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Abstract

Flat refractive geometry corresponds to a perspective camera looking through single/multiple
parallel flat refractive mediums. We show that the underlying geometry of rays corresponds to
an axial camera. This realization, while missing from previous works, leads us to develop a
general theory of calibrating such systems using 2D-3D correspondences. The pose of 3D points
is assumed to be unknown and is also recovered. Calibration can be done even using a single
image of a plane. We show that the unknown orientation of the refracting layers corresponds to
the underlying axis, and can be obtained independently of the number of layers, their distances
from the camera and their refractive indices. Interestingly, the axis estimation can be mapped
to the classical essential matrix computation and 5-point algorithm [15] can be used. After
computing the axis, the thicknesses of layers can be obtained linearly when refractive indices are
known, and we derive analytical solutions when they are unknown. We also derive the analytical
forward projection (AFP) equations to compute the projection of a 3D point via multiple flat
refractions, which allows non-linear refinement by minimizing the reprojection error. For two
refractions, AFP is either 4th or 12th degree equation depending on the refractive indices. We
analyze ambiguities due to small field of view, stability under noise, and show how a two layer
system can be well approximated as a single layer system. Real experiments using a water tank
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Abstract

Flat refractive geometry corresponds to a perspective

camera looking through single/multiple parallel flat refrac-

tive mediums. We show that the underlying geometry of

rays corresponds to an axial camera. This realization, while

missing from previous works, leads us to develop a general

theory of calibrating such systems using 2D-3D correspon-

dences. The pose of 3D points is assumed to be unknown

and is also recovered. Calibration can be done even using

a single image of a plane.

We show that the unknown orientation of the refract-

ing layers corresponds to the underlying axis, and can be

obtained independently of the number of layers, their dis-

tances from the camera and their refractive indices. Inter-

estingly, the axis estimation can be mapped to the classical

essential matrix computation, and 5 point algorithm [17]

can be used. After computing the axis, the thicknesses of

layers can be obtained linearly when refractive indices are

known, and we derive analytical solutions when they are

unknown. We also derive the forward projection (FP) equa-

tions to analytically compute the projection of a 3D point

via multiple flat refractions, which allows non-linear refine-

ment by minimizing the reprojection error. For two refrac-

tions, FP is either 4th or 12th degree equation depending on

the refractive indices. We analyze ambiguities due to small

field of view, stability under noise, and show how two layer

systems can be well approximated using a single layer. Real

experiments using a water tank validate our theory.

1. Introduction

A camera observing a scene through multiple refrac-

tive planes (e.g. underwater imaging) results in distortions

and gives the illusion of scene being closer and magnified.

While 3D reconstruction in such scenarios has been ana-

lyzed in multi-media photogrammetry [11, 21, 19], such

imaging setups have been relatively unaddressed in com-

puter vision community until recently. Calibrating such a

system with multiple layers with unknown layer orienta-

tion, distances and refractive indices remains an open and

challenging problem.

The fact that such systems do not correspond to a single
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Figure 1. (Left) Flat refractive geometry with n layers. (Middle)

The entire light-path for each pixel lies on a plane and all planes

intersect in a common axis passing through the camera center.

(Right) After computing the axis, analysis can be done on the plane

of refraction to estimate layer thicknesses and refractive indices.

viewpoint system is known (see, for example, [27]). How-

ever, we show that the underlying geometry of rays in such

systems actually corresponds to an axial camera. This re-

alization, which has been missing from previous works to

the best of our knowledge, allows us to handle multiple lay-

ers in a unified way and results in practical and robust algo-

rithms. Firstly, we show that the unknown orientation of the

refracting layers corresponds to the underlying axis, which

can be estimated independently of the number of layers,

their distances and their refractive indices. This results in

considerable simplification of the calibration problem via a

two-step process, where the axis is computed first. Without

such simplification, the calibration is difficult to achieve.

