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Abstract

The problem of efficient and accurate orbit estimation of space trajectories is discussed. For
highly sensitive low-fuel trajectories designed to exploit the complex nonlinear dynamics of the
three-body problem, it is vital to have accurate state estimation during maneuvers and ability to
deal with irregular observation update times. For instance, in Halo-orbit insertion and station
keeping maneuvers, state estimation errors can propagate quickly. In this paper, we combine an
efficient probability propagation method with a homotopy-based posterior computation method.
The resulting particle filter is highly accurate even in highly nonlinear regime with intermit-
tent observations, and yet an order of magnitude or more efficient than a generic particle filter
implementation.
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The problem of efficient and accurate orbit estimation of space trajec-
tories is discussed. For highly sensitive low-fuel trajectories designed to
exploit the complex nonlinear dynamics of the three-body problem , it is
vital to have accurate state estimation during maneuvers and ability to
deal with irregular observation update times. For instance, in Halo-orbit
insertion and station keeping maneuvers, state estimation errors can propa-
gate quickly. In this paper, we combine an efficient probability propagation
method with a homotopy-based posterior computation method. The result-
ing particle filter is highly accurate even in highly nonlinear regime with
intermittent observations, and yet an order of magnitude or more efficient
than a generic particle filter implementation.

I. Introduction

Nonlinear estimation and uncertainty propagation of orbits has been a topic of much
research in the last few decades. There exist a wide variety of techniques for offline and
online orbit determination. A filter consists of two stages, propagation of the probability
distribution to obtain the prior, and update of the prior with new information to obtain
the posterior probability distribution. Linearized estimation methods based on the Kalman-
Filter (such as Extended Kalman Filter, Batch-Kalman Filter) have been used to estimate
the state of spacecraft in presence of noise and uncertainty. On the other hand, Monte-Carlo
based particle filter approaches have been used to perform very accurate estimation for some
mission scenarios, and various design phase studies. For posterior computation, approaches
like the Extended Kalman Filter solve a Riccati-type equation, while particle filter methods
usually involve a pointwise Bayesian update.

Recently, advances have been made to obtain greater understanding of the planar circular
restricted three-body problem (PCR3BP)1 that has lead to complex mission designs. There
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is great interest in utilizing trajectories that can use less fuel than the Hohmann-transfer
based trajectories. However, the three-body problem is chaotic and highly sensitive to ini-
tial conditions, and various types of noise. The resulting trajectories take less fuel than
conventional design, but are by nature designed to be unstable.2 The conventional methods
for estimating trajectories have some important drawbacks. For estimating trajectories that
are designed to use the very sensitive dynamics of three-body problem, these methods are
either not accurate enough (Kalman Filter based techniques), or have very high computa-
tional (Monte-Carlo approaches) demands. Accordingly, there is a need for a method that
can efficiently and accurately estimate spacecraft trajectories e.g. from an orbit around the
Earth to an orbit around the moon, and can be used on-board for real time estimation or
off-board to perform large number of design phase studies.

An EKF-type estimation is based on the premise that the nonlinearity is not too high
around the tracked trajectory, and frequent updates are available to correct for errors due to
linearized propagation model involved. This assumption can be violated in case of low-fuel
mission designs, which exploit inherent nonlinear phenomenon to reduce fuel consumption.

A generic particle filter3 consists of two stages, propagation of the probability distribution
to obtain the prior, and update of the prior with new information to obtain the posterior
probability distribution. In a generic particle filter, the former is accomplished by using
the method of histograms. We solve the Liouville equation for propagation of probability
distribution to obtain the prior. This technique has recently been explored in,4 and leads to
highly efficient prior calculation.

The posterior computation process in a generic particle filter is based on a pointwise
implementation of Bayes rule. If the process noise covariance is small. this often leads
to a situation where almost all the weight (or probability) is assigned to 1 particle, while
most of the particles have negligible weight.5 For computation of the posterior, we employ
the method of homotopy based particle flow. This deterministic method of moving particles
upon observation eliminates the problem of particle degeneracy, and sample impoverishment,
leading to significant gain in efficiency. This method has recently been developed in,6 and
has also been combined with existing techniques.7 This method involves finding a vector
field F that is used to drive the particles at the time of observation.

We use the well known planar restricted three body problem (PCR3BP) models to demon-
strate the efficacy of these methods. We demonstrate the combination of Liouville equation
based prior compuation, and homotopy based prior computation yields an estimation process
that is significantly efficient than a generic particle filter.

