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Persymmetric Parametric Adaptive Matched Filter for

Multichannel Adaptive Signal Detection

Pu Wang, Zafer Sahinoglu, Man-On Pun, and Hongbin Li

Abstract— This paper considers a parametric approach for multichan-

nel adaptive signal detection in Gaussian disturbance which can be
modeled as a multichannel auto-regressive (AR) process and, moreover,
possesses a persymmetric structure induced by a symmetric antenna
geometry. By introducing the persymmetric AR (PAR) modeling for the

disturbance, a persymmetric parametric adaptive matched filter (Per-
PAMF) is proposed. The developed Per-PAMF extends the classical
PAMF by exploiting the underlying persymmetric properties and, hence,
improves the detection performance in training-limited scenarios. The

performance of the proposed Per-PAMF is examined by the Monte-Carlo
simulations and simulation results demonstrate the effectiveness of the
Per-PAMF compared with the conventional PAMF and non-parametric

detectors.

Index Terms— Multichannel adaptive signal detection, multichannel
auto-regressive process, parametric approach, persymmetry, maximum

likelihood estimation.

I. INTRODUCTION

Multichannel adaptive signal detection against strong spatially

and temporally colored disturbances has been encountered in many

applications, e.g., wireless communications, hyperspectral imaging,

and medical imaging [1]–[3]. Traditional techniques are limited for

practical applications due to their excessive training requirement and

high computational complexity. For example, the covariance-matrix-

based detectors, e.g., Kelly’s generalized likelihood ratio test (GLRT)

[4], the adaptive matched filter (AMF) [5] and the recent Rao test

[6], need K ≥ JN training signals to ensure a full-rank estimate of

the disturbance covariance matrix and have to invert the JN × JN
covariance matrix, where J denotes the number of antennas and N
denotes the number of pulses.

Among other techniques, a class of parametric detectors pro-

vide an efficient way to simultaneously mitigate the training re-

quirement and reduce the computational complexity [7]–[11] (and

reference therein). By modeling the disturbance as a multichannel

auto-regressive (AR) process, the parametric detectors decompose

the jointly spatio-temporal whitening of the covariance-matrix-based

detectors into successive temporal whitening and spatial whitening.

As a well-known parametric detector, the parametric AMF (PAMF)

is simple to implement. Using measured datasets [7], [8], the PAMF

was found to yield better performance with significantly reduced

computational complexity than the non-parametric counterpart, i.e.,

the AMF, especially when K ≪ JN .

In this paper, extending the multichannel AR process based para-

metric detector, we exploit additional structure of the disturbance

covariance matrix, i.e., the persymmetric property [12], [13]. This

enables an improved parametric detector with better training-signal

efficiency. The utilization of persymmetry for applications in com-

munications and radar can be traced back to [12], [13] and has been

proved to be an efficient way to mitigate the demanding requirement

of homogeneous training signals. In [13], Nitzberg shows that the

efficiency of usage of training signals is improved by up to a factor

of two by utilizing persymmetry. Following [13], several adaptive

detection schemes explicitly taking into account the persymmetry
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have been proposed in [14] and, more recently, [15]–[19]. Specif-

ically, [14] proposed a GLRT to detect a multi-band signal from

the disturbance with the persymmetric property. Extension to the

compound-Gaussian environment was made in [15] and has been

further verified in [16] with experimentally measured datasets. The

results show that exploiting the persymmetric property significantly

improves the robustness of the adaptive detection algorithms in terms

of the constant false alarm rate (CFAR). Meanwhile, [17] proposed

a persymmetric GLRT for a partially-homogeneous environment.

Our incorporation of the persymmetric constraint in the PAMF

leads to a new persymmetric PAMF (Per-PAMF), which, while main-

taining the simple implementation as the PAMF, further improves the

robustness in training-limited scenarios. The Per-PAMF is developed

in a two-step procedure. In detail, a non-adaptive parametric matched

filter (PMF) is first introduced by assuming the knowledge of the

nuisance parameters and, then, the Per-PAMF is developed from the

PMF by replacing the nuisance parameters by their maximum like-

lihood (ML) estimates from training signals under the persymmetric

constraint. The performance of the Per-PAMF detector is examined

by the Monte-Carlo simulations and the simulation results show that

the Per-PAMF has slightly better performance than the PAMF when

the number of training signals is sufficient, while it significantly

outperforms the the PAMF in cases with extremely limited training

signals.