Secondly, we show that the axis estimation can be mapped

to the classical relative orientation problem (essential ma-

trix estimation) for which excellent solutions (e.g., 5-point

algorithm [17]) already exist. In fact, calibration can be

done using a single plane, since essential matrix can be es-

timated from a planar scene [17, 14]. Our primary contri-

butions are as follows.

• We show that the geometry of rays in flat refraction

systems corresponds to an axial camera, leading to a

unified theory for calibrating such systems with multi-

ple layers.

• By demonstrating the equivalence with classical essen-

tial matrix estimation, we propose efficient and robust
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algorithms for calibration using planar as well as non-

planar objects.

• We derive analytical forward projection equations for

multiple refractions, which allows minimizing the re-

projection error.

• We analyze ambiguities with small FOV, and show that

multiple layer systems may be well-approximated by

single/two-layer systems.

1.1. Related Work

Maas [15] considered a three layer system assuming that

the image plane is parallel to the refractive interfaces. His

approach corrects for the radial shift of the projected 3D

points using optimization. Treibitz et al. [27] considered a

single refraction with known refractive index in an under-

water imaging scenario. They assume the distance of the

interface as the single unknown parameter (when the cam-

era is internally calibrated) and perform calibration using

known depth of a planar checkerboard. The image plane is

parallel to the interface in their setup as well. In contrast,

we do not assume that the refractive interfaces are fronto-

parallel. We handle multiple layers with unknown layer

distances, consider known/unknown refractive indices and

do not assume prior information about the pose of the cali-

brating object. We only assume that the camera is internally

calibrated a-priori.

3D reconstruction under reflections/refractions has been

explored in [4, 16, 20, 2, 23] either for reconstructing the

scene or the medium itself. Chen et al. [4] used a direct view

and an indirect view by looking through a thick glass slab.

However, direct view is required to estimate the orientation

of the slab and an additional view to obtain the refractive

index. We show that a single set of 2D-3D correspondences

allows estimating medium thickness as well as refractive

index without requiring the direct view. Other works as-

sume known vertical direction [2] or require several images

for calibration [20]. Steger and Kutulakos [23] showed that

light-path triangulation becomes degenerate when the en-

tire light-path lies on a plane, which is the case here. Their

goal is to compute the shape of the refractive medium, and

thus they consider each light-path independently. In con-

trast, we know partial knowledge of shape (flat layers), and

thus light-paths can be parameterized using calibration pa-

rameters. Thus, we can use information from multiple-light

paths to compute the calibration parameters. For two refrac-

tions (air-medium-air), our analysis is consistent with [22]

in that the distance to the medium cannot be estimated.

However, we show theoretically that if all refractive indices

are different, light paths are not degenerate for any number

of layers.

Refractions have also been modeled using ray-

tracing [12, 13] for calibration. Kotowski [12] proposed

a bundle-triangulation framework where the points of re-

fraction are computed iteratively, starting with a central ap-

proximation. In contrast, we derive analytical equations for

computing the projection of a 3D point via multiple refrac-

tions (FP). This allows non-linear refinement of the initial

solution by minimizing the reprojection error. For single

refraction, FP is a 4th degree equation [7]. For two refrac-

tions, we derive a 4th/12th degree equation depending on

refractive indices.

Non-Central/Axial Cameras: Chari and Sturm [3] showed

the existence of geometric entities such as fundamental ma-

trix considering refraction. Generic camera calibration al-

gorithms [24] have been proposed to calibrate non-central

cameras. Ramalingam et al. [18] proposed a general frame-

work for calibrating axial cameras using three checker-

boards. Their parameterization does not use camera-side

rays and involves two rotations/translations. In contrast, we

parameterize the axis to pass through the camera and use

camera-side rays, allowing calibration from a single plane.

However, we use their insight that the axis can be computed

first. Models based on radial distortion for calibration as-

sume known center of distortion [26] or model each dis-

tortion circle separately [25]. We use a global model with

fewer parameters for flat refractive systems. Interestingly,

axis estimation in our case is similar to the center of distor-

tion estimation for central cameras in [9].

