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Abstract

AbstractAutomatic Speech Recognition (ASR) systems classify structured sequence data, where
the label sequences (sentences) must be inferred from the observation sequences (the acous-
tic waveform). The sequential nature of the task is one of the reasons why generative classi-
fiers, based on combining hidden Markov model (HMM) acoustic models and N-gram language
models using Bayes rule, have become the dominant technology used in ASR. Conversely, the
machine learning and natural language processing (NLP) research areas are increasingly domi-
nated by discriminative approaches, where the class posteriors are directly modelled. This paper
describes recent work in the area of structured discriminative models for ASR. To handle con-
tinuous, variable length, observation sequences, the approaches applied to NLP tasks must be
modified. This paper discusses a variety of approaches for applying structured discriminative
models to ASR, both from the current literature and possible future approaches. We concentrate
on structured models themselves, the descriptive features of observations commonly used within
the models, and various options for optimizing the parameters of the model.
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Structured Discriminative Models
For Speech Recognition

Mark Gales,Fellow, IEEE, Shinji Watanabe,Senior Member, IEEE, Eric Fosler-LussierSenior
Member, IEEE

Abstract—Automatic Speech Recognition (ASR) systems
classify structured sequence data, where the label se-
quences (sentences) must be inferred from the observa-
tion sequences (the acoustic waveform). The sequential
nature of the task is one of the reasons why generative
classifiers, based on combining hidden Markov model
(HMM) acoustic models and N-gram language models
using Bayes’ rule, have become the dominant technology
used in ASR. Conversely, the machine learning and natural
language processing (NLP) research areas are increasingly
dominated by discriminative approaches, where the class
posteriors are directly modelled. This paper describes
recent work in the area of structured discriminative
models for ASR. To handle continuous, variable length,
observation sequences, the approaches applied to NLP
tasks must be modified. This paper discusses a variety of
approaches for applying structured discriminative models
to ASR, both from the current literature and possible
future approaches. We concentrate on structured models
themselves, the descriptive features of observations com-
monly used within the models, and various options for
optimizing the parameters of the models.

I. INTRODUCTION

The dominant technology for Automatic Speech
Recognition (ASR) is based on generative models: Hid-
den Markov Models (HMMs) [1] are typically used as
the acoustic models to derive the likelihood of a par-
ticular class generating an observation sequence. This is
combined with a prior, e.g., anN -gram language model
[2], to yield a posterior probability of the class given the
observation. Acceptable performance in generative mod-
els is accomplished via refinements to the standard HMM
acoustic models, including context-dependent modelling,
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speaker adaptation, discriminative training, and noise
compensation [3].

Though current state-of-the-art systems yield satisfac-
tory recognition rates in some domains, performance
is generally not good enough for speech applications
to become ubiquitous. In discriminative models the
posterior probability of the classes (sentences) given
the observations are directly modelled. This type of
model has the potential to improve performance as a
wider range of features from the observation and word
sequences can be used for inference compared to gener-
ative models. These discriminative models have started
to dominate the area of Natural Language Processing
(NLP) [4], [5]. One issue in NLP training is that text data
comprises variable length sequences of words yielding a
vast number of possible classes. It is thus rarely possible
to robustly construct models of complete word sequences
(sentences). To handle this, structure must be introduced
into the classifier by breaking the sentence into smaller
units, typically words.

Applying these forms of discriminative classifiers to
ASR adds another level of complexity. The observed data
comprises sequences of observations, often continuous
valued feature vectors, extracted at a fixed frame rate.
The word sequences associated with these observations
must then be inferred. Thus the number of labels (the
word sequence) and the number of observations (frames)
differ. For approaches such as Conditional Random
Fields (CRFs) [5], [6], there is an implied assumption
that the number of labels and observations are the
same.1 To address this problem it is possible to intro-
duce latent variables into CRFs, yielding Hidden CRFs
(HCRFs) [9], [10], and make use of sequence kernels
and score-spaces [11], [12]. Models that handle this type
of data will be referred to asstructured discriminative

1CRFs (and related approaches) can be applied to ASR by using
labels that contain an implicit segmentation; for example,a best-
path frame labeling posterior with multiple labels per segment can
give rise to a segmentation by collapsing repeated instances of labels
together [7]. Single class labels can also be obtained usingSVMs and
sequence kernels [8]. However this paper will focus on the situations
where there are sequences of labels associated with the observations.
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models. There are a number of approaches that have
been applied to ASR which can be described within
this framework: log-linear models [13]–[15], Structured
Support Vector Machines (SSVMs) [16], HCRFs [9],
Segmental CRFs (SCRFs) [17], Conditional Augmented-
Models (CAugs) [18], Maximum Entropy Markov Mod-
els (MEMMs) [19], Augmented CRFs (ACRFs) [20].
These models differ from each other in terms of the
observation features considered, training criterion and
how the latent variables are handled.

In addition to models that directly map from the
observation sequence to the word-sequence, probabil-
ity distributions over the word-sequences can also be
represented in the same form, yielding discriminative
language models [21]. These can either be used in
combination with generative acoustic models via Bayes’
rule, or as part of a discriminative model.

