
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Rateless Feedback Codes

Sorensen, J.H.; Koike-Akino, T.; Orlik, P.

TR2012-052 July 2012

Abstract

This paper proposes a concept called rateless feedback coding. We redesign the existing LT
and Raptor codes, by introducing new degree distributions for the case when a few feedback
opportunities are available. We show that incorporating feedback to LT codes can significantly
decrease both the coding overhead and the encoding/decoding complexity. Moreover, we show
that, at the price of a slight increase in the coding overhead, linear complexity is achieved with
Raptor feedback coding.

IEEE International Symposium on Information Theory Proceedings

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2012
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



Rateless Feedback Codes
Jesper H. Sørensen∗†, Toshiaki Koike-Akino†, and Philip Orlik†

∗Aalborg University, Department of Electronic Systems, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
†Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02139, USA

E-mail: jhs@es.aau.dk, {koike, porlik}@merl.com

Abstract—This paper proposes a concept called rateless feed-
back coding. We redesign the existing LT and Raptor codes,
by introducing new degree distributions for the case when a few
feedback opportunities are available. We show that incorporating
feedback to LT codes can significantly decrease both the coding
overhead and the encoding/decoding complexity. Moreover, we
show that, at the price of a slight increase in the coding overhead,
linear complexity is achieved with Raptor feedback coding.

I. INTRODUCTION

Achieving reliable communications over erasure channels
has been an active research topic for many years, especially
when packet-based communications emerged with the rise of
the Internet. When a strong feedback channel is available, the
capacity of the erasure channels is easily achieved with well-
known automatic repeat-request (ARQ) schemes. The receiver
simply feeds back an acknowledgment on each individual
symbol, and any unacknowledged symbols are retransmitted.
The fact that ARQ makes extensive use of feedback channels
makes it difficult to employ this scheme in many practical
systems. A rateless coding can achieve reliable communica-
tions on erasure channels with no frequent feedback. The so-
called LT codes [1] and Raptor codes [2] are such examples.
These codes generate a potentially infinite amount of encoded
symbols from k information symbols, with an encoding and
decoding complexity order of O(k log k). A successful de-
coding is possible when (1+ ϵ)k encoded symbols have been
received, where ϵ is a coding overhead.

Now the question is; assuming we have a communication
system, where the receiver has m feedback opportunities
(0 < m < k), what scheme should be applied? While
the existing schemes are designed for the extreme cases,
m = k and m = 0, the more practical assumptions pose an
interesting problem. An approach called doped fountain coding
is proposed in [3], where the receiver feeds back information
on undecoded symbols. This makes the transmitter able to
transmit input symbols, which accelerate the decoding process.
In [4], another approach called real-time oblivious erasure
correcting is proposed. This approach utilizes feedback telling
how many of the k input symbols have been decoded. With
this information the transmitter chooses a fixed degree for
future encoded symbols, which maximizes the probability of
decoding new symbols. The same type of feedback is applied
in [5], but with the purpose of minimizing the redundancy.

We propose in this paper redesigned versions of LT and
Raptor codes, called LT feedback codes and Raptor feedback
codes, where any amount of feedback opportunities are taken
into account. We focus on more informative feedback than
simple acknowledgments to tell the transmitter which informa-
tion symbols have been recovered, not just how many. This

information is used to modify the degree distribution in the
encoder. The goal is to decrease the coding overhead especially
for short k, in which the conventional rateless codes are
inefficient. We will show that the proposed feedback scheme
can decrease both the coding overhead and the complexity.

II. BACKGROUND OF RATELESS CODES

An overview of standard LT codes is first described here.
Assume we wish to transmit data, which is divided into k input
symbols. From the input symbols, a potentially infinite amount
of encoded symbols, called output symbols, are generated.
Output symbols are XOR combinations of input symbols. The
number of input symbols used in the XOR is referred to as the
degree of the output symbol, and all input symbols contained
in an output symbol are called neighbors of the output symbol.
The output symbols follow a certain degree distribution Ω.
The encoding process can be broken down into three steps:
1) Randomly choose a degree d by sampling Ω(d). 2) Choose
uniformly at random d of the k input symbols. 3) Perform
XOR of the d chosen input symbols. The resulting symbol is
the output symbol. This process can be iterated as many times
as needed, which results in a rateless code.