2. General Flat Refractive Geometry

Consider the general setup for flat refractive geometry

as shown in Figure 1, where a perspective camera observes

a known calibration object via n flat refraction layers. We

work in the camera coordinate system with the camera cen-

ter at the origin. Let n denote the common surface normal

to all the layers and [di, µi] be the thickness and refractive

index of the ith medium respectively. d0 represents the dis-

tance between the camera and the first layer. Let P(i)Ki=1

denote K 3D points on the object which are known in the

object coordinate system and let [R, t] be the unknown rigid

transformation of these points.

2.1. Flat Refraction Constraint

We assume that the internal camera calibration has been

done offline and hence we know the camera ray v0(i) for

each 3D point P(i). Let [v0(i), v1(i), . . . , vn(i)] denote the

corresponding light-path. The last refracted ray vn should

be parallel to the line joining the transformed 3D point

RP + t and the refraction point qn on the last layer. Thus,

the following Flat Refraction Constraint (FRC) should be

satisfied.

FRC : (RP + t− qn)× vn = 0, (1)

where × denotes the cross-product. Our goal is to estimate

the unknown calibration parameters n, [di]
n−1

i=0
, [µi]

n
i=0 as



well as the unknown pose [R, t] given K 2D-3D correspon-

dences [v0(i),P(i)]Ki=1.

From Snell’s law, µi sin θi = µi+1 sin θi+1, where θi is

the angle between vi and n. This can be written in vector

form [8] as

vi+1 = ai+1vi + bi+1n, (2)

where ai+1 = µi/µi+1 and

bi+1 =
−µiv

T
i n −

√
µ2
i (v

T
i n)2 − (µ2

i − µ2
i+1

)vTi vi

µi+1

. (3)

Since Snell’s law only depends on the ratio of the refractive

indices, we assume µ0 = 1 without loss of generality. We

first derive the FRC for a single layer and a single 3D point

P. The refraction point q1 is given by q1 = −d0v0/(v
T
0 n).

Substituting in (1),

(RP+ t)× (a1v0 + b1n) + b1d0(v0 × n)/(vT0 n) = 0. (4)

After substituting for a1 and b1 and removing the square

root term in b1, we get an equation with second order terms

of R, t and µi and sixth order terms of n. Thus, directly

solving the FRC is quite difficult. More importantly, the

complexity of the FRC equation increases with each addi-

tional layer due to the square root term in each bi. Thus,

in order to solve this problem efficiently, we need to ana-

lyze the geometry of underlying rays to derive simpler con-

straints. In the next section, we describe coplanarity con-

straints that allow us to estimate the normal n and 5 out of

6 pose parameters independently of di’s and µi’s.

3. Coplanarity Constraints

Axial Camera: We first show that an n-layer flat refraction

system corresponds to an axial (non-central) camera. We

define the axis A as the line parallel to n passing through

the camera center. Let π be the plane of refraction (POR)

containing the axis A and a given camera ray v0. The nor-

mal n lies on π. From Snell’s law, the incoming ray, the

normal and the refracted ray lie on the same plane at any re-

fraction boundary. Hence v1 should lie on π. By induction,

the entire light-path should lie on π. Thus, the last refracted

ray vn should intersect the axis A, since both of them are

coplanar. Thus, all outgoing rays intersect the axis and the

system is axial.

Since vn lies on π, the transformed 3D point RP + t
should also lie on π. Thus, the coplanarity constraint for

each 3D point can be written as

Coplanarity : (RP + t)T (A × v0) = 0, (5)

where (A × v0) is the normal to POR. Note that the copla-

narity constraint is independent of the number of layers n,

their thicknesses di, and the refractive indices µi. It only

depends on the axis and pose parameters.