This paper gives an overview of a number of discrim-
inative sequence and language models. The following
sections will describe the general forms of this type of
model, the criteria that can be used to train them, and
some example applications to speech recognition.

II. SEQUENCEMODELS AND CLASSIFICATION

ASR can be viewed as a structured sequence classi-
fication task: there is a sequence of observations from
which a single sentence hypothesis must be inferred.
Consider a set ofT observationsO1:T relating to a single
sentence labelω:

ω = the dog chased the cat

O1:342 = {o1,o2,o3,o4, . . . ,o339,o340,o341,o342}

The sentencethe dog chased the cat has been
uttered, taking 3.42 seconds, resulting in the observation
sequenceO1:342 (assuming a frame rate of 10ms).

Inferring the most likely sentencêω uses Bayes’
decision rule:

ω̂ = argmax
ω

{P (ω|O1:T ;λ)} (1)

where statistical model parameters are indicated byλ.
In this classification, the number of output labels (the
sentence identity), is not related to the number of obser-
vationsT . Statistical models that can handle this form
of data will be referred to assequence models. As with
standardstatic classifiers, these are often split into two
broad classes: generative and discriminative models.

A. Generative Models

For many years HMM generative models [1], [3] have
dominated speech recognition. This is partly due to their

ability to handle sequence data, combined with elegant
training and inference algorithms; they also yield good
performance in a range of domains.

Generative classifiers for ASR can be split into two
parts: a language model, the prior,P (ω) that yields
a probability of any sentence; and an acoustic model
p(O1:T ;λ

(ω)) — the likelihood that a sentenceω gener-
ated the observationsO1:T with model parametersλ(ω).
Classification is based on the sentence posterior obtained
using Bayes’ rule

P (ω|O1:T ;λ) =
P (ω)p(O1:T ;λ

(ω))
∑

ω̃ P (ω̃)p(O1:T ;λ(ω̃))
(2)

The HMM acoustic model is defined by its topology
and its conditional independence assumptions.

2 4 51 3

t

ot−1 to

qt−1 q

Fig. 1. Example HMM: three emitting states left-to-right topology
(left), and DBN (right). Note for the DBN the dependence of the
state on the sentence has not been shown.

Figure 1 shows the topology and Dynamic Bayesian
Network (DBN) [22] associated with a typical HMM.
The left diagram illustrates a standard phone topol-
ogy, strictly left-to-right with three emitting states, the
right diagram the DBN with conditional independence
assumptions: the state at timet, qt, is conditionally
independent given the state identity at timet− 1, qt−1;
and the observation at timet is conditionally independent
given the state at timet.

For an HMM, the likelihood is found by marginalising
over all valid state sequences,q = {q1, . . . , qT }. Thus

p(O1:T ;λ
(ω)) =

∑

q:|q|=T

T
∏

t=1

P (qt|qt−1)p(ot|qt;λ
(ω)) (3)

where the model parameters for a particular word se-
quenceλ(ω) defines the set of valid state sequences.
Inference with these forms of model can be efficiently
achieved using the Viterbi algorithm [23], where the
likelihood is approximated using the best-state sequence.

In most state-of-the-art ASR systems, the parameters
of the distributions in Equation 3 are trained using dis-
criminative criteria [24]–[26] (see section III-C) rather
than maximizing the likelihood of the observations [1].
An alternative approach, discussed next, is to change the
modelto directly discriminate between sentences.
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B. Discriminative Models

Discriminative models directly model the sentence
(class) posterior given the observation sequence [27].
One of fairly broad-class is the maximum entropy,max-
ent model [28], also known as a log-linear model. Here

P (ω|O1:T ;α) =
1

Z
exp

(

αTφ(O1:T , ω)
)

(4)

where Z is the normalisation term to ensure a valid
probability mass function over all sentences, andα the
discriminative model parameters. This form of model can
be related to SVMs [29] and the perceptron classifier
depending on the form of the training criterion. This rela-
tionship will be discussed in more detail in sections III-C
and V.

o oo1 t−1o t ot+1 T... ...

the dog chased the cat 

Fig. 2. Graphical model for a simple discriminative model

The form of feature-functionφ(O1:T , ω) is central to
the performance of this model. A fundamental require-
ment of the feature function is that it transforms the
variable length observation sequence into a fixed length
feature vector as multiple different length segments may
be used by the same feature function2. The undirected
graphical model for the simplest feature-function form
is shown in Figure 2. Feature-functions define the rela-
tionship between the sequence of observations and the
sentence label; for example, a feature-function of the
form

φ(O1:T , ω) =













...
δ(ω, the dog chased the cat)

δ(ω, the dog chased the cat)
∑T

t=1 ot

...













(5)

where δ() is the Kronecker delta-function, provides a
simple, first-order relationship betweenO andω. More
powerful feature-functions are discussed in Section IV.