A widely used decoder for LT codes is a belief propagation
(BP) decoder whose complexity is low [2]. First, all degree-
1 output symbols are identified, which makes it possible to
recover their corresponding neighboring input symbols. These
are moved to a storage referred to as the ripple. Symbols
in the ripple are processed one by one, which means they
are XOR’ed with all output symbols, who have them as
neighbors. Once a symbol has been processed, it is removed
from the ripple and considered decoded. The processing of
symbols in the ripple will potentially reduce the buffered
symbols to degree one, in which case the neighboring input
symbol is recovered and moved to the ripple. This is called
a symbol release. Such an iterative decoding process can be
explained in two steps: 1) Identify all degree-1 symbols and
add the corresponding input symbols to the ripple. 2) Process
a symbol from the ripple, remove it afterwards and go to step
1. Decoding succeeds when all input symbols are recovered. If
at any point, the ripple size equals zero, decoding has failed.

III. RATELESS FEEDBACK CODES

The ripple size is an important parameter in the design of
LT codes. This design contains two steps; 1) find a suitable
ripple evolution to aim for, and 2) find a degree distribution
which achieves that ripple evolution. This section describes
such a design for the case where feedback opportunities exist.
We first focus on the case of a single feedback located when



0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

R
el

ea
se

 P
ro

ba
bi

lit
y

Decoding Step (k−L)

 

 

d = 2
d = 3

d = 10d = 2

d = 3

d = 10

Before feedback
After feedback

Fig. 1. The release probability as a function of the decoding step.

f1k symbols have been decoded. It will be later scaled to any
amount of feedback opportunities.

A. LT Feedback Codes

The feedback informs the transmitter which input symbols
have been decoded. With the information, the encoder excludes
all decoded symbols from future encoding. An important im-
plication of this is that the processing of the first f1k symbols
has no influence on the release of the symbols received after
the feedback because no symbol encoded after the feedback
has those first f1k processed symbols as neighbors. In order to
fully understand the benefit from this, we look at a proposition
presented in [1]. It expresses the probability, q(d, L, k), that a
symbol of degree d is released when L input symbols remain
unprocessed, i.e. in the (k − L)-th decoding step:

q(d, L, k) =
d(d− 1)L

∏d−3
j=0 (k − (L+ 1)− j)∏d−1
j=0 (k − j)

, (1)

for d = 2, . . . , k, and L = k − d+ 1, . . . , 1,

q(1, k, k) = 1, q(d, L, k) = 0, for all other d and L.

It holds for the traditional LT code without feedback. With
feedback, we can divide encoded symbols into two groups;
one for symbols received prior to the feedback and one for
symbols received after. Symbols received before the feedback
follow the release probabilities in (1). Symbols received after
the feedback are based on the reduced set of input symbols of
size (1−f1)k. Moreover, their releases are independent of the
processing of the first f1k input symbols. We can therefore find
their release probabilities as q(d, L, (1− f1)k), for L > f1k.

Fig. 1 shows a plot of q(d, L, k) (before feedback) and
q(d, L, (1 − f1)k) (after feedback), with parameters k = 100
and f1 = 0.5. It illustrates how releases of symbols received
after the feedback are confined to the end of the decoding pro-
cess. This is useful when designing degree distributions, since
it gives more freedom to distribute the releases throughout the
decoding process. For example, see the release distributions of
low degree symbols after the feedback; they are released with
high probability immediately after the feedback. This means
that we have the opportunity to give the ripple a boost at an
intermediate point in the decoding process. This should be
exploited in the design of the LT feedback code.

In [2], it was argued that the ripple size should be kept
larger than c

√
L, for some positive constant c. The justification

is based on viewing the ripple evolution as a simple random

Decoding Progress (k−L)

R
ip

pl
e 

S
iz

e

kf1k

√

f1k

√

(1 − f1)k

√

L

√

L − (1 − f1)k

Fig. 2. The proposed ripple evolution for LT feedback codes.

walk, i.e. every time a symbol is processed, the ripple size is
either increased or decreased by one with equal probabilities.
In such a random walk, the expected distance from the origin
after z steps is

√
z. Hence, if L steps remain in the decoding

process, the ripple size should be of the order of
√
L in order to

avoid decoding failure. The choice of ripple evolution for the
LT feedback code is based on the same reasoning. However,
due to the feedback, the ripple evolution can be viewed as two
random walks. The first random walk represents decoding until
the feedback, i.e. when (1 − f1)k remain undecoded. Hence,
we argue that until this point, the ripple size should be equal
to c1