3.1. Axis Computation

Let X(:) be the vector formed by stacking the columns

of a matrix X and let ⊗ denote the kronecker product. Let

[A]× be the 3 × 3 skew-symmetric matrix obtained from

3-vector A. The coplanarity constraint can be re-written as

0 = vT0 (A × (RP + t)) = vT0 EP + vT0 s, (6)

where E = [A]×R and s = A × t. Note that sT A = 0 and

thus the full translation t cannot be estimated using copla-

narity constraints. The component of t in the direction of

axis, tA, vanishes in s. Thus, we have 7 degrees of free-

dom: 2 for axis, 3 for rotation and 2 for translation.

11-point Linear Algorithm: Stacking equations for 11
correspondences, we get a linear system






(P(1)T ⊗ v0(1)
T ) v0(1)

T

...
...

(P(11)T ⊗ v0(11)
T ) v0(11)

T






︸ ︷︷ ︸

B

[
E(:)

s

]

= 0, (7)

where B is a 11 × 12 matrix whose rank is 11. Let B =
UΣV T be the SVD of B. The solution is given by the last

column of V . The scale factor is obtained by setting the

norm of E to one.

8-point Algorithm: Notice the striking similarity between

our E matrix ([A]×R) and the essential matrix [10] for rela-

tive motion between two perspective cameras ([t]×R). This

implies that we can map the axis estimation to the 5-point

algorithm for essential matrix computation [17]. Given 8
correspondences, we obtain a 8 × 12 matrix B as above.

Let U4
i=1 be the right null singular vectors of B. The solu-

tion lies in a four dimensional subspace

[
E(:)

s

]
= λ1U1 + λ2U2 + λ3U3 + λ4U4, (8)

where λi’s are unknown scalars. λ4 can be set to 1 due to

the unknown scale factor. The ‘E’ part of the solution is

E = λ1U1(1 : 9)+λ2U2(1 : 9)+λ3U3(1 : 9)+U4(1 : 9),

where Ui(1 : 9) denote the first 9 elements of Ui. Now λi’s

can be computed using the solution in [17] by providing the

above subspace vectors for E.

After recovering E and s, the axis is computed as the left

null singular vector of E (since ATE = 0). The sign ambi-

guity in axis is resolved by pointing it towards the camera.

The translation orthogonal to axis, tA⊥ , can be obtained as

s×A. Four solutions for R are recovered from E as in [17].

The correct solution is obtained after recovering the layer

thicknesses and constraining them to be positive.
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Figure 2. (Left) Single layer (Case 1) and two layer (Case 2, µ2 = µ0) configurations. (Right) Comparison of 11pt and 8pt algorithm for

estimation of axis, rotation and tA⊥ using coplanarity constraints.

3.2. Simulations

We present simulations for estimating the axis with

Gaussian noise (variance σ2 pixels) in feature points for

Case 1 and Case 2, shown in Figure 2. We assume a camera

with FOV of 45◦ and resolution 10002 pixels. The scene is

set by choosing d0 = 300 units, d1 = 450 units, µ1 = 1.5
and µ2 = 1. We perform 100 trials for each noise setting,

and plot the average error in axis, rotation and tA⊥ in Fig-

ure 2. For each trial, the axis is randomly generated in a

cone of half-angle 45◦ around the camera’s optical axis.

100 3D points are randomly generated along with R and

t so that they lie within [d0, 2d0] after the last layer. For

each trial, RANSAC-framework is employed for both 11pt

and 8pt algorithms using 200 iterations to choose the best

solution using the coplanarity error. Rotation error is de-

fined as the minimum angle of rotation required to go from

estimated rotations to the true rotation. Similarly, axis er-

ror is defined as the angle between the estimated and the

true axis. The translation error is computed as the norm of

the translation error vector and is normalized using the cor-

responding layer thickness. Notice that when v0 ‖ n, the

coplanarity constraint cannot be used. Thus, rays having

small angle with axis are unreliable. As expected, the 8pt

algorithm performs significantly better than the 11pt algo-

rithm as well as using all points in a least squares fashion.

