire to

lower bound the probability that the quantized measurements

of all the signals in Bǫ(x) are consistent with each other, and

inconsistent with the ones from all the signals in Bǫ(x
′).
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∆
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4

π
2
e
−
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πσd
√

2∆

”

2

P (q = q′|d) ≤
1

2
+

1

2
e
−

“

πσd
√

2∆

”

2

Fig. 4. Upper and lower bounds for the probability two different signals
have consistent quantization bits

To determine the lower bound, we examine how the mea-

surement vector φ affects the ǫ-balls. It is straightforward to

show that the measurement projects the Bǫ(x) to an interval

in R of length at most 2ǫ‖φ‖2, centered at 〈x, φ〉. The length

of the interval affects the probability that the measurements

of all the signals in Bǫ(x) quantize consistently. To guarantee

consistency we bound the length of this interval to be smaller

than 2cpǫ, i.e., we require that ‖φ‖2 ≤ cp. This fails with

probability

P (‖φ‖2 ≥ cp) = γ

(
K

2
,
( cp

2σ

)2
)

,

where γ(s, x) is the regularized upper incomplete gamma

function, and γ
(

K
2 ,

(
x
2

)2
)

is the tail integral of the χ dis-

tribution with K degrees of freedom (i.e., the distribution of

the norm of a K-dimensional standard normal vector). To

ensure that all the signals in the ǫ-ball can quantize to the

same bit value with non-zero probability we pick cp such that

2cpǫ < ∆.

Under this restriction, the two balls will produce incon-

sistent measurements only if the two intervals they project

onto are located completely within two quantization intervals

with different quantization values. Thus we cannot guarantee

consistency within the ball if the ball projection is on the

boundary of a quantization threshold, and we cannot guarantee

inconsistency between the balls if parts of the projections of

the two balls quantize to the same bit. Figure 5(b) depicts the

quantization of ǫ-balls, and examines when all the elements

of the two balls quantize inconsistently.

Assuming that the width of the ball projections is bounded,

as described above, then we can characterize the probability

that the ball centers will project on the quantization grid in

a way that all signals within one ball quantize to the same

one quantization value, and all the signals from the other

ball quantize to the other. This is the probability that we can

guarantee that all measurements from the signals in one ball

are inconsistent with all the signals from the other ball. We

desire to upper bound the probability that we fail to guarantee

this inconsistency.

Using, as before, l to denote the projected distance between

the centers of the two balls, we cannot guarantee inconsistency

if |l − 2i∆| ≤ 2cpǫ for some i. In this case, the balls are

guaranteed to intersect modulo 2∆, i.e., they are guaranteed

to have intervals that quantize to the same value. If 2cpǫ ≤
l−2i∆ ≤ ∆ for some i we consider the projection of the balls

and the two points, one from each projection, closest to each

other. If these, which have distance l − 2cpǫ modulo 2∆, are

inconsistent, then the two balls are guaranteed to be inconsis-

tent. Similarly, if 0 ≤ l − (2i + 1)∆ ≤ ∆ − 2cpǫ for some i
we consider the projection of the balls and the two points, one

from each projection, farthest from each other. If these, which

have distance l + 2cpǫ modulo 2∆, are inconsistent, then the

two balls are guaranteed to be inconsistent. Since, given l, the

dither distributes the centers of the balls uniformly within the

quantization intervals, the probability that we cannot guarantee

consistency can be bounded in a manner similar to (8).

P (no guarantee|l)

≤






1, if |l − 2i∆| ≤ 2cpǫ
∆+2cpǫ−l−2i∆

∆ , if 2cpǫ ≤ l − 2i∆ ≤ ∆
l+2cpe−(2i+i)∆

∆ , if 0 ≤ l − (2i + 1)∆ ≤ ∆ − 2cpǫ,

(11)
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for some integer i. The shape of this upper bound is shown in

Fig. 5(b). Note that the right hand side of (11) can be expressed

in terms of P (q = q′|l) from (8) to produce

P (no guarantee|d) ≤ min

{
P (q = q′|d) +

2cpǫ

∆
, 1

}

≤ P (q = q′|d) +
2cpǫ

∆
.

Thus we can upper bound the probability of inconsistent

measurements, due to either a large ball projection interval

or unfavorable projection of the ball centers, using the union

bound.

P (∃ v ∈ Bǫ(x),v′ ∈ Bǫ(x
′), s.t. qv = qv′ |d)

≤ P (no guarantee|d) + P (‖φ‖2 ≥ cp)

≤ P (q = q′|d) +
2cpǫ

∆
+ γ

(
K

2
,
( cp

2σ

)2
)

,

where qv and qv′ are the quantization values of v, and v′,
respectively. This proves Lemma 3.2.