The remainder of the paper is organized as follows. Section II

contains the signal model and introduces the persymmetric AR

modeling for the disturbance. The Per-PAMF detector is derived in

Section III. Numerical results with two distinct datasets are provided

in Section IV. The conclusion is finally drawn in Section V.

II. SIGNAL MODEL

The problem of interest is to decide which of the following two

hypotheses is true [4], [5], [7], [9], [10]:

H0 : x0 = d0,

H1 : x0 = αs + d0, (1)

where x0 is the JN × 1 test signal, s is the known space-time

steering vector which is a Kronecker product between the temporal

(sd) and spatial (ss) steering vectors, i.e., s = sd ⊗ ss, α is an

unknown complex-valued amplitude, and d0 is the disturbance signal

(e.g., clutter and noise) which is modeled as a complex Gaussian

vector with zero-mean and unknown covariance matrix R, i.e.,

d0 ∼ CN (0,R). Aside from the test signal, there are K target-

free independent and identically distributed (i.i.d.) training signals

xk = dk ∼ CN (0,R), k = 1, · · · , K, which are also independent

of the test signal.

Moreover, by following the parametric approach introduced in

[7], the disturbance signals dk are modeled as a multichannel AR

process. Specifically, let dk(n) ∈ C
J×1, n = 0, 1, . . . , N − 1,

denote the N non-overlapping temporal segments of dk, i.e., dk ,
[

dT
k (0),dT

k (1), · · · ,dT
k (N − 1)

]T
. The multichannel AR process of

the disturbance signal is described as [7], [9], [10]

dk(n) = −
P

∑

p=1

A
H(p)dk(n − p) + εk(n), (2)

where εk(n) ∼ CN (0,Q) is the J-channel temporally white

but spatially colored Gaussian driving noise with Q denoting the

unknown J × J spatial covariance matrix, and {A(p)}P

p=1 denote

the unknown J × J AR coefficient matrices.

In this paper, we consider a case frequently encountered in

practice, where the systems use a symmetric antenna configuration

(symmetrical with respect to its phase center) and transmit a set of
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pulses of equal duration [13]–[17], [19]. For example, the widely

used uniform linear array with a constant pulse repetition frequency

(PRF) is such a system. The structured antenna array configurations

and constant PRF cause the spatio-temporal covariance matrix R

to be persymmetric-block-Toeplitz, as shown in [20]. Specifically, the

return from a discrete disturbance source has a similar form as a target

echo. Unlike a target, the disturbance is distributed in both range and

azimuth. As an approximation to a continuous field, the disturbance

return from a specific range is modeled as the superposition of a large

number Nc of independent disturbance sources in azimuth. Assuming

that returns from different disturbance sources are uncorrelated, the

disturbance covariance matrix can be calculated as [20, Section 2.6.1]

R =

Nc
∑

i=1

ǫi(sd,is
H
d,i) ⊗ (ss,is

H
s,i), (3)

where ǫi is proportional to the radar cross section (RCS) for the i-th
disturbance source, and sd,i and ss,i denote the temporal (Doppler)

and spatial steering vectors, respectively. Due to the configurations in

both spatial and temporal domains, the temporal and spatial steering

vectors of the disturbance source satisfy the following properties,

i.e., sd,i is a Vandermonde vector and ss,i = Es∗s,i is persymmet-

ric, where E denotes the exchange matrix with unit anti-diagonal

elements and zeros elsewhere,

E =















0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ...

...

0 1 · · · 0 0
1 0 · · · 0 0















. (4)

Therefore, sd,is
H
d,i is a Toeplitz matrix, while ss,is

H
s,i is a persym-

metric matrix. In addition to the Kronecker operation in (3), it is

straightforward to show that the overall covariance matrix R to be a

persymmetric-block-Toeplitz matrix.

To exploit this structure information of the covariance matrix R,

a new multichannel AR model by incorporating the persymmetric

property is introduced below.

• AS1 — Persymmetric Spatial Covariance Matrix: Following

the traditional AR process of (2), the spatial covariance matrix

is further assumed to be persymmetric as

Q = EQ
∗

E, (5)

where [·]∗ denotes the complex conjugate and E denotes the

exchange matrix of (4).