4. Recovery of Layer Thicknesses

We first assume known refractive indices. Section 3.1

showed how to compute the axis A, rotation R and trans-

lation tA⊥ orthogonal to the axis. When µi’s are known,

the ray directions for the entire light-path v0(i), . . . , vn(i)
can be pre-computed using the estimated A. The remaining

unknowns are the layer thickness di’s and the translation tA
along the axis, which can be computed linearly as described

below.

Coordinate Transformations: We first apply the com-

puted R and tA⊥ to the 3D points P. Let Pc = RP + tA⊥ .

With known axis, the analysis can be done in 2D on the

plane of refraction (POR) itself as shown in Figure 1. Let

tA = αA, where α is the unknown translation magnitude

along the axis. Let [z2, z1] denote an orthogonal coordi-

nate system on the POR. We choose z1 along the axis. For

a given camera ray v0, let z2 = z1 × (z1 × v0) be the or-

thogonal direction. The projection of Pc on POR is given

by u = [ux, uy], where ux = zT2 Pc and uy = zT1 Pc. Simi-

larly, each ray vi on the light-path of v0 can be represented

by a 2D vector vpi on POR, whose components are given

by zT2 vi and zT1 vi. Let ci = vpT
i z1 and zp = [0; 1] be a unit

2D vector.

4.1. Linear System for n Layers

For each correspondence, the FRC for n layer system on

its plane of refraction is given by

vpn × (u + αzp − qn) = 0. (9)

This is because the last refracted ray vpn should be paral-

lel to the line joining the transformed 3D point u + αzp
and the refraction point qn on the last layer. qn =∑n−1

i=0
−divpi/ci. Substituting, we get

vpn ×
[

vp0
c0

. . .
vp

n−1

c
n−1

zp

]



d0
...

dn−1

α


 = −vpn × u.

Thus, each correspondence gives one linear equation in di’s
and α. By stacking K > n correspondences, the resulting

linear system can be solved to obtain di’s and α for n layers.

After estimating α, the translation t is given by tA⊥ + αA.

However, if µi = µn for any i, vpi ‖ vpn and di cannot be

estimated. In addition, if µi = µj , only the combined layer

thickness di + dj can be estimated, since the correspond-

ing columns in the linear system become equal. Now we

analyze some special cases.

Case 1 (Single Refraction): For single layer, we have

two unknowns d0 and α and the FRC is given by

vp
1
×

[
vp

0
/c0 zp

]
[

d0
α

]

= −vp
1
× u. (10)

Using K ≥ 2 correspondences, a least squares solution can

be obtained.
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Figure 3. Comparison of rotation, translation and reprojection error using our algorithm with a central approximation (CA) for Case 1 and

Case 2. The right most plot shows the estimated tz for Case 2 over all 100 trials for σ = 1 pixel. CA estimates the object to be closer to

the camera.

Case 2 (Two Refractions) µ0 = µ2: This is a common

scenario when looking through a refractive medium such as

a thick glass slab. Here d0, d1 and α are unknowns. Since

µ0 = µ2, vp2 ‖ vp0 and the FRC reduces to

vp
0
×

[
vp

1
/c1 zp

]
[

d1
α

]

= −vp
0
× u. (11)

Thus, we can only estimate the thickness d1 of the medium,

but not its distance d0. This is consistent with the analy-

sis shown in [22]. In Section 5, we show that although d0
cannot be estimated, the projection of the 3D point on the

image plane can be computed for non-linear refinement.

Case 3 (Two Refractions) µ0 6= µ2: Now v2 and v0 are

not parallel and the FRC is given by

vp
2
×

[
vp

0
/c0 vp

1
/c1 zp

]





d0
d1
α



 = −vp
2
× u. (12)

Thus, we can estimate the distance d0 as well.

5. Non-Linear Refinement

Till now we described an initial solution for estimating

the calibration and pose parameters. We now show how to

perform non-linear refinement of calibration and pose pa-

rameters.