√
L− (1− f1)k, for a positive constant c1. The second

random walk represents decoding after the feedback, where all
remaining symbols must be recovered. Hence, the ripple size
should be c2

√
L, for a positive constant c2. Fig. 2 illustrates

the proposed ripple evolution for c1 = c2 = 1. The proposed
ripple evolution, R(L), is summarized as below:

R(L) =

{
c1
√
L− (1− f1)k, for L > (1− f1)k,

c2
√
L, for L ≤ (1− f1)k,

(2)

for suitable constants c1 and c2.
The next step in the design is to find a degree distribution

which achieves the proposed ripple evolution (2). Two degree
distributions must be found, for the case of a single feedback,
one for before the feedback and the other for after. First,
the vector R(L) is mapped into another vector, Q(L), which
denotes the expected number of releases in the (k − L)-th
decoding step. We derive this mapping assuming all releases
in a single step are unique, i.e. the same input symbol will
not be recovered twice within a single step. This is a valid
assumption, since the number of releases in a single step is
low compared to L. The mapping can be expressed as

Q(L) =


L
(
R(L)−R(L+ 1) + 1

)
L−

(
R(L+ 1)− 1

) , for k > L ≥ 0,

R(L), for L = k.
(3)

Plugging (2) into (3), the desired Q(L) is obtained as

Q(L)=



c1
√
f1k, for L = k,

L(c1
√

L−(1−f1)k−c1
√

L−(1−f1)k+1+1)

L−(c1
√

L−(1−f1)k+1−1)
, for k > L > k′

1,

c2
√
L, for L = k′

1,

L(c2
√
L−c2

√
L+1+1)

L−(c2
√
L+1−1)

, for k′
1 > L ≥ 0,

(4)



TABLE I
DEGREE DISTRIBUTION FOR LT

FEEDBACK CODE.

d Ω1(d) Ω2(d)

1 0.0841 0.1948
2 0.5670 0.2143
3 0.1294 0.1730
4 0.1902 0.1132
5 0.0293 0.0711
6 0 0.0485
7 0 0.0310
8 0 0.0354

10 0 0.0408
13 0 0.0296
15 0 0.0041
17 0 0.0163
19 0 0.0055
22 0 0.0107
25 0 0.0030
27 0 0.0049
30 0 0.0025
31 0 0.0004
32 0 0.0008

TABLE II
DEGREE DISTRIBUTION FOR
RAPTOR FEEDBACK CODE.

d Ω1(d) Ω2(d)

1 0.0854 0.1926
2 0.5618 0.2458
3 0.2224 0.1834
4 0.1304 0.1100
5 0 0.0669
6 0 0.0560
8 0 0.0524
9 0 0.0271
13 0 0.0239
14 0 0.0240
21 0 0.0025
22 0 0.0154

where k′1 = (1 − f1)k. The achieved Q(L) can be expressed
as a function of the applied degree distribution, Ω(d), through
(1). This is done for the general case without feedback as

Q(L) =
k−L+1∑
d=1

nΩ(d)q(d, L, k), (5)

where n denotes the number of received symbols in decoding.
For the case with feedback, we have contributions from

two different degree distributions, Ω1(d) and Ω2(d), when
L < (1 − f1)k. Correspondingly, n1 and n2 symbols have
been received prior to decoding. When Ω2(d) is applied, the
encoder only includes the remaining (1− f1)k input symbols.
Therefore, we have

Q(L)=



k−L+1∑
d=1

n1Ω1(d)q(d, L, k), for L > k′
1,

k′
1−L+1∑
d=1

n2Ω2(d)q(d, L, k
′
1)+

f1k∑
d=1

n1Ω1(d)q(d, L, k),

for L ≤ k′
1.

(6)

Equations (4) and (6) yield (7) shown at the top of the
next page. Here, n1 and n2 are the free parameters. Hence,
a solution tells us how many symbols we must collect of the
different degrees before and after the feedback in order to
achieve the desired ripple evolution. Normalizing the solution
vectors with n1 and n2 provides the degree distributions. Since
the matrix in (7) becomes singular for high k, we propose to
use the least-squares nonnegative solution for (7) to achieve
close to the desired ripple evolution. Table I exemplifies the
solution for k = 128, f1 = 0.75 and c1 = c2 = 1. The
actual expected ripple evolution achieved with these degree
distributions is easily found through the use of (7) and (3).
Fig. 3 demonstrates that the least-squares solution closely
approaches the proposed evolution.