C. Structured Sequence Data

The sequence models described above have been
based on whole sentence models, where the genera-
tive model parametersλ(ω), the prior P (ω), and the

2In this presentation, in common with work on CRFs [5] and
SSVMs [30] joint feature-spaces involving both features and labels
will be used. Even when structure is introduced this requirement to
handle variable length data is still necessary.

discriminative model feature-function,φ(O1:T , ω), are
based on the sentence labelω. For some tasks, pre-
dicting the whole sentenceω is reasonable [31], but as
the vocabulary size and number of possible sentences
increases, this approach becomes impractical. To address
this issuestructure3 can be introduced into the statistical
model, where the sentence hypothesis is broken into a
sequences of units such as words or phones. An example
decomposition ofω into an L-length word sequence,
w1:L, or K-length phone-sequence,p1:K , where typi-
cally L 6= K 6= T is:

ω = the dog chased the cat

w1:5 = {the,dog,chased,the,cat}

p1:16 = {/sil/,/dh/,/ax/,/d/, . . . ,/t/,/sil/}

The standard CRF formulation [5] is problematic for
representing the match between the label and observation
sequence; a model of the word labels,w1:L, yields

P (w1:L|O1:T ;α) =
1

Z

L
∏

τ=1

exp
(

αTφ(O1:T , wτ , τ)
)

(6)

The problem arises with the feature-functions
φ(O1:T , wτ , τ), as the number of labels,L, and
observations,T , are not constrained to be equal so there
is no one-to-one matching between observations and
labels as in [6].

/ch/
oτ

/g//ao/
oo

τ+1 k
...t ... io o

i+1

... oj oj+1
......

...

... dog ...chased
/d/

o
...
...

Fig. 3. Word, phone and observation hierarchy with associated
possible segmentation of the observations at the phone and word
levels.

Rather than considering the complete observation se-
quence, the observations can be segmented into sub-
sequences each of which are associated with an indi-
vidual label. This hierarchy of word and phone with a
possible observation segmentation is shown in Figure 3.
Since this segmentation is not observed, it must be
inferred or marginalised over in the final model. Given
the structuring of a sentence into labels and associated
observation sub-sequences, one cantie model parameters

3For some machine learning tasks structured data and sequence
data are used inter-changeably. In ASR there are two distinct se-
quences, the words in a sentence and the observations; the term struc-
tured here will be linked with the statistical model. Modelslike the
Flat Direct Model [31], for example, have structured observations, but
utilize an unstructured maximum entropy classifier as the statistical
model.
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together and form the complete sentence “model” by
combining multiple sub-sentence labels together.

This structuring of the labels and observations is the
standard approach for generative models for ASR. Thus
the HMM likelihood and prior (both based on words and
phones) can be expressed as

p(O1:T |w1:L;λ) = (7)

∑

a

P (ai|w1:L)

|a|
∏

τ=1

p(O{aτ};λ
(ai

τ ))

wherea is a set ofsegmentationsof the observations,
aτ is the τ th segment in the sequence. Each segment
specifies a phone/word/sub-unit identity indicated for
segmentτ as aiτ , and range of frames,O{aτ}. The
same notation can be used for phone, HMM state,
and Weighted Finite State Transducer (WFST) [32] arc
sequences.ai = {ai1, . . . , a

i
|a|} is the sequence of seg-

ment identities. ThusP (ai|w1:L) is the pronunciation
probability when the segmentation is associated with
phones. AnN -gram language model is often used with
generative models, for example

P (ω) = P (w1:L) = P (w1)

L
∏

τ=2

P (wτ |wτ−1) (8)

using a simple bigram language model.
The next section expands upon this idea by examining

different forms of structure incorporated into discrimina-
tive models.

III. STRUCTURED DISCRIMINATIVE MODELS

Structured discriminative models aim to make use of
the same sub-sentence units as the acoustic model (7)
and language model (8) of the generative classifier. This
section describes some forms for these models, possible
approaches to handling latent segmentations, and training
criteria. The features (and models) described will focus
on the observation sequence. For ASR it is also necessary
to have pronunciation-style,φ(ai,w), and word,φ(w),
features. These are discussed in more detail in section IV.

A. Model Structures

The simplest form of structured discriminative model
is to make use of graphical models that are closely linked
to the DBN of the HMM, Figure 1. The discrete state
latent variables can either be introduced in a directed,
or undirected, graph. This is the basis of the Maximum
Entropy Markov Models (MEMMs) [19] and Hidden
Conditional Random Fields [9].

The graphical models associated with MEMMs and
HCRFs are shown in Figure 4. For the MEMM, the arrow

t

ot−1 to

qt−1 q t

ot−1 to

qt−1 q

Fig. 4. Graphical models for MEMM (left) and HCRF (right)
features. Note the dependence of the state on the word has notbeen
shown.

relating the observations and state is simply reversed
compared to the HMM, yielding the discriminative ob-
servation state relationshipP (qt|ot, qt−1;α) with model
parameters,α. HCRFs, closely related to other forms of
structured ASR models, have a posterior defined as

P (w1:L|O1:T ;α) =
1

Z

∑

a

∑

q∈Qa

(9)

exp

(

αT

[

∑|a|
τ=1

∑

t∈{aτ }
φ(ot, qt, a

i
τ )

∑|a|
τ=1

∑

t∈{aτ }
φ(qt, qt−1, a

i
τ )

])

whereQa is the set of all state sequences where|q| = T

and satisfies the segmentation defined bya [33]. If
the segmentation of the data is at the word-level then
aiτ = wτ . As there are latent variables (states) in an
HCRF it is possible to associate these states with par-
ticular words in the feature-functions. These words are
then combined together to yield the complete sentence
as in an HMM [10]. This is also the underlying form
of augmented CRFs [20], where frame-level augmented
observations are combined to predict a sentence.