Analytical Forward Projection (AFP): Given a calibrated

central or non-central camera, the AFP describes an analyti-

cal method to compute the projection (or the corresponding

camera ray) of a known 3D point. AFP can be used to min-

imize the image reprojection error. For Case 1, AFP is a

4th degree equation [7]. We derive the AFP equation for

two refractions and show that it is a 4th degree equation for

Case 2 and a 12th degree equation for Case 3. The analysis

can be done on POR.

Case 2: Assume given calibration parameters d0, d1, µ1

and the coordinates u = [ux, uy] of a known 3D point on

POR. The unknown camera ray vp0 can be parameterized

as [x, d0]. Since µ2 = µ0, vp2 ‖ vp0. The AFP equation is

given by

vp0 × (u − q2) = 0. (13)

We have vp1 = 1

µ1

vp0 + b1z1. From (3),

b1 = (d0 −
√
d20 − (1− µ2

1)(x
2 + d20))/µ1. (14)

The refraction point q2 = [x, d0]− d1vp1/c1. Substituting

all these terms in (13), we get

(d20µ
2
1+µ2

1x
2−x2)(d0u

x+d1x−uyx)2 = (d0d1x)
2. (15)

Similar to Case 1, we obtain a 4th degree equation in x.

This gives four solutions for x and the correct solution is

found by checking Snell’s law for each solution. After ob-

taining x, the camera ray is obtained as xz2 + d0z1 using

which the image projection p̂ can be computed via internal

camera calibration matrix. In Section 4, we showed that d0
cannot be estimated for Case 2. The reader might wonder

how AFP equation can then be solved. The key idea is that

the camera ray can be computed by using any value of d0.

For example, let d
′

0 = λd0 for λ > 0. Then the solution

x
′

= λx. Thus, the camera ray remains the same. For Case

3, given calibration parameters d0, d1, µ1, µ2 and the known

3D point, we show in supplementary materials that a 12th

degree AFP equation can be derived similarly.

Iterative Refinement: Let xc denote all calibration pa-

rameters. Given an initial estimate of xc and pose, let

p̂(i) = AFP(xc, RP(i) + t) be the image projection of

P(i) computed by solving the AFP equation. The repro-

jection error is defined as the root mean square (RMS) error

J =
√

1

K

∑K
i=1

(p(i)− p̂(i))2. We use lsqnonlin in

Matlab to refine xc and pose [R, t] by minimizing J .

5.1. Simulations

Now we show simulations for complete calibration and

pose estimation using the same settings as in Section 3.2.

The 8pt algorithm is used since it works better. In the

RANSAC framework, after estimating the axis, the best set

of 8 points are used to compute α and di’s in a least square

fashion as described in Section 4. Since there are 4 solu-

tions for R from E matrix, we get 4 solutions for α and di’s.

The correct solution is found by enforcing α >
∑

di and
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Figure 4. Error in axis and layer thickness for Case 1 and Case 2
using 8pt algorithm after non-linear refinement.

Figure 6. (Left) Setup. (Right) Photo captured by looking through

a water tank. Projected 3D points are overlayed by applying pose

estimated using CA (green) and our algorithm (red).

di > 0 ∀ i. The obtained initial solution is refined by min-

imizing the reprojection error using the AFP. We also com-

pute the pose obtained using a central (perspective) approxi-

mation from the given 2D-3D correspondences (referred by

CA). Figure 3 and 4 show error plots for pose and calibra-

tion parameters and the final reprojection error for different

noise levels, averaged over 100 trials. These plots show that

correct calibration and pose parameters can be obtained us-

ing our algorithm. Notice the large translation and repro-

jection error, and smaller estimated tz when using a central

approximation (CA) in Figure 3. This is expected, because

when looking through a denser refractive medium, objects

appear closer to the camera. Note that the error due to noise

in CA is insignificant compared to the error due to incorrect

modeling.