The design procedure explained above is easily extended to
multiple feedback opportunities. Consider m feedback oppor-
tunities whose locations are at fi, for i = 1, 2, . . . ,m. The

0 20 40 60 80 100 120 140
0

2

4

6

8

10

R
ip

p
le

 S
iz

e

Symbols Processed (k−L)

 

 

Proposed Ripple

Achieved Ripple
One Feedback

Two Feedbacks

Fig. 3. The achieved ripple evolution compared to the proposed.

decoding can be viewed as m + 1 random walks, for which
the proposed ripple evolution is written as

R(L) =


c1
√
L− k′1, for L > k′1,

ci
√

L− k′i, for k′i−1 > L > k′i,

cm+1

√
L, for L ≤ k′m+1,

(8)

where k′i = (1 − fi)k, with suitable constants ci for i =
1, 2, . . . ,m+ 1.

An example of two feedback opportunities for k = 128,
m = 2, f1 = 0.25, f2 = 0.75 and c1 = c2 = c3 = 1 is
shown in Fig. 3. It also compares what is achieved with the
least-squares solution to a generalized version of (7):

H1,1 0 0 0 0
...

. . . 0 0 0
... Hi,j Hi,i 0 0
...

...
...

. . . 0
Hm+1,1 · · · · · · · · · Hm+1,m+1




n1Ω1

...
niΩi

...
nm+1Ωm+1

=



Q(k)

...

...

...
Q(1)


,

(9)

where, with notations k′0 = k and k′m+1 = 0,

Hi,i =

 q(1, k′i−1, k
′
i−1) 0 0

...
. . . 0

q(1, k′i + 1, k′i−1) · · · q(k′i−1 − k′i, k
′
i + 1, k′i−1)

,
Hi,j =

 q(1, k′i−1, k
′
j−1) · · · q(k′i−1 − k′i, k

′
i−1, k

′
j−1)

...
...

...
q(1, k′i + 1, k′j−1) · · · q(k′i−1 − k′i, k

′
i + 1, k′j−1)

.
An important performance metric is the average degree,

d̄. When no feedback is considered, it is calculated as∑k
d=1 dΩ(d). For the proposed LT feedback code, it is calcu-

lated using the following equations:

d̄ =

m+1∑
i=1

ni

n

k′
i−1−k′

i∑
d=1

dΩi(d), n =

m+1∑
i=1

ni. (10)

Fig. 4 shows a comparison of LT feedback codes with in-
creasing number of feedback opportunities and the Robust
Soliton distribution (RSD). The RSD proposed in [1] is the
de facto standard for traditional LT codes. The legend shows
the number of feedbacks in parenthesis. The LT feedback
code with zero feedbacks, refers to a code using a degree
distribution which achieves R(L) =

√
L.





q(1, k, k) 0 0 0 0 0

...
. . . 0 0 0 0

q(1, k′ + 1, k) · · · q(f1k, k
′ + 1, k) 0 0 0

q(1, k′, k) · · · q(f1k, k
′, k) q(1, k′, k′) 0 0

...
...

...
...

. . . 0
q(1, 1, k) · · · q(f1k, 1, k) q(1, 1, k′) · · · q(k′, 1, k′)





n1Ω1(1)

...
n1Ω1(f1k)
n2Ω2(1)

...
n2Ω2(k

′)


=



Q(k)

...
·
·
...

Q(1)


(7)

5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

log
2
(k)

A
vg

. D
eg

re
e

 

 
RSD
LTF (0)
LTF (1)
LTF (2)
LTF (3)

Fig. 4. Average degree of LT feedback codes and traditional LT codes (RSD).

Fig. 4 shows that LT feedback codes decrease the average
degree, and thereby computational complexity. It should be
noted that as the number of feedbacks increases, d̄ as a
function of k approaches a constant, which suggests linear
complexity. Superlinear complexity is one of the drawbacks of
traditional LT codes and we can now conclude that feedback
is a way to solve it. However, at small m the average degree
still increases with k in the order of log(k). It is therefore
relevant to consider the concept of Raptor coding, which is
another approach to ensuring linear complexity [2].