The form presented in (9) implies that the features
only depend on the observation and state at timet. It is
possible to generalise this to a fixed span of frames and
observations - a dynamic undirected graph [6].

This type of model allows the structure to be imposed
on the feature-function. However, in (9) the feature-
function generates a vector for each frame: while this
function can act on a fixed window of observations, or
states, it will still generateT vectors for a sequence
of T observations. For a particular form of feature
function, see (24), HCRFs can be shown be equiv-
alent to discriminative training of HMMs [34]. Seg-
mental feature-functions in models such as Conditional
Augmented Models (CAugs) [18], and Segmental CRF
(SCRFs) [17], [35] can allow observations across a seg-
ment to contribute to the function (similar to generative
segmental HMMs [36]; the feature functions relate to the
segmentation of the observationsO{aτ }:

P (w1:L|O1:T ;α) = (10)
1

Z

∑

a

exp
(

αT

[

∑|a|
τ=1 φ(O{aτ}, a

i
τ )
])
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o o
i+2

o o
j+1

o
j+2 τo

dog chased...

...

...

...
ji+1

Fig. 5. CAug/SCRF graphical model for a particular segmentation

Figure 5 shows the corresponding graphical model.
The feature-function is able to describe all the observa-
tions for that segmentO{aτ}, requiring the function to
convert a variable length set of features to a fixed length
feature-vector. (See more detail in section IV.)

B. Handling Latent Variables

The previous section has considered summing over
all possible segmentations,a, of the data. Though it
is possible to define recursions for this task [17], the
resulting parameter estimation is no longer convex [37],
and the decoding and training time can become slow
depending on the exact nature of the feature-extraction
process. Also as the optimisation approaches used to
train discriminative model parameters are iterative, re-
fining the segmentation every iteration may become
impractical.

An alternative approach is to perform the equivalent
of Viterbi training and decoding [23]. Using a single
segmentation yields a concave maximisation problem4.
Furthermore it is possible to make use of standard
optimisation approaches associated with the perceptron
criterion and structured SVMs discussed in section V.
For some structured discriminative models, such as the
structured SVM [39], this approximation is essential.

With a single segmentation the following posterior is
obtained

P (w1:L|O1:T , â;α) = (11)
1

Z
exp

(

αT

[

∑|â|
τ=1φ(O{âτ }, â

i
τ )
])

The issue now is how the segmentationâ is obtained.
The simplest approach is to use the segmentation derived
from a generative model, for example an HMM. This
yields efficient training and inference irrespective of
the nature of the features. However the optimal Viterbi
segmentation for the discriminative model may differ to

4It can be argued that once the segmentation has been obtainedit
can be converted into a frame-label sequence that could thenbe used
for CRF training. This is the form examined in the Semi-Markov
CRF [38].

that of the generative model. The optimal segmentation
for the discriminative model is given by

â = argmax
a

{P (a|O1:T )P (w1:L|O1:T ,a;α)} (12)

Since this “best” segmentation is a function of the model
parameters the process must be iterated, interleaving the
refinement of the segmentation and model parameters
during training.

More generally, the segmentation simply enables the
feature-function to be clearly associated with units
(words) of the sentence. It is not necessary to use
a segmentation if this process can be achieved in an
alternative fashion. One example of this is based on
generative score-spaces [8], discussed in section IV-B.
For a derivative score-space, it is possible to write for
the features of wordwi of sentenceω = w1:L

φ(O1:T , wi;λ
(ω)) (13)

=









...
δ(wi, vj)∇λ(wi) log

(

p(O1:T ;λ
(ω))
)

...









where vj is an element in the vocabularyV. There is
now no segmentation,a, of the observation sequence.
Though an interesting theoretical direction, to the authors
knowledge this form of approach has not been used.
Making the feature extraction stage a function of the
whole observation sequence means that decoding can
rapidly become impractical, requiringN -best lists.

C. Optimization Criteria

In the same fashion as standard, non-structured, dis-
criminative models and generative models it is possible
to use a range of discriminative criteria. One of the most
popular is conditional maximum likelihood training [24].
This aims to maximise the probability of the correct
sentence label. Though directly linked with the Bayes’
decision rule, it may not always be optimal for all tasks.
First, the scoring of speech data is not usually at the
sentence level, more commonly word error rate (WER)
is used. Thus more general minimum Bayes’ risk [40]
training may be better. Second given the large number of
model parameters that are often trained with these forms
of system, approaches for improving generalisation per-
formance may be very useful. These same considerations
have led to the use of a number of criteria for generative
models for ASR [24]–[26]. Similar forms of criteria can
also be used for structured discriminative models [41].