6. Real Experiments

We show real results using a water tank of dimensions

508 × 260 × 300 mm3. We use a Canon Rebel XT camera

having resolution of 3456× 2304 pixels with a 18− 55 mm

zoom lens. The camera was internally calibrated offline us-

ing [1]. Figure 6 shows a photo of a scene consisting of

three checkerboards, captured by looking through the wa-

ter tank (facing 260 mm side of tank). In order to obtain

ground truth, we took another photo in air, using which the

extrinsic of checkerboards were computed. The resulting

3D points in the coordinate system of left checkerboard are

shown in Figure 5. We detect corners in the captured photo

and run our algorithm (Case 2) to estimate the calibration

and pose parameters. Figure 5 shows the estimated rotation

and translation parameters, along with the final reprojec-

tion error J . The estimated thickness of the tank using our

algorithm was 255.69 mm, resulting in a relative error of

1.66%. Notice the large error in tz and large J in central

approximation, also evident from projected points in Fig-

ure 6. Interestingly, the central approximation can recover

the rotation well-enough.

6.1. Planar Calibration Grid

We now show that calibration can also be done using a

single planar grid, which is useful in practice. We describe

an 8pt algorithm as follows. Without loss of generality, as-

sume the plane is aligned with xy plane (Pz(i) = 0). Sub-

stituting in the coplanarity equation (6), the columns 7, 8,

9 of B matrix reduce to zero. Let B′ be the reduced 8 × 9
matrix, whose rank is 8. Thus, we can directly estimate the

first two columns of the E matrix and s by SVD based so-

lution using 8 correspondences. The last column of E is re-

covered using Demazure constraints [6, 5] and det(E) = 0
constraint.

Let E =




e1 e4 x
e2 e5 y
e3 e6 z


, where ei’s are estimated as

above and x, y, z are unknown. Setting det(E) = 0
gives a linear equation using which x can be obtained as

x = ((e1e6 − e3e4)y + (e2e4 − e1e5)z)/(e2e6 − e3e5).
The Demazure constraints provide three cubic equations

and six quadratic equations in unknowns, from which any

two quadratic equations can be chosen. Substituting x re-

sults in two quadratic equations in y and z, which can be

solved to obtain a 4th degree equation in z. In general, there

are two real solutions which differ in sign. Thus, we obtain

a pair of E matrices which differ in sign of their last column.

Each pair of obtained rotation matrices also have the same

property. The correct rotation matrix is chosen by checking

for the determinant value of one1.

Figure 7 shows simulation results on estimating calibra-

tion and pose parameters for Case 1 and Case 2 using a

planar grid. Again, note that a central approximation com-

pletely fails. For real data shown in Figure 6, we estimated

the calibration parameters using only the left checkerboard

as shown in Figure 5. Thus, we see that calibration can also

be performed using a single planar grid.

6.2. Unknown Refractive Indices

Due to lack of space, we only consider Case 1. We have

three unknowns d0, µ1 and α. When µ′

is are unknown,

ray directions cannot be pre-computed and FRC needs to

be written in terms of camera rays as follows

(a1vp
0
+ b1z1)× (u + αzp + d0vp

0
/c0) = 0. (16)

Let vp0 = [vx; vy]. After substituting a1 and b1 and remov-

ing the square root term in b1, we get

(d0v
x
− vyux)(γ + (vy)2 − 1) = (vxvy(α− d0 − uy))2, (17)

1The determinant of incorrect rotation matrices equals −1, correspond-

ing to a reflection.
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where γ = µ2
1. Let [EQi]

3
i=1 be the 3 equations for 3 cor-

respondences. Using EQ1, γ can be obtained as a func-

tion of d0 and α. Substituting γ in EQ2 and EQ3 makes

them cubic in d0 and quadratic in α. After eliminating α2

between EQ2 and EQ3, α is obtained as a cubic function

of d0, which when substituted back into EQ3 results in a

6th degree equation in one unknown d0. Solving it results

in 6 solutions. The correct solution is found by enforcing

d0 > 0, α > d0 and µ1 > 0. Similarly, Case 2 also re-

sults in a 6th degree equation2. However, Case 3 proved too

difficult to obtain an analytical equation. Thus, multi-layer

systems require good initial guess when µi’s are unknown.