• AS2 — Persymmetric AR Coefficient Matrices: In addition to

the persymmetric Q, we assume that the AR coefficient matrices

satisfy the following property

A(p) = EA
∗(p)E. (6)

As shown in the Appendix, we prove that the proposed persymmet-

ric AR model provides a parametric approach to approximate the

persymmetric-block-Toeplitz structure of the covariance matrix R.

In summary, the goal is to develop a decision rule for the problem

in (1) together with the assumptions AS1 and AS2.

III. PERSYMMETRIC PARAMETRIC ADAPTIVE MATCHED FILTER

The Per-PAMF is developed in a two-step approach: 1) find the

GLRT when the nuisance parameters A and Q are assumed both

known; 2) replace A and Q by their ML estimates from training

signals subject to the persymmetric constraints.

A. PMF — the GLRT with Known A and Q

When A and Q are both known, the GLRT has the form as

T =
max

α
p1(x0; α,A,Q)

p0(x0;A,Q)
, (7)

where {pi}i=0,1 are the likelihood functions under H0 and H1. It

can easily be shown that the GLRT reduces to the non-adaptive PMF

[7]

TPMF =

∣

∣

∣

∣

N−1
∑

n=P

s̃H(n)Q−1x̃0(n)

∣

∣

∣

∣

2

N−1
∑

n=P

s̃H(n)Q−1s̃(n)

(8)

where s̃ and x̃0 are, respectively, the temporally whitened steering

vector and test signal obtained with the true temporal correlation

matrices A(p), p = 1, · · · , P ,

s̃ (n) = s (n) +

P
∑

p=1

A
H (p)s (n − p) , (9)

x̃0 (n) = x0 (n) +

P
∑

p=1

A
H (p)x0 (n − p) . (10)

In the case of unknown A and Q, the above PMF cannot be

implemented and, therefore, we need to replace A and Q with their

ML estimates under the persymmetric constraints of (5) and (6).

B. Persymmetric ML Estimate of Q

The persymmetric ML estimates of A and Q are obtained from

training signals only. According to the signal model, the joint

likelihood function of training signals can be written as

p (x1, · · · ,xK ;A,Q) =

[

1

πJ |Q|
e− tr(Q−1Γ0)

]K(N−P )

,

where

K(N − P )Γ0 =

K
∑

k=1

N−1
∑

n=P

εk (n) ε
H
k (n), (11)

with definitions

εk (n) = xk (n) +
P

∑

p=1

A
H (p)xk (n − p) . (12)

Alternatively, K(N − P )Γ0 can be rewritten as

K(N − P )Γ0 = R̂xx + A
H
R̂yx + R̂

H
yxA + A

H
R̂yyA, (13)

where

A
∆
=

[

A
H (1) ,AH (2) , · · · ,AH (P )

]H

, (14)

R̂xx =
K

∑

k=1

N−1
∑

n=P

xk(n)xH
k (n), (15)

R̂yy =

K
∑

k=1

N−1
∑

n=P

yk (n)yH
k (n), (16)

R̂yx =
K

∑

k=1

N−1
∑

n=P

yk (n)xH
k (n), (17)

and yk(n) is a regression vector of xk(n): yk (n)
∆
=

[

xT
k (n − 1) ,xT

k (n − 2) , · · · ,xT
k (n − P )

]T
. By exploiting the

persymmetric property of Q, i.e., (5), we have

tr
(

Q
−1

Γ0

)

= tr

(

Q
−1 Γ0 + EΓ∗

0E

2

)

, (18)
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which leads to

ln p ∝ − ln |Q| −
1

2
tr

(

Q
−1 [Γ0 + EΓ

∗

0E]
)

.

Taking the derivative of ln p with respect to Q and equating the

results to zero lead to the persymmetric ML estimate of Q

Q̂PML =
1

2
(Γ0 + EΓ

∗

0E) . (19)

As a result, ln p ∝ − ln
∣

∣

1
2

(Γ0 + EΓ∗

0E)
∣

∣ . Therefore, the persym-

metric ML estimate of A is equivalent to minimizing the determinant

of K(N − P ) (Γ0 + EΓ∗

0E) /2.