D. Consistency Of M Measurements For Signals In A Space

To determine the overall quantization performance, we con-

sider bounded norm signals x in a K dimensional signal space.

Without loss of generality, we assume ‖x‖2 ≤ 1, and denote

the set of all such signals using S =
{
x ∈ R

K , ‖x‖2 ≤ 1
}

.

To consider all the points in S we construct a covering using

ǫ-balls, such that any signal in S belongs to at least one such

ball. The minimum number of balls required to cover a signal

set is the covering number of the set. For the unit ball in K
dimensions, the covering number is Cǫ ≤ (3/ǫ)K ǫ-balls [14].

Next, we consider all pairs of balls (Bǫ(x),Bǫ(x
′)), such

that ‖x − x′‖2 ≥ d. The number of those is upper bounded

by the total number of pairs of ǫ-balls we can form from the

covering, independent of the distance between their centers,

namely
(
Cǫ

2

)
≤ C2

ǫ pairs. The probability that at least one pair

of vectors, one from each ball has M consistent measurements

is upper bounded by

P (M meas. cons.|d)

= P (∃ v ∈ Bǫ(x),v′ ∈ Bǫ(x
′), s.t. qv = qv

′ |d)

≤ P (∃ v ∈ Bǫ(x),v′ ∈ Bǫ(x
′), s.t. qv = qv′ |d)M

Thus, the probability that there exists at least one pair of balls

that contains at least one pair of vectors, one from each ball,

that quantize to M consistent measurements can be upper

bounded using the union bound

P (∃ x,x′ ∈ S, ‖x − x′‖2 > d s.t. q = q′)

≤
(

3

ǫ

)2K

P (M meas. cons.|d) (12)

It follows that the probability that we cannot guarantee

inconsistency for all vectors with distance greater than d is

upper bounded by

P (∃ x,x′ ∈ S, ‖x − x′‖2 > d s.t. q = q′)

≤
(

3

ǫ

)2K (
P (q = q′|d) +

2cpǫ

∆

+ γ

(
K

2
,
( cp

2σ

)2
))M

≤
(

3

ǫ

)2K (
1

2
+

1

2
e
−

“

πσd√
2∆

”2

+
2cpǫ

∆

+γ

(
K

2
,
( cp

2σ

)2
))M

.

Picking σ = 1√
K

, ǫ = ∆r1

2cp
, and ∆ = dr2√

K
for some ratios

r1, r2 > 0 we obtain

P (∃ x,x′ ∈ S, ‖x − x′‖2 > d s.t. q = q′)

≤
(√

K

d

6cp

r1r2

)2K (
1

2
+

1

2
e

−π2

2r2
2 + r1

+ γ

(
K

2
,
c2
pK

4

))M

,

By setting cp arbitrarily large, and r1 and r2 arbitrarily small—

i.e., setting ǫ and ∆ appropriately small—we can achieve

P (∃ x,x′ ∈ S, ‖x − x′‖2 > d s.t. q = q′)

≤
(

co

√
K

d

)2K

(cr)
M

,
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where co = 6cp/r1r2 increases as cr decreases, and cr can

be any constant arbitrarily close to 1/2. This proves Thm. 3.3.

Corollary 3.4 follows trivially.

For example, to make this result concrete, if K > 8 we can

pick cp = 2, ǫ = ∆
20 , and ∆ = d√

K
to obtain:

P (∃ x,x′ ∈ S, ‖x − x′‖2 > d s.t. q = q′)

≤
(

60
√

K

d

)2K (
3

4

)M

= e
2K log

“

60
√

K
d

”

−M log( 4
3 ).

We should remark that the choice of parameters r1, r2 at the

last step—which also determines the design of the precision

parameter ∆—influences the decay rate of the error, at a trade-

off with the leading constant term. While we can obtain a

decay rate arbitrarily close to 1/2, we will also force the

leading term (co

√
K/d)2K to become arbitrarily large. As

mentioned before, the decision to decrease ∆ should be done

at design time. Furthermore, decreasing ∆ can be difficult in

certain practical hardware implementations.

The
√

K factor is consistent with scalar quantization of

orthonormal basis expansions. Specifically, consider the or-

thonormal basis expansion of the signal, quantized to B bits

per coefficient for a total of KB bits. The worst-case error

per coefficient is 2−(B−1) and, therefore, the total worst-case

error is 2−(B−1)
√

K.