II. Uncertainty Propagation In Nonlinear Systems

Consider a dynamical system with initial and parametric uncertainty with discrete mea-
surements, given by the following equation,

Ẋ = f(X) (1)

Yk+1 = h(Xk+1) + ηk+1 (2)

where X ∈ Rn, and η is noise sampled from a given distribution, tk is the time at kth time
step.
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We are interested in the evolution of an initial probability distribution Ω0, which gives
an initial probability to every point in the phase space. In practical cases, this probability
is usually a Gaussian distribution at the beginning of the orbit determination process. If
the system is nonlinear, the future iterates are no longer Gaussian, and could be arbitrarily
shaped.

In the absence of process noise, the probability distribution follows the Liouville equation.
This equation describes the evolution of a phase space and time dependent function P (x, t).
The function P (x, t) can be thought of as probability density for our purposes, implying that
integral over phase space at anytime equals unity.

∂P (X, t)

∂t
= −

n
∑

i=1

∂P (X, t)fi(X)

∂xi

(3)

dP (X, t)

dt
= −P (X, t)

n
∑

i=1

∂fi(X)

∂xi

= −P (X, t)Tr(DXf(X)) (4)

The equation 4 can be integrated along the system trajectories that solve equation 1.
For autonomous Hamiltonian systems, the r.h.s of equation 4 evaluates to zero, since any

time independent Hamiltonian system is divergence-less. This property follows from the fact
that phase volume is conserved in such systems. It can be shown as follows:

(

q̇

ṗ

)

=

(

∂H
∂p

−
∂H
∂q

)

(5)

f =

(

∂H
∂p

−
∂H
∂q

)

(6)

DX(f) =

(

∂2H
∂q∂p

∂2H
∂p∂p

−
∂2H
∂q∂q

−
∂2H
∂p∂q

)

(7)

where X = (q, p), and H(X) is the Hamiltonian of the system. Consider the figure 1 showing
the propagation of initial distribution P0 in time. This is accomplished by exploiting the
Liouville equation described above. At initial time t = t0, N points are sampled from P0.
The probabilities of various points are denoted as pk,j, where j is the index of points, and k
is the index of time steps.

To obtain the probability distribution at a later time t = tk, the points are integrated
using the equation of motion given by equation 1, along with the Liouville equation 4. Hence
the value of probability distribution is exactly solved along the trajectories. To recover the
probability at other points in the phase space at time tk, a fast nearest-neighbors interpola-
tion algorithm is used. This method of solving for propagated probability distributions has
been investigated in,4 and shown promise in reducing the computation load for the probabil-
ity propagation step. This method can be compared to traditional Monte-Carlo based prior
computation process, in which only the system equations are solved. A histogram based
method is then used to update the probabilities at the new time step.
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Figure 1. The particles are moved from one time step to another by integrating the system
of equations 1. Simultaneously, the Liouville equation 4 is solved to get new probabilities at
the updated locations.

III. Posterior computation via homotopy

Here we are concerned with the devising a probability update step which can minimize
computational expense, while retaining the high accuracy of the traditional particle filter
based approaches. Particle collapse occurs when most of the particles being propagated have
probabilities close to zero, and hence, propagating them wastes computational resources,
since they are deemed to be unimportant for obtaining the state estimate. In systems such
as CR3BP, since the nearby trajectories typically diverge quickly due to sensitive nature, the
particle collapse is a particularly spectacular. Following,6 we use a homotopy based approach
to accomplish this. In the homotopy based approach, we solve a a type of differential
equation, which moves the particles to a new location once the measurement is received.
This motion is done instantaneously in time. Deterministically moving the particles to
perform the Bayes rule updation has been recently shown to avoid particle collapse in highly
nonlinear systems.6

We denote the pseudo-time homotopy variable λ, and use the following representation
for unnormalized probability,

p(x,λ) = g(x)h(x)λ (8)

where λ goes from 0 to 1, g(x) represents the prior at step k + 1, and h(x) represents the
likelihood function given an observation zk+1. Hence, the homotopy process transforms the
prior probability to posterior probability, since the latter is given by the product of prior
and likelihood function, as described by Bayes rule. As derived in,6 an unknown function
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Figure 2. The particles are moved from one time step to another by integrating the system
of equations 1.

F is considered as the vector field that will drive the prior particles to posterior particles.
This imples we can re-use the Liouville equation equation 4 to represent the probability
propagation during the process of homotopy. The original time derivative is replaced by
pseudo-time derivative w.r.t λ, and the r.h.s is now the yet unknown function F . Hence we
obtain

dx(λ)

dλ
= F (x,λ) (9)

Taking the log on both sides of equation 8, and using equation 9, the following relation
is obtained.

log(h) +
∂log(p)

∂x
F = −Tr(DXF ) (10)

An exact solution exists for the case with linear prior,8 given by

dx

dλ
= A(λ)x+ b(λ) (11)

A = (−1/2)PHT (λHPHT +R)−1H (12)

b = (I + 2λA)((I + λA)PHTR−1z + AX̄) (13)

where R is the covariance of the Gaussian noise, P is the error covariance, H is the linear
observation funciton and X̄ is the state estimate. For the nonlinear case that is of interest
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to us, the above set of equations can be solved recursively. An EKF is used to obtain the
covariance matrix P and updated estimate of X̄ and H.