C. Persymmetric ML Estimate of A

Recall that A of (14) is formed by stacking A(p) column-wise.

From (6), A has the following property

A = EBA
∗

E, (20)

where EB = IP ⊗ E with IP denoting a P × P identity matrix.

From (13), K(N − P )(Γ0 + EΓ∗

0E) can be expressed as

K(N − P )(Γ0 + EΓ
∗

0E)
(a)
=

[

R̂xx + ER̂
∗

xxE
]

+
[

A
H
R̂yx + E(AH

EBEBR̂yx)∗E
]

+
[

R̂
H
yxA + E(R̂H

yxEBEBA)∗E
]

+
[

A
H
R̂yyA + E(AH

EBEBR̂yyEBEBA)∗E
]

(b)
=

[

R̂xx + ER̂
∗

xxE
]

+ A
H

[

R̂yx + EBR̂
∗

yxE
]

+
[

R̂
H
yx + E(R̂H

yx)∗EB

]

A + A
H

[

R̂yy + EBR̂
∗

yyEB

]

A,

where (a) has used the fact that EBEB = IJP , and (b) is due to

(20) and EH
B = EB . Denote the persymmetric matrices:

R̂xx,P =
(

R̂xx + ER̂
∗

xxE
)

/2, (21)

R̂yx,P =
(

R̂yx + EBR̂
∗

yxE
)

/2, (22)

R̂yy,P =
(

R̂yy + EBR̂
∗

yyEB

)

/2. (23)

As a result, K(N − P )(Γ0 + EΓ∗

0E)/2 can be rewritten as

K(N − P )(Γ0 + EΓ
∗

0E)/2

=R̂xx,P + A
H
R̂yx,P + R̂

H
yx,P A + A

H
R̂yy,P A

=
(

A
H + R̂

H
yx,P R̂

−1
yy,P

)

R̂yy,P

(

A
H + R̂

H
yx,P R̂

−1
yy,P

)H

+
(

R̂xx,P − R̂
H
yx,P R̂

−1
yy,P R̂yx,P

)

. (24)

Since R̂yy,P is nonnegative definite and the remaining term

R̂xx,P − R̂H
yx,P R̂−1

yy,P R̂yx,P does not depend on A, it follows that

(Γ0 + EΓ
∗

0E) /2 ≥ (Γ0 + EΓ
∗

0E) /2
∣

∣

∣A=−R̂H
yx,P

R̂
−1

yy,P

=
R̂xx,P − R̂H

yx,P R̂−1
yy,P R̂yx,P

K(N − P )
, (25)

which implies that

ÂPML = −R̂
−1
yy,P R̂yx,P , (26)

and the persymmetric ML estimate of Q of (19) reduces to

Q̂PML =
R̂xx,P − R̂H

yx,P R̂−1
yy,P R̂yx,P

K(N − P )
. (27)

D. Per-PAMF

By replacing A and Q with the persymmetric ML estimates of A

and Q in (8), we obtained the Per-PAMF as

TPer-PAMF =

∣

∣

∣

∣

N−1
∑

n=P

ˆ̃s
H

P (n) Q̂−1
PML

ˆ̃x0,P (n)

∣

∣

∣

∣

2

N−1
∑

n=P

ˆ̃s
H

P (n) Q̂−1
PML

ˆ̃sP (n)

H1

≷
H0

γPer-PAMF (28)

where γPer-PAMF is a threshold subject to a preset probability of false

alarm, and the temporally whitened steering vector ˆ̃sP and test signal
ˆ̃x0,P are adaptively obtained, respectively, with the persymmetric ML

estimate ÂPML of (26):

ˆ̃sP (n) = s (n) +
P

∑

p=1

Â
H
PML (p)s (n − p) , (29)

ˆ̃x0,P (n) = x0 (n) +
P

∑

p=1

Â
H
PML (p)x0 (n − p) . (30)

From (28), it is seen that the Per-PAMF inherits the reduced

computational complexity of the conventional PAMF by performing

successively a temporal whitening followed by a spatial whitening,

in contrast to the computationally intensive joint spatio-temporal

whitening of the covariance matrix based approach (e.g., the AMF

[5]). On the other hand, it further improves robustness of the

parameter estimation by exploiting the underlying structure of the

disturbance covariance matrix via the persymmetric ML estimates of

the AR coefficient matrices A and the spatial covariance matrix Q.