Some of the more standard criteria are briefly dis-
cussed below. Here only supervised training data is con-
sidered where the training data,D, comprises (sequence
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length has been dropped for notational simplicity)

D =
{{

O(1),w(1)
}

, . . . ,
{

O(R),w(R)
}}

Discussion about the form of the actual optimisation
process or regularisation is deferred to section V.

All the criteria have the same general forms
F(α,w,O), and can be trained using either batch or
on-line algorithms. For batch training

α̂ = argmin
α

{

1

R

R
∑

r=1

F
(

α,w(r),O(r)
)

}

(14)

and for the mini-batch, on-line, equivalent

α̂(r) = argmin
α

{

F
(

α,w(r),O(r); α̂(r−1)
)}

(15)

Conditional Maximum Likelihood[24]:

Fcml(α,w,O) = − log (P (w|O;α)) (16)

This is the form typically used for training discriminative
models such as CRFs [5] and is usually the starting
point for structured discriminative models [17].

Perceptron Algorithm: [42]

Fper(α,w,O) =

[

max
w̃ 6=w

{

− log

(

P (w|O;α)

P (w̃|O;α)

)}]

+

(17)

where [x]+ is the hinge-loss function. This can be
extended to the averaged perceptron algorithm where
the parameters,α are averaged [42].

Minimum Bayes Risk[40]:

Fmbr(α,w,O) =
∑

w̃

P (w̃|O;α)L (w̃,w) (18)

whereL (w̃,w) is the loss between the word sequence
w̃ and the referencew. The loss may be measured at
the word, phone, or frame level.

Maximum Margin[26]:

Flm(α,w,O) = (19)
[

max
w̃ 6=w

{

L (w̃,w)− log

(

P (w|O;α)

P (w̃|O;α)

)}]

+

The margin here is the loss between reference and
“closest” competing word sequences. This loss may be
at the frame level or at a higher level, e.g. word or phone.

One issue that can occur is that the normalisation
term can be very expensive, or even intractable, to com-
pute [43]. However for some criteria, the perceptron (17)

and maximum margin (19) criteria, it is not necessary to
ever compute this term. During training the criterion is
a function of the ratio of posteriors (the normalisation
term cancels) and the rank ordering for inference is not
altered by the normalisation term.

Directly using the above expressions can also cause
generalisation issues as the feature-function can result
in a very high-dimensional feature-space. To address
this, regularisation terms, normally in the form of L1 or
L2 regularisation, are introduced [17], [20], [44]. When
combined with maximum margin training these regu-
larisation terms result in discriminative models closely
related to structured SVMs [14]. Furthermore for some
feature-functions one can introduce a more informative
prior on the discriminative model parameters by using
non zero mean priors forα [16].

D. Adaptation

For generative models adaptation to a particular
speaker or environment condition is an essential part
of current speech recognition systems [3]. A range of
approaches have been developed including: maximum a-
posteriori (MAP) adaptation; linear transformation-based
approaches; model-based noise compensation; and fea-
ture enhancement. For details and references see [3]. Re-
lated approaches have been developed for discriminative
models5. These can be split into three broad categories:
general adaptation; linear transformation approaches;
and feature adaptation. Note in contrast to the majority
of adaptation approaches for generative models which
are based on maximum likelihood, discriminative model
adaptation is usually based on conditional maximum
likelihood.

In [45], two approaches for adapting log-linear models
— MAP adaptation and minimum divergence training
— are discussed. These approaches yield a general
adaptation scheme that makes no assumption about the
nature of the features in the model. MAP adaptation has
also been applied to HCRFs [33]. Though these general
adaptation approaches can be used for discriminative
models, they do not take advantage of any structure in
the features. Alternatively Linear transformation based
approaches for log-linear models are described in [46],
[47]. These schemes use approaches similar to the linear
transformations for HMMs. Assumptions are made about
the relationships between features. To date they have
only been applied to models where the features are very
similar to those used in standard HMMs. Whether these

5In the machine learning literature the problem of handling a
mismatch between training and test conditions is sometimesreferred
to as sample selection bias or covariat shift.



SPECIAL ISSUE ON FUNDAMENTAL TECHNOLOGIES IN MODERN SPEECHRECOGNITION 7

form of approaches can be extended to more general
features is an open question.

The final form of adaptation is related to the feature
compensation schemes used with generative models.
Rather than adapting the model parameters, the features
are modified to make them independent of the speaker
or environment. This is simplest to do when the feature
extraction process is based on generative models [15],
[48]. This approach is discussed in more detail in sec-
tion V-C.

E. Kernel Representations

The discussion of the model-parameters and feature-
functions have so far assumed that there is an explicit
representation of each of these. It is also possible to
consider a more general form that can be highly efficient
in dealing with large feature-spaces. Since the model
uses an inner-product between model-parameters and
features, it is possible to kernelize this operation in
the same way as SVMs [29]. This allows the so-called
“kernel-trick” to be used where it is not necessary to
explicitly operate in the full-feature space. A non-linear
kernel function can be applied in the original features-
space to yield the results of the inner-product in the full-
features space. Here the term in the exponential becomes

αTφ(O1:T ,w1:L) (20)

=

R
∑

r=1

α̃rk
(

{O(r),w(r)}, {O1:T ,w1:L}
)

where α̃r is the equivalent of the Lagrange multiplier
for each training utterance in an SVM, andk(., .) is the
kernel. Depending on the nature of the criterion, and the
form of regularisation being used, only a small subset
of the Lagrange multipliers̃αr may be non-zero. For
example if the parameters of the discriminative model are
trained using the maximum margin criterion with anL2
regularisation term, the Lagrange multipliersα̃r should
be sparse as this form is related to SVM training [14].