B. Raptor Feedback Codes

Raptor coding is a concatenation of an LT code and a high-
rate block code, e.g. low-density parity-check (LDPC) code.
During encoding, the block encoder is first applied on the k
input symbols. These block-encoded symbols are fed to an LT
encoder, which creates a rateless code. Successful decoding
is possible whenever the LT decoder has recovered enough
symbols for the block decoder to succeed. It was shown in
[2] that there exist degree distributions of the LT code to
ensure successful decoding after receiving (1 + ϵ)k symbols
and has a constant average degree for increasing k. We will
now show how our design approach of LT feedback coding
can be extended to a Raptor feedback code.

For a given desired d̄ in (10), a constraint is easily added
to the equation in (7), as shown in the second row from the
bottom in (11), which is shown at the top of the next page.
Since we can find the least-squares solutions to this system of
equations, a weight, w ≫ 1, has been multiplied in this row,
in order to make it more strict. Moreover, in order to avoid
the case that the ripple lacks robustness around the feedback
point, a constraint is added to ensure that the correct amount
of releases is achieved prior to the feedback. This is also a
strict constraint and is therefore also multiplied by w. It has
been added as the last row in (11).

The least-squares solution for k = 128, f1 = 0.75,
c1 = c2 = 1 and d̄ = 2.7 is shown in Table II. The

0 20 40 60 80 100 120 140
0

2

4

6

8

10

R
ip

pl
e 

S
iz

e

Symbols Processed (k−L)

 

 
Proposed Ripple
Achieved Ripple

Fig. 5. The ripple evolution achieved in the Raptor feedback code compared
to the one proposed for LT feedback codes.

corresponding ripple evolution is seen in Fig. 5 compared to
the evolution proposed for the LT feedback code. There is
still a slight lack of robustness near the feedback point. Q(L)
was found assuming that a ripple size equal to the desired is
achieved. This is valid even when a slight deviation exists, as
in Fig. 3. However, in this case the deviation has an impact and
it can be compensated by transmitting the feedback slightly
earlier. There is also a lack of robustness near the end of
decoding. However, as in traditional Raptor codes, this is dealt
with by an outer block code.

IV. NUMERICAL RESULTS

The performance metrics we are concerned with are average
coding overhead, i.e. (1 + ϵ)k, and the average degree which
determines the complexity. First, the performance of LT feed-
back codes is evaluated in the low range of k. This is due to
the fact that traditional LT codes are inefficient for low k.

The first simulation serves the purpose of optimizing the
feedback point for a single feedback opportunity. Fig. 6 shows
the results over averages of 5000 runs for c1 = c2 = 1. The
best performance was achieved with f1 = 23

32 for k = 32, 64
and 96. For higher k values, the best performance was achieved
with f1 = 24

32 . A similar optimization has been performed for
two and three feedback opportunities. For two feedbacks, best
performing values were f1 = 18

32 and f2 = 28
32 for k = 32, 64,

96 and 128. For k = 160, f1 = 18
32 and f2 = 29

32 performed
best. For the case of three feedbacks, f1 = 13

32 , f2 = 24
32 , and

f3 = 30
32 were either optimal or near optimal for all short k.

An average coding overhead is shown in Fig. 7. LT feedback
codes with increasing number of feedbacks are compared to a
traditional LT code with no feedback using the RSD. We can
observe a significant gain of the feedback in average coding
overhead. Even the LT feedback code with zero feedbacks
provides a slight decrease in coding overhead due to the inef-
ficiency of RSD. It is also evident that there is a diminishing
return from adding feedback to the system.





q(1, k, k) 0 0 0 0 0

...
. . . 0 0 0 0

q(1, k′ + 1, k) · · · q(f1k, k
′ + 1, k) 0 0 0

q(1, k′, k) · · · q(f1k, k
′, k) q(1, k′, k′) 0 0

...
...

...
...

. . . 0
q(1, 1, k) · · · q(f1k, 1, k) q(1, 1, k′) · · · q(k′, 1, k′)

w · 1 · · · w · f1k w · 1 · · · w · k′

w
k∑

L=k′+1

q(1, L, k) · · · wq(f1k, k
′ + 1, k) 0 0 0





n1Φ1(1)

...
n1Φ1(f1k)
n2Φ2(1)

...
n2Φ2(k

′)


=



Q(k)

...
·
·
...