E. Comparison with the conventional PAMF

Compared with the conventional PAMF [7], the proposed Per-

PAMF shares the same test variable as shown in (28), except

the underlying estimates of the unknown parameters A and Q.

The conventional PAMF uses the unconstrained ML estimate from

training signals:

ÂML = −R̂
−1
yy R̂yx, (31)

Q̂ML =
R̂xx − R̂H

yxR̂
−1
yy R̂yx

K(N − P )
. (32)

Compared with the above ML estimates, it is noted that the persym-

metric ML estimates of A and Q in (26) and (27) explicitly utilize

the persymmetric properties through the operations of (21), (22) and

(23).

IV. PERFORMANCE EVALUATION

In this section, simulation results are provided to demonstrate the

efficiency of the proposed Per-PAMF in the training-limited case,

e.g., K ≪ JN . The performance is evaluated with two datasets:

1) a synthesized AR dataset, in which the disturbance signal dk is

generated as a multichannel second-order AR process (P = 2) with

a AR coefficient A and a spatial covariance matrix Q satisfying (6)

and (5); and 2) a physical clutter dataset, in which the disturbance

is generated according to the clutter model used in [20]. The signal-

to-interference-plus-noise ratio (SINR) is defined as

SINR = |α|2sH
R

−1
s, (33)

where R is the spatial-temporal covariance matrix. Regarding the

synthesized dataset, R corresponds to the selected A and Q. The

simulated performance is obtained by using at least 10000 Monte

Carlo trials for the probability of false alarm Pf = 0.01. Performance

comparisons are made among the non-parametric AMF [5], the non-

parametric persymmetric AMF (Per-AMF) [18], the conventional
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Fig. 1. Probability of detection versus SINR for K = 8 when J = 5,
N = 11, P = 2, and Pf = 0.01.
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Fig. 2. Probability of detection versus SINR for K = 4 when J = 5,
N = 11, P = 2, and Pf = 0.01.

PAMF [7], and the clairvoyant matched filter (MF) [5], [20]. Par-

ticularly, the simulated scenario uses J = 5 antenna elements and

N = 11 pulses, while the number of training signals are, respectively,

K = 2, K = 4, and K = 8.

A. Synthesized AR Dataset

In this case, the steering vector s is generated with a normalized

spatial frequency fs = 0.2 and a normalized Doppler frequency is

fd = 0.2, respectively. Fig. 1 shows the probability of detection

versus the SINR with comparably sufficient training signals. In this

case, the performance gain of the Per-PAMF over the conventional

PAMF is marginal since both detectors have enough training signals

to obtain good estimates of the unknown parameters. Meanwhile, both

parametric detectors, i.e., the PAMF and Per-PAMF with K = 8
training signals, show better detection performance than the non-

parametric covariance matrix based AMF and Per-AMF with K =
2JN = 110 training signals.

In Fig. 2, the number of training signals is reduced to K = 4. As

shown in Fig. 2, the performance gap between the Per-PAMF and

the PAMF is about 1.5 dB when Pd = 0.8, while the Per-PAMF

with K = 4 training signals is slightly better than its nonparametric

counterpart Per-AMF with K = 110 training signals. The most

challenging case is the third scenario where only K = 2 training

signals are available. As shown in Fig. 3, the conventional PAMF
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Fig. 3. Probability of detection versus SINR for K = 2 when J = 5,
N = 11, P = 2, and Pf = 0.01.

gives much worse performance than the Per-PAMF. In other words,

with only K = 2 training signals, the conventional PAMF cannot

obtain reliable estimates of unknown parameters, e.g., A and Q,

which leads to performance degradation, while the Per-PAMF has

better efficiency of using training signals for unknown parameter

estimation and thus maintains its performance even with only K = 2
training signals. The performance gain for the Per-PAMF over the

conventional PAMF is about 5 dB when Pd = 0.8. On the other

hand, the AMF cannot work functionally with K = JN = 55
training signals and the Per-AMF with K = 55 training signals

gives similar detection performance with the Per-PAMF with K = 2
training signals.