As the length of the observation and word sequences
vary over the training and test samples, a sequence
kernel is required, a range of which can be described
in the rational kernel (both discrete and continuous)
framework [12], [49]. More generally when sequence
kernels are combined with feature-functions and static
kernels the following form can be obtained (assuming
segmentationa(r) anda at the word level,aii = wi)

k
(

{O(r),w(r)}, {O1:T ,w1:L}
)

=

|a(r)|
∑

i=1

|a|
∑

j=1

(21)

δ(w
(r)
i , wj)kst

(

φ
(

O{a(r)
i }, w

(r)
i

)

,φ
(

O{aj}, wj

)

)

where φ() is the score-space associated with the se-
quence kernel andkst(., .) is the static kernel. Here
the score-space is the feature-space associated with the
sequence kernel. This form of kernel combination has
previously been discussed for speaker verification [50].

IV. M ODEL FEATURES

The previous section has assumed the existence of
an appropriate feature-function: the selection of this
function is central to the performance of these classifiers.
Features can be broadly split into observation-features,
pronunciation features and word-features

φ(O1:T ,w1:L,a) =





∑|a|
i=1 φ(O{ai}, a

i
i )

φ(ai,w1:L)
φ(w1:L)



 (22)

When the segmentationa is at the word level, the term
φ(ai,w1:L) which relates to pronunciation probabilities
and variants (i.e. the mapping from segments to words)
can be ignored. In this section a word level segmentation
is assumed unless otherwise stated. Similar forms of
discrete features can be applied for the pronunciation
features as the word features described below.

A. Frame-Level Features

The simplest form of feature function is restricted to
frame-level features in the same fashion as the HCRF
features. The general form of features can be written as

φ(O{ai}, a
i
i ) =

∑

t∈{ai}

φ(ot, a
i
i ) (23)

One of the simplest form of feature-function directly uses
the Gaussian sufficient statistics of observations:

φ(ot, a
i
i ) =

















...
δ(aii , vj)
δ(aii , vj)ot

δ(aii , vj)diag(oto
T
t )

...

















∀vj ∈ V (24)

whereV is the vocabulary of segment identities. Using
these features yields systems related to discriminatively
trained HMMs [34], but it can be extended to introduce
features of higher-order statistics [13].

An interesting question is what form the observation,
ot, takes. Rather than just considering a single frame,
frames can be spliced together and optionally trans-
formed (as is adopted in augmented CRFs [20]), much as
generative systems use delta and delta-delta parameters
(and other generalisations e.g., kernel application).

A slightly different approach is to use classifiers to
provide information about the discrimination between
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sub-word classes. This can provide bottom-up informa-
tion to the system on where observations lie in a pseudo-
linguistic space. Consider the case of linguistic units
V = {v1, . . . , v|V|}, which are derived from applying
a discriminant function,g(), to a span of observations.
Thus for framesa to b, g(Oa:b) = ua:b, ut ∈ V. Discrete
features of the formδ(ut, vi) or class posterior features
can then used for framet. Examples of discriminant
functions include: multilayer perceptron predictions of
the posterior probability of phone units given a fixed
span of observations [7]; sparse representations arising
from finding then-closest Gaussians to a single obser-
vation from a trained system [20]; and an HMM-based
recogniser on the complete observation sequence [35].

B. Acoustic Segment Features

Rather than the feature-function generating a vector
for each frame, it can also act on all the observations
associated with a segmentO{aτ}. Thus, the frame-
level features are just one option for extracting features
from this segment. It is possible to hypothesise a range
of features that could be used. However it is more
interesting to consider this process in the context of
sequence kernels and score-spaces [18]. These sequence
kernels map variable length sequences to a fixed length
score-space in which the inner product can be com-
puted. All the acoustic feature extraction schemes for
feature extraction satisfy this property. The advantage
of discussing acoustic features in this framework is that
existing developments from machine learning can be
used.

One general form of these sequence kernels, the
rational kernel [49], is

k
(

O{ai},O{aj}

)

= C
[

A{ai} ◦
(

U ◦ U -1
)

◦ A{aj}

]

(25)

= φ
(

O{ai}

)T
φ
(

O{aj}

)

(26)

whereA{ai} andA{aj} are the acceptors associated with
the observation sequencesO{ai} andO{aj} respectively,
U is the WFST that determines the form of the ra-
tional kernel,◦ is WFST composition,C[] yields the
transducer shortest distance, andφ() the score-space
associated with this kernel6. This representation allows
operations on sequences of different lengths, i.e there

6To map from this basis representation involves

φ(O{ai}, a
i
i) =







δ(aii , v1)φ(O{ai})
...