Conceptually, the homotopy based particle flow is a way of representing the ’true’ poste-
rior probability in an optimal way. Recently, another approach that uses similar ideas but
is based on minimizing a metric has been reported.7

IV. The Planar Circular Restricted Three-Body Problem
(PCR3BP)

The motion of a massless object, P , in presence of two bodies, with masses m1 and m2,
revolving around each other in a plan can be described in the rotating frame as follows,

ẍ− 2ẏ = −Ūx (14a)

ÿ + 2ẋ = −Ūy (14b)

Ū(x, y) = −
1

2
(x2 + y2)−

µ1

r1
−

µ2

r2
−

1

2
µ1µ2 (14c)

and r1 is the distance of P from m1 and respectively r2 is the distance of P from m2. Also, µ1

and µ2 are mass parameters. See figure 3. This problem, of describing the motion of the ob-
ject, P , by Equation 14 is called the planar circular restricted three-body problem (PCR3BP)
which will be used to describe the motion of a spacecraft. For a detailed description, see
Reference.1

A. Insertion into moon orbit

We perform estimation using the methodology described in this paper on a part of a low-fuel
GTO to moon trajectory.9 This section of the trajectory is calculated to minimize the the
total fuel required to leave a specified Lyapunov orbit around the L1 point and insert into
a 100KM by 800KM elliptical orbit around the moon. The relevant section of the orbit is
shown in figure 4

V. Results

We begin by comparing the two methods of obtaining prior probability distribution. For
this purpose, we run two versions particle filter. The first one is a generic particle filter
using histogram based prior computation, while the second one uses Liouville equation for
generating prior probabilities. Since the comparison is intended to highlight the difference
between above two approaches, we do not perform any re-sampling, and hence can only the
simulation till the number of effective particles drops to 1. Figure 5 shows the estimated tra-
jectories, both of which were started on L1 orbit with an initial and measurement covariance
of diag([1e− 14, 1e− 14, 1e− 10, 1e− 10]), with update period of about 5 hours.

For comparison of the two versions of the posterior computation process, we investigate
the station keeping dynamics around L1 of the PCR3BP. This orbit has been used frequently
as a test for nonlinear orbit estimation algorithms, due to presence of instability and moderate
nonlinearity. A metric used to quantify the ’usefulness’ of particles being used in a particle
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Figure 3. The planar restricted three-body problem 1.

Figure 4. Insertion into (blue) and out of (green) a Lyapunov orbit in the Planar Circular
Restricted Three-Body Problem.

filter is the effective number of particles, or its complement, the particle loss. The effective
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Figure 5. Estimated trajectory using two prior computation techniques, i.e. histogram based
(x) filter with 30000 particles and Liouville equation based (o) filter with 6000 particles.
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Figure 6. Estimation errors using two prior computation techniques, i.e. histogram based (x)
filter with 30000 particles and Liouville equation based (o) filter with 6000 particles.

number of particles at time step k is approximately given by

Neff,k =
1

∑N

j=1
(pk,j)2

(15)

Figure 7 shows the percentage particle in a station-keeping maneuver around the Lya-
punov orbit shown in figure 4. It is clear that the homotopy based method moves the particles
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to the ’right’ places, such that this posterior representation is effective in representing the
real posterior probability.
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Figure 7. Effective number of particles (percent) using two posterior computation techniques,
i.e. generic pointwise update and homotopy equation based update.
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VI. Conclusions and Future work

We have combined an efficient uncertainty propagation scheme with a homotopy based
probability update method for estimation of an L1 Lyapunov orbit to moon maneuver.
We solve the Liouville equation for propagation of probability distribution to obtain the
prior. This leads to highly efficient prior calculation, and is shown to reduce the number
of particles required significantly. For computation of the posterior, we employ the method
of homotopy based particle flow. This method is shown to reduce the particle loss by a
significant percentage.

In future work, further analysis of this estimation framework will be performed for the
three-dimensional trajectory case, where the efficiency gains are expected to be even higher
due to increase in the dimension of state space. Also, since so far we have only compared
the number of particles needed for given accuracy, a careful analysis of computation time is
also needed.
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