From all three scenarios, it is clearly seen that, when there is

a sufficient number of training signals, the performance gain is

marginal and thus one may not need to utilize the prior persymmetric

information. In contrast, the advantage of the proposed Per-PAMF

becomes evident when the training signals are not enough for the

PAMF to reliably estimate the unknown parameters and to maintain

a reasonable detection performance. Therefore, in the training-limited

scenarios, it is crucial to make use of the prior structure knowledge to

improve the robustness of the parametric detectors. Here, we have a

brief note on the CFAR property of the proposed Per-PAMF. Similar

to the conventional PAMF, the CFAR property is usually achieved

in the asymptotic case with a sufficiently large N (the number of

pulses) or at the sufficient training scenario where K ≫ JN , but

may vanish when J ≈ N or when the disturbance does not follow

the AR process; see [Section VII.B] [7].

B. Physical Clutter Dataset

Unlike the previous section which used synthesized AR dataset,

this section provides simulation results in a different environment,

where the disturbance is generated from a physical clutter model

described in [20], rather than a multichannel AR process. The

platform is at altitude of 9 km with the velocity of 50 m/s, and

the range of interest is 130 km. The clutter-to-noise ratio (CNR)

is 35 dB. The clutter is divided among 360 clutter patches equally

distributed in the azimuth about the platform and the RCS for each

patch is weighted by a transmit pattern with a backlobe level of −30
dB; see [20, eq. (80) and Figs. 9 and 10]. Moreover, we assume a

linear symmetric array and a set of pulses with a constant PRF of

300 Hz, which results in a persymmetric spatial steering vector and
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Fig. 4. Probability of detection versus SINR for K = 8 when J = 5,
N = 11, and Pf = 0.01.

a Vandermonde temporal steering vector:

ss = [ej2π3fs , ej2πfs , 1, e−jπfs , e−j2π3fs ]T ,

st = [1, ej2πfd , ej2π2fd , · · · , ej2π9fd , ej2π10fd ]T .

The steering vectors for the clutter sources are similarly generated.

We consider the case with K = 8 training signals. Since there is

no knowledge about the AR order, we try a variety of AR orders,

i.e., P = {1, 2, 3}, and select the one giving the best performance.

In contrary, we use K = 55 training signals for the non-parametric

detectors, e.g., the conventional AMF and Per-AMF. Alternatively,

the AR order can be adaptively determined from the training signals

with conventional order determination techniques, e.g., the Akaike

Information Criterion (AIC) and the minimum description length

(MDL). Specifically, a low-complexity, joint model-order selection

and parametric detection procedure was proposed in [21]. The sim-

ulated results are shown in Fig. 4. It is seen that the proposed Per-

PAMF is better than the conventional PAMF with a performance

gain of 2 dB at Pd = 0.9. Moreover, it is seen that the proposed

Per-PAMF detector needs much less training signals (K = 8 versus

K = 55) than the non-parametric Per-AMF detector to achieve

similar detection performance, and is significantly better than the

conventional AMF detector with K = 55 training signals. We also

note that, compared with the same case of K = 8 but with the

synthesized AR dataset in Fig. 1, the performance gap between the

PAMF/Per-PAMF and the optimal matched filter is increased, which

shows that the parametric PAMF/Per-PAMF detectors suffer from the

model mismatch. Finally, we also compare the proposed Per-PAMF

with the diagonal-loaded AMF [22], [23] with the same amount of

training signals, i.e., K = 8. It is seen from Fig. 4 that, with a

choice of 10-dB loading factor (ten times the white noise level), the

diagonal-loaded AMF (denoted as the AMF-DL) gives a detection

performance, much better than that of the conventional AMF detector

but still worse than that of the proposed Per-PAMF detector.

V. CONCLUSION

This paper extends the conventional PAMF by exploiting the

structure properties of the disturbance covariance matrix, for widely

used systems with a symmetric antennas geometry and pulses with

a constant PRF. The developed Per-PAMF shares the same detection

statistics as the conventional PAMF but utilizes the structure informa-

tion through the estimation of the unknown AR coefficient matrices A

and spatial covariance matrix Q. Numerical results have verified that

the proposed Per-PAMF gives better detection performance than the

conventional PAMF as well as the covariance matrix based detectors

when training signals are limited.