δ(aii , vV )φ(O{ai})






(27)

The trivial generalisation is to allow the features to be dependent on
the word. This is closely related to generating the joint feature-space
for SVMs [39].

are no constraints that|{ai}| = |{aj}|. This form of
kernel has been used for both discrete observations [49]
and continuous observations [12]. It is able to efficiently
represent a range of standard kernels such as string
kernels and (gappy)N -gram kernels [11].

If the kernel representation in the previous section
is used then rational kernels can be directly applied in
structured discriminative models. If the more standard
form is used then score-spaces from the kernel can be
used as the basis for the feature-function.

One interesting form of score-space for this form of
kernel is based on generative models [18], [51]7

φ(O{ai}, a
i
i ) =











log
(

p(O{ai};λ
(ai

i))
)

∇
λ

(ai
i
) log

(

p(O{ai};λ
(ai

i))
)

...
∇

ρ

λ
(ai

i
)
log
(

p(O{ai};λ
(ai

i))
)











(28)

where ∇
ρ
λ represents the (diagonalised)ρ-th order

derivative with respect toλ. If the generative model
is an HMM then the resulting features do not have the
same underlying conditional-independence assumptions
of the HMM [18]. Alternatively if GMMs are used
then derivative score-spaces yields frame-level features;
the derivative with respect to the component priors, for
example, yields sparse GMM posterior features [44]. An
interesting aspect of using structured generative models
in this fashion is that feature-extraction can be made
efficient using an expectation semi-ring within the WFST
framework [52].

Similar in spirit to the score-space paradigm are other
methods that utilize detections of longer-term acoustic
events. In [17], a baseline HMM system hypothesizes
linguistic units, which are then evaluated by measuring
how consistent the units are with the dictionary pro-
nunciation of a hypothesized word. Another approach
is to use template matching to suggest detections of
linguistic units that may or may not be consistent with
word hypotheses [35].

C. Supra-Segmental Features

The primary form of supra-segmental features are
associated with the word (or phone) sequences. Applying
log-linear models for language modelling has been an
active research area for many years, for example see [43],
[53]. These exponential models allow a very rich set
of features, for example lexical [21], linguistic, and
hierarchical features [54], [55], to be used. For the

7The form of score-space described here can also be related toin-
formation geometry and more general forms of generative model [18].
For discrete cases it has also been connected to string-kernels [11].
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notation in this paper the segment identity can be used
to specify the precise nature of the segment including
any hierarchical information.

Similar to the observation features, the number of
alignments, |a|, and the number of words,|w|, are
not fixed for all sentences; the same issues as dis-
cussed for segment-level features must be addressed.
As these supra-segmental features are often discrete,
rational kernels and associated score-spaces can be used.
Considering word-level features this yields

k(w(i),w(j)) = φ(w(i))Tφ(w(j)) (29)

with no constraint that|w(i)| = |w(j)|. If the kernel
representation discussed in the previous section is used
then it is possible to directly use the kernel output, rather
than requiring the explicit calculation of the score-space.

One common form of feature-space is based on uni-
gram and higher-order discrete features. Thus one simple
form is based on the bag-of-word model [4] (unigram)
and higher-orderN -grams. For bigram features

φ(w1:L) =













...
∑L

τ=1 δ (wτ , dog)
∑L−1

τ=1 δ (wτ , dog) δ (wτ+1, chased)
...













(30)

It is possible to apply the same concepts to the segmen-
tation and word features which will represent, amongst
other things, pronunciation probability. In addition, fea-
tures can be derived from traversing back-off arcs [17],
as well as word-labeled arcs, in the WFST framework.

One of the interesting aspects of supra-segmental
features is that they can be easily combined with gener-
ative models for classification. The classification of an
observation sequence,O1:T , with an HMM is based on

ŵ = argmax
w







∑

a

P (w,ai)

|a|
∏

i=1

p(O{ai};λ
(ai

i))







(31)

Rather than using the standardN -gram language model
and pronunciation probabilities it is possible to write [43]

P (w,ai;α) =
1

Z
exp

(

αT

[

φ(ai,w)
φ(w)

])

(32)

Here the feature-function for the observations is a single
element, the log-likelihood from the HMM. TheN -
gram language model log-probability can also be added
e.g. [56]. The model parameters for these two elements
are sometimes fixed and not updated. This is the basis
of discriminative language models in section V-A.

A summary of the features described here can be
found in Table I.

Feature type
Example
Representation

Example papers

Gaussian sufficient
statistics

δ(aii , vj)
δ(aii , vj)ot

δ(aii , vj)diag(oto
T

t )
[9], [13], [34]

Local discriminant
functions, e.g.
MLP postieriors,
closest Gaussians,
or HMMs

δ(ai, vj)P (v|ot)
[7], [19], [20],

[35]

Segment-level
score spaces

δ(aii , v1)φ(O{ai})
[18], [44],

[51], [52]
Segment-level
model features

δ(aii , vj)φ(v,O{ai}) [17], [35]

Suprasegmental
features, e.g.
word-level features

∑L

τ=1
δ (wτ , dog)

[17], [21],
[43], [56]–[58]

TABLE I
SUMMARY OF FEATURE FUNCTIONS IN COMMON USE

V. EXAMPLE APPLICATIONS

A. Discriminative LMs and WFSTs

As discussed in section IV-C, it is possible to use
structured discriminative modelling approaches to train
a Discriminative Language Model (DLM) [21] which
can then be combined, if desired, with a generative
acoustic model for classification. One of the advantages
of this form of model, compared to standardN -gram
models [2], is that it is simple to combine highly diverse,
possibly wide-span, features. For these richer models,
ASR is often realized by re-ranking hypotheses rather
than direct recognition, or lattice rescoring.