Q(1)
wnd̄

w

k∑
L=k′+1

Q(L)



. (11)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.1

1.15

1.2

1.25

1.3

1.35

1.4

f
1

O
ve

rh
ea

d 
(1

+
 ε

)

 

 
k=32
k=64
k=96
k=128
k=160

Fig. 6. Optimization of f1 for the case of a single feedback opportunity.

40 60 80 100 120 140 160
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

k

O
ve

rh
ea

d 
(1

+
 ε

)

 

 
RSD
LTF (0)
LTF (1)
LTF (2)
LTF (3)

Fig. 7. Coding overhead of LT feedback codes and a traditional LT code.

In Fig. 8, Raptor feedback codes are compared to LT
feedback codes at higher k values, where complexity becomes
relevant to consider. For zero, one and two feedback oppor-
tunities in the Raptor feedback codes, d̄ of 5, 3 and 2.5 have
been chosen respectively. For all cases, a random LDPC code
with variable nodes of degree 3 and a rate of 0.9688 has been
applied as an outer code. Feedback points for all schemes have
been optimized as described earlier. The results show that,
except for the case of no feedback, the Raptor feedback code
performs slightly worse than the LT feedback code. Hence,
linear complexity comes at the price of an overhead loss, as
is the case for traditional rateless codes.

Finally, Fig. 9 shows the average overhead and complexity
of LT feedback codes for k = 128 as a function of the
number of feedback opportunities. For this simulation, the
feedback locations have not been optimized but are uniformly
distributed over the decoding process. This figure shows that
any amount of feedback opportunities can be utilized for
decreasing overhead and complexity all the way towards the
extreme case of ARQ, where d̄ = 1 and ϵ = 0. Note that
there is a room of improving the performance by optimizing
the feedback points.

200 400 600 800 1000 1200 1400 1600 1800 2000
1

1.05

1.1

1.15

1.2

1.25

1.3

k

O
ve

rh
ea

d 
(1

+
 ε

)

 

 
RapF (0)
RapF (1)
RapF (2)
LTF (0)
LTF (1)
LTF (2)
RSD

Fig. 8. Coding overhead of Raptor feedback codes and LT feedback codes.

0 20 40 60 80 100 120 140
1

1.05

1.1

1.15

1.2

1.25

O
ve

rh
ea

d 
(1

+
 ε

)

Feedback Opportunities (m)

 

 

0 20 40 60 80 100 120 140
1

2

3

4

5

6

A
ve

ra
ge

 D
eg

re
e

Coding Overhead
Average Degree

Fig. 9. Coding overhead and complexity of LT feedback code for increasing
number of feedback opportunities.

V. CONCLUSIONS

We have introduced LT feedback codes and Raptor feed-
back codes, those of which differ from traditional rateless
codes through their ability to take any amount of feedback
opportunities into account. The key component is the design
of well-performing degree distributions for feedback-aided
transmissions. We have shown significant improvements in
coding overhead and complexity. Moreover, it was shown that
LT feedback codes approach linear complexity for increasing
number of feedback opportunities, which eliminates the major
drawback of traditional LT codes. For a small number of
feedback opportunities, complexity is still superlinear. For this
case, Raptor feedback codes have been introduced in order to
achieve linear complexity.

REFERENCES

[1] M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on Founda-
tions of Computer Science., pp. 271–280, November 2002.

[2] A. Shokrollahi, “Raptor codes,” IEEE Trans. IT, pp. 2551–2567, 2006.
[3] S. Kokalj-Filipović, P. Spasojević, E. Soljanin and R. Yates, “ARQ with

doped fountain decoding,” in IEEE ISSSTA ’08, pp. 780–784, 2008.
[4] A. Beimel, S. Dolev and N. Singer, “RT oblivious erasure correcting,”

IEEE/ACM Transactions on Networking., pp. 1321–1332, 2007.
[5] A. Hagedorn, S. Agarwal, D. Starobinski, and A. Trachtenberg, “Rateless

coding with feedback,” in IEEE INFOCOM, pp. 1791–1799, April 2009.


	Title Page
	Title Page
	page 2


	Rateless Feedback Codes
	page 2
	page 3
	page 4
	page 5