APPENDIX

In the following, we show that the persymmetric AR based

disturbance in Section II has a persymmetric-block-Toeplitz space-

time covariance matrix. First, the space-time covariance matrix of an

arbitrary multichannel AR process x(n) is defined by

R = E





























x(0)
x(1)

...

x(N − 1)











[

xH(0) xH(1) · · · xH(N − 1)
]



















=











R(0) R(−1) · · · R(1 − N)
R(1) R(0) · · · R(2 − N)

...
...

. . .
...

R(N − 1) R(N − 2) · · · R(0)











, (34)

where R(m) = E[x(n)xH(n − m)] which implies that R(−m) =
RH(m). It is easily observed that R is a block-Toeplitz matrix.

To further show R is persymmetric-block-Toeplitz, we need to

prove that the sub-block matrix R(m) is a persymmetric matrix. To

this end, we consider an iterative procedure to find an explicit ex-

pression of R(m) as a function of the AR coefficient matrices A(p)
and spatial covariance matrix Q and, then, prove the persymmetric

property of the sub-block matrices R(m). First, we treat the AR

process as a causal filter and x(n) is therefore the output of the

causal filter

x(n) =
∞

∑

m=0

H(m)ε(n − m). (35)

Given H(m), we have, for m > 0

R(m) = E[x(n)xH(n − m)]

= E





∞
∑

l1=0

H(l1)ε(n − l1)
∞

∑

l2=0

ε
H(n − l2)H

H(l2)





=
∞

∑

l1=0

∞
∑

l2=0

H(l1)E[ε(n − l1)ε
H(n − l2)]H

H(l2)

(a)
=

∞
∑

l1=0

∞
∑

l2=0

H(l1)Qδ(m + l2 − l1)H
H(l2)

=
∞

∑

l1=0

H(l1)QH
H(l1 − m), (36)

where (a) holds since the driving noise ε(n) is temporally white

across n. From (35), it is seen that the output x(n) with respect to

impulse input is

x(n) =
∞

∑

m=0

H(m)δ(n − m)

= H(0)δ(n) + H(1)δ(n − 1) + H(2)δ(n − 2) + · · · (37)

and we can enumerate

x(0) = H(0)δ(0),

x(1) = H(1)δ(0), (38)

x(2) = H(2)δ(0),
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and so on. Meanwhile, since x(n) is a multichannel AR process, we

have

x(n) = −
P

∑

p=1

A
H(p)x(n − p) + ε(n), (39)

and, therefore, the output x(n) with respect to impulse input can be

alternatively obtained as

x(0) = δ(0),

x(1) = −A
H(1)x(0) = −A

H(1)δ(0), (40)

x(2) = −A
H(1)x(1) − A

H(2)x(0)

= {(−A
H(1))2 − A

H(2)}δ(0),

and so on. By comparing (38) with (40), we have

H(0) = I,

H(1) = −A
H(1),

H(2) = −A
H(1)H(1) − A

H(2)H(0), (41)

H(3) = −A
H(1)H(2) − A

H(2)H(1) − A
H(3)H(0),

and so on. As a result, the impulse response matrix H(m) can be

determined in an iterative way as

H(m) =



































−
P

∑

p=1

A
H (p)H(m − p), m ≥ P

−
m

∑

p=1

A
H (p)H(m − p), 0 < m < P

I, m = 0

(42)

Since A(p), p = 1, · · · , P, satisfy the persymmetric property as

shown in (6), we can conclude from (42) that H(m) is also subject

to the persymmetric constraint as

H(m) = EH
∗(m)E. (43)

In addition to the spatial persymmetry of Q in (5), we can rewrite

the block matrices R(m) in (36) as

ER
∗(m)E =

∞
∑

l1=0

EH
∗(l1)Q

∗

H
T (l1 − m)E

(a)
=

∞
∑

l1=0

{EH
∗(l1)E}{EQ

∗

E}{EH
T (l1 − m)E}

(b)
=

∞
∑

l1=0

H(l1)QH
H(l1 − m)

= R(m), (44)

where (a) used the fact that EE = I and (b) holds due to the

persymmetric properties of the H(m) and Q. Combining (34) and

(44), the overall space-time covariance matrix R of a persymmetric

AR process is proved to be a persymmetric-block-Toeplitz matrix.
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