To better understand the result, we examine how many bits

we require to achieve the same performance as fine scalar

quantization of orthonormal basis expansions. To provide

the same error guarantee we set d = 2−(B−1)
√

K. Using

Corollary 3.4, to achieve this guarantee with probability P0

we require

2−(B−1)
√

K ≥ co

√
K

P
1

2K
0

(cr)
M
2K

⇒ M

K
≥ 2

(
B log 2 + log

co

2P
1

2K
0

)/
log (1/cr) .

Thus the number of bits per dimension M/K required

grows linearly with the bits per dimension B required to

achieve the same error guarantee in an orthonormal basis

expansion. The oversampled approach asymptotically requires

2 log(2)/ log(1/cr) times the number of bits per dimen-

sion, compared to fine quantization of orthonormal basis

expansions, an overhead which can be designed to be ar-

bitrarily close to 2 times. For our example cr = 3/4,

2 log(2)/ log(1/cr) ≈ 4.82. Although this penalty is signif-

icant, it is also significantly improved over classical scalar

quantization of oversampled expansions.

IV. QUANTIZATION UNIVERSALITY AND SIGNAL MODELS

A. Universality and Side Information

One of the advantages of our approach is its universality,

in the sense that we did not use any information on the

signal model in designing the quantizer. This is a significant

advantage of randomized sampling methods, such as Johnson-

Lindenstrauss embedding and compressive sensing [12], [19],

[40], [41]. Additional information about the signal can be

exploited in the reconstruction to improve performance.

The information available about the signal can take the form

of a model on the signal structure, e.g., that the signal is sparse,

or that it lies in a manifold [12], [42]–[46]. Alternatively, we

might have prior knowledge of an existing signal that is very

similar to the acquired one (e.g., see [47]). This information

can be incorporated in the reconstruction to improve the

reconstruction quality. It is expected that such information can

allow us to provide stronger guarantees for the performance

of our quantizer.

We incorporate side information by modifying the set S of

signals of interest. This set affects our performance through

the number of ǫ-balls required to cover it, known as the

covering number of the set. In the development above, for

K-dimensional signals with norm bounded by 1, covering

can be achieved by Cǫ = (3/ǫ)K balls. The results we

developed, however, do not rely on any particular covering

number expression. In general, any set S can be quantized

successfully with probability

P (∃ x,x′ ∈ S, ‖x − x′‖2 > d s.t. q = q′)

≤ CS
3d/co

√
K

(cr)
M

,

where CS
ǫ denotes the covering number of the set of interest

S as a function of the ball size ǫ, and co, cr are as defined

above.

This observation allows us to quantize known classes of

signals, such as sparse signals or signals in a union of

subspaces. All we need for this characterization is an upper

bound for the covering number of the set (or its logarithm, i.e.,

the Kolmogorov ǫ-entropy of the set [48]). The underlying

assumption is the same as above: that the reconstruction

algorithm selects a signal in the set S that is consistent with

the quantized measurements.

The Kolmogorov ǫ-entropy of a set provides a lower bound

on the number of bits necessary to encode the set with worst

case distortion ǫ using vector quantization. To achieve this rate,

we construct the ǫ-covering of the set and use the available bits

to enumerate the centers of the ǫ-balls comprising the covering.

Each signal is quantized to the closest ǫ-ball center, the index

of which is used to represent the signal. While the connection

with vector quantization is well understood in the literature,

the results in this paper provide, to our knowledge, the first

example relating the Kolmogorov ǫ-entropy of a set and the

achievable performance under scalar quantization. Specifically,

using a similar derivation to Cor. 3.4, the number of bits

sufficient to guarantee worst-case distortion d with probability

greater than 1 − P0 is

M ≥
log CS

3d/co

√
K

+ log 1
P0

log 1
cr

, (13)

where log CS
3d/co

√
K

is the ǫ-entropy for ǫ = 3d/co

√
K. Aside

from constants, there is a
√

K penalty over vector quantization

in our approach, consistent with the findings in Sec. III-D.

In the remainder of this section we examine three special

cases: compressive sensing, signals in a union of subspaces,

and signals with a known similar signal as side information.
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B. Quantization of Sparse Signals

Compressive sensing, one of the recent developments in

signal acquisition technology, assumes that the acquired signal

x contains few non-zero coefficients, i.e., is sparse, when

expressed in some basis. This assumption significantly reduces

the number of measurements required for acquisition and exact

reconstruction [12], [16], [18], [19]. However, when combined

with scalar quantization it can be shown that CS measurements

are quite inefficient in terms of their rate-distortion trade-

off [24]. The cause is essentially the same as the cause for

the inefficiency of oversampling in the case of non-sparse

signals: sparse signals occupy a small number of subspaces in

the measurement space. Thus, they do not intersect most of the

available quantization cells. The proposed quantization scheme

has the potential to significantly improve the rate-distortion

performance of CS.