Figure 5 shows the pose and calibration estimates for real

data (Figure 6) assuming unknown µ1, which was recov-

ered as 1.296 (relative error 2.55%).

7. Analysis

Field-of-View (FOV): Small FOV results in ambiguity be-

tween α and layer thicknesses as analyzed below using

small angle approximation sin θ ∼ tan θ ∼ θ. For small

angles, θi ∼ θ0/µi, where θ0 is the angle between the cam-

era ray and the axis3. Rewriting the FRC (9) on the POR

using angles,

tan θn = (ux −
∑

di tan θi)/(u
y + α−

∑
di). (18)

θ0(

χ︷ ︸︸ ︷
α+ µn

∑ di
µi

−
∑

di) = −uyθ0 + uxµn. (19)

2Supplementary materials provide details for Case 1 and Case 2.
3For simplicity, we assume small angle between camera’s optical axis

and the normal n.

Notice that even when µi’s are known, the only quantity

that can be estimated is χ, which is a combination of α and

di’s. This also implies that even when the depth of the cali-

bration object (and hence α) is known as in [27], individual

layer thickness cannot be obtained for small FOV. In Fig-

ure 6, if we perform calibration using the center checker-

board only, the rotation error is within 0.5◦ whereas the tank

thickness d1 is estimated to be 550.38 mm (error of 290.38
mm), along with 70.45 mm error in α. However, the error

in corresponding quantity χ = α+d1(
1

µ1

−1) from the true

value is only 1.59 mm. A central approximation in this case

also gives a low reprojection error with similar translation

error.

Multi-Layer Refractions: Non-central cameras can be

well modeled using central approximation when the locus

of viewpoints is small (e.g., catadioptric camera with mirror

size significantly smaller than scene depth). For multi-layer

refractions, a natural question then arises whether they can

be modeled by simpler single/two-layer models. This also

becomes important when multi-layer modeling becomes

challenging due to similar or unknown refractive indices.

We analyze if Case 3 (air-glass-water) can be approximated

by Case 1 (air-medium). We perform simulation as in Sec-

tion 3.2 using µ1 = 1.5, µ2 = 1.33, d0 = 300 units and

d1 = 450 units. We add different amount of noise in 2D

features and perform 100 trials for each. For each trial, we

apply central approximation, single layer (SL) approxima-

tion using µSL
1 = 0.5(µ1 + µ2) = 1.415, and the correct

two-layer model to estimate the pose and calibration param-

eters (µSL can also be estimated as in Section 6.2). Figure 8

shows the average error plots. Notice that with no noise,

both SL and CA approximations give non-zero errors while
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the correct model gives zero error. However, as noise is in-

creased, SL approximation gives similar pose, axis and re-

projection errors compared to the true model. As expected,

a central approximation is significantly worse than SL ap-

proximation. In general, with large noise we expect multi-

layer refractions to be modeled well by either Case 1 or

Case 2 depending on µn 6= µ0 or µn = µ0 respectively.

8. Conclusions

Our primary contribution is to understand the geometry

of perspective cameras imaging through parallel refractive

layers. We developed a theory for calibration and derived

forward projection equations, which can be directly used in

applications such as 3D reconstruction [2]. We presented a

comprehensive analysis under unknown layer distances and

orientation, and known/unknown refractive indices. Since

calibration can be done using a single plane, the proposed

algorithms are useful in practical scenarios such as under-

water imaging. We showed that multi-layer systems may be

well-approximated by simpler single layer systems. Multi-

ple planar grids can be used to increase the calibration accu-

racy similar to calibration of perspective cameras. Our pro-

posed 8 point algorithm for axis computation can be used

for other axial setups such as catadioptric cameras, as well

as to compute the distortion center for fish-eye cameras [9].

Developing a minimal solution for calibrating flat refractive

geometry remains an interesting future work.
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