Compressive sensing examines K-sparse signals in an N -

dimensional space. Thus the signal acquired contains up to K
non-zero coefficients and, therefore, lies in a K-dimensional

subspace out of the
(
N
K

)
such subspaces. Since each of the

subspaces can be covered with (3/ǫ)K balls, and picking σ =
1√
N

, ǫ = ∆r1

2cp
, and ∆ = dr2√

N
, the probabilistic guarantee of

reconstruction becomes

P (∃ x,x′ ∈ S, ‖x − x′‖2 > d s.t. q = q′)

≤
(

N

K

)2
(

co

√
N

d

)2K

(cr)
M

≤
(

eN3/2

K

co

d

)2K

(cr)
M

≤ e
2K log

“

eN3/2

K
co
d

”

−M log(1/cr)

which decays exponentially with M , as long as M =
Ω (K log N − K log (Kd)) = Ω (K log (N/Kd)), similar to

most compressive sensing results. The difference here is that

there is an explicit rate-distortion guarantee since M represents

both the number of measurements and the number of bits used.

C. Quantization of Signals in a Union of Subspaces

A more general model is signals in a finite union of sub-

spaces [42]–[45]. Under this model, the signal being acquired

belongs to one of L K-dimensional subspaces. In this case

the reconstruction guarantee becomes

P (∃ x,x′ ∈ S, ‖x − x′‖2 > d s.t. q = q′)

≤ L2

(
co

√
N

d

)2K

(cr)
M

≤ e
2 log L+2K log

“

co
√

N
d

”

−M log(1/cr)
,

which decays exponentially with M , as long as M =
Ω(log L+K log(N/d)). Compressive sensing is a special case

of signals in a union of subspaces, where L =
(
N
K

)
.

This result is in contrast with the analysis on unquantized

measurement for signals in a union of subspaces [42]–[45].

Specifically, these results demonstrate no dependence on N ,

the size of the ambient signal space; O(log L+K) unquantized

measurements are sufficient to robustly reconstruct signals

from a union of subspaces. On the other hand, using an

analysis similar to [2], [24] it is straightforward to show that

increasing the rate by increasing the number of measurements

provides only a linear reduction of the error as a function of

the number of measurements, similar to the behavior described

by (6). Alternatively, we can consider the Kolmogorov ǫ-

entropy, i.e., the minimum number of bits necessary to repre-

sent the signal set at distortion ǫ, without requiring robustness

or imposing linear measurements. This is exactly equal to

log2

(
CS

ǫ

)
and suggests that O(log L + K) bits are required.

Whether the logarithmic dependence on N exhibited by our

approach is fundamental, due to the requirement for linear

measurements, or whether it can be removed using a different

analysis is an interesting matter for further research.

D. Quantization of Similar Signals

Quite often, the side information is a known signal xs

that is very similar to the acquired signal. For example, in

video applications one frame might be very similar to the

next; in multispectral image acquisition and compression the

acquired signal in one spectral band is very similar to the

acquired signal in another spectral band [47]. In such cases,

knowledge of xs can significantly reduce the number of

quantized measurements required to acquire the new signal.

As an example, consider the case where it is known that the

acquired signal x differs from the side information xs by at

most D ≥ ‖xs−x‖2. Thus the acquired signal exists in the D-

ball around xs, BD(xs). Using the same argument as above,

we can construct a covering of a D-ball using (3D/ǫ)Kǫ-balls.

Thus, the distortion guarantee becomes

P (∃ x,x′ ∈ S, ‖x − x′‖2 > d s.t. q = q′)

≤
(

coD
√

K

d

)2K

(cr)
M

.

If we fix P0 to be the probability that we fail to guarantee

reconstruction performance, as with Cor. 3.4, the distortion

guarantee we can provide decreases linearly with D.

‖x − x′‖2 ≥ coD
√

K

P
1
2k
0

(cr)
M
2K ⇒ q 6= q′.

V. DISCUSSION AND OPEN QUESTIONS

This paper demonstrates universal scalar quantization with

exponential decay of the quantization error as a function of

the oversampling rate (and, consequently, of the bit rate).

This allows rate-efficient quantization for oversampled signals

without any need for methods requiring feedback or joint

quantization of coefficients, such as Sigma-Delta or vector

quantization. The framework we develop is universal and can

incorporate side information on the signal, when available. Our

development establishes a direct connection between the Kol-

mogorov ǫ-entropy of the measured signals and the achievable

rate vs. distortion performance under scalar quantization.

The fundamental realization to enable this performance is

that continuous quantization regions (i.e., monotonic scalar
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quantization functions) cause the inherent limitation of scalar

quantizers. Using non-continuous quantization regions we

make more effective use of the quantization bits. While in this

paper we only analyze binary quantization, it is straightforward

to analyze multibit quantizers, shown in Fig. 1(c). The only

difference is the probability P (q = q′|l) that two arbitrary

signals produce a consistent measurement in (8) and Fig. 3(b).

The modified function should be equal to zero in the intervals

[(2Bi + 1)∆, (2B(i + 1)− 1)∆], i = 0, 1, . . ., and equal to (8)

everywhere else. The remaining derivation is identical to the

one we presented. We can conjecture that careful analysis of

the multibit case should present an exponential decay constant

cr & 1/2B , which can reach that lower bound arbitrarily close.

One of the issues not addressed in this work is practical

reconstruction algorithms. Reconstruction from the proposed

sampling scheme is indeed not straightforward. However,

we believe that our work opens the road to a variety of

scalar quantization approaches which can exhibit practical and

efficient reconstruction algorithms. One approach is to use the

results in this paper hierarchically, with a different scaling

parameter ∆ at each hierarchy level, and, therefore, different

reconstruction accuracy guarantees. The parameters can be

designed such that the reconstruction problem at each level is a

convex problem, therefore tractable. This approach is explored

in more detail in [49]. We defer discussion of other practical

reconstruction approaches to future work.

A difficulty in implementing the proposed approach is that

the precision parameter ∆ is tightly related to the hardware

implementation of the quantizer. It is also critical to the

performance. If the hardware is not precise enough to scale ∆
and produce a fine enough quantization function Q(x), then

the asymptotic performance of the quantizer degrades. This

is generally not an issue in software implementations, e.g., in

compression applications, assuming we do not reach the limits

of machine precision.

The precision parameter ∆ also has to be designed in

advance to accommodate the target accuracy. This might be

undesirable if the required accuracy of the acquisition system

is not known in advance, and we hope to decide the number

of measurements during the system’s operation, maybe after

a certain number of measurements has already been acquired

with a lower precision setting. One approach to handle this

condition is to hierarchically scale the precision parameter,

such that the measurements are more and more refined as more

are acquired. The hierarchical quantization discussed in [49]

implements a version of this approach.

Another topic worthy of further research is performance in

the presence of noise. Noise can create several problems, such

as incorrect quantization bits. Even with infinite quantization

precision, noise in an inescapable fact of signal acquisition

and degrades performance. There are several ways to account

for noise in this work. One possibility is to limit the size of

the precision parameter ∆ such that the probability the noise

causes the measurement to move by more than ∆ can be safely

ignored. This will limit the number of bit flips due to noise,

and should provide some performance guarantee. It will also

limit the asymptotic performance of the quantizer. Another

possibility is to explore the robust embedding properties of the

acquisition process, similar to [32]. More precise examination

is an open question, also for future work.

An interesting question is the “democratic” property of

this quantizer, i.e., how well the information is distributed

to each quantization bit [22], [50], [51]. This is a desirable

property since it provides robustness to erasures, something

that overcomplete representations are known for [35], [37].

Superficially, it seems that the quantizer is indeed democratic.

In a probabilistic sense, all the measurements contain the same

amount of information. Similarities with democratic properties

in compressive sensing [51] hint that the democratic property

of our method should be true in an adversarial sense as well.

However, we have not attempted a proof in this paper.

Last, we should note that this quantization approach has

very tight connections with locality-sensitive hashing (LSH)

and ℓ2 embeddings under the hamming distance (e.g., see

[52] and references within). Specifically, our quantization

approach effectively constructs such an embedding, some of

the properties of which are examined in [53], although not in

the same language. A significant difference is on the objective.

Our goal is to enable reconstruction, whereas the goal of

LSH and randomized embeddings is to approximately preserve

distances with very high probability. A rigorous treatment of

the connections of quantization and LSH is quite interesting

and deserves a publication of its own. A preliminary attempt

to view LSH as a quantization problem is performed in [54].
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