Two important aspects of DLM that make them practi-
cal for large training corpora and models are sparse fea-
ture representation and convex optimization. As DLMs
typically use discrete features, e.g., long contextN gram
of word/Part-Of-Speech (POS) counts [21], [57], [58],
the representation is usually sparse. Furthermore, as there
are no latent variables associated with the DLM (or a
single segmentation/latent variable value used), it is a
convex optimisation problem.

One successful approach to training discriminative
language models is to use the perceptron algorithm [21].
Here the parameters of the DLM are estimated using

α(r+1) = α(r) + φ(O(r),w(r))− φ(O(r), w̃) (33)

wherew̃ is the hypothesis for utterancer with parame-
tersα(r). To improve performance the average over all
estimated model-parameters is used for classification, the
averaged perceptron algorithm. Variants on this form are
also possible [56]. An interesting aspect of this form
of optimisation is that it is not necessary to compute
the normalisation term (in common with the SSVM
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section V-C). For classification the normalisation term is
not required. It is only needed if a posterior probability
is explicitly required from the system.

These forms of model can efficiently represented in
a WFST, or lattice, framework. Indeed it is possible to
describe the complete ASR process in this framework
[32], [56]. WFSTs, or lattices, also provide a framework
for efficient training and inference with structured dis-
criminative models. The segmentation of data defined
by a is at the arc-level in WFSTs or lattices. To reduce
the range of possible segmentations and word-sequences,
lattices for training and inference can be generated using
a standard generative model [17], [18]. The lattice can
be marked at the appropriate level of word, or sub-
word to enable training and inference. An interesting
aspect of this form of model is the segmentation of the
observation sequence,O{ai}, for arcai. If derived from
the generative model it may not be optimal for the struc-
tured discriminative model. Thus this segmentation can
be refined using the current discriminative model [16].

B. Segmental Conditional Random Fields

As a second application, a fuller description of an im-
plementation of Segmental Conditional Random Fields
(SCRFs) is given. SCRFs [17], and the closely related
CAug models [18], focus on deriving sequences by
marginalising all valid segmentations of the data, as
discussed in Section III-A. Thus, the feature functions
in this domain revolve around matching observations to
segmental-level phenomena – that is, functions of the
form φ(O{ai}, a

i
i . For example, CAug models typically

utilize feature-functions based on generative models and
continuous features, as in the noise robust ASR work of
[15]:

φ(O{ai}, a
i
i ;λ) =

[

log
(

p(O{ai};λ
(ai

i))
)

∇
λ(ai

i
) log

(

p(O{ai};λ
(ai

i))
)

]

(34)

which are combined with word and pronunciation
feature-functions.

Another method of employing generative models as
features is to use a first pass HMM to generate de-
tected events; for example, the SCRF work in [17]
incorporates what they term as abaselinefeature: does
the hypothesized wordwi appear in the best HMM
hypothesis? This allows the SCRF system to benefit from
a generative baseline and (hopefully) correct errors made
in that system. Other features that can be provided by
a generative system include the existence of (N -grams
of) subword units detected by an HMM, which can be
associated directly with word hypotheses or evaluated
with respect to their consistency with the word’s pro-
nunciation, as well as the wordN -gram language model

state, whose inclusion allows joint discriminative training
of the language and acoustic models.

A richer set of functions for SCRFs was investigated
in [35], which essentially break down into four classes
of information: phoneme-based detection, word-based
detection, template-based features, and durational scor-
ing. In the first type of information, phoneme detectors
are used as complementary information to the HMM-
based subword-unit detections; these phonemes can be
derived by several means (experiments in [35] ranged
from dynamic time warping templates, to MLP or Deep
Neural Network based hybrid ANN-HMM detectors).
These types of detections can be used in place of,
or in addition to, associational features between sub-
word units and word hypotheses. [35] also investigated
using point-process word detectors and maximum en-
tropy word detectors trained using a novel demodulation
feature; here the relationship betweenO{ai} and wi

is direct (assuming word segmentationaii = wi): the
feature fires ifO{ai} is a valid representation ofwi. It is
also possible to integrate features derived from exemplar-
based systems. In [59] features derived from a k-NN
template list is used to derived a range of features based
on the a DTW match including common word positions
and counts and average template duration (warping fac-
tor). Durational features serve as a confirmation of a
hypothesis; for example, ifL = |O{ai}|, they included
measures ofPc(L|wi), the probability of the observed
length whenwi is a correct hypothesis, versusPi(L|wi),
the corresponding probability when the hypothesized
word is incorrect.

For the studies in [17], [35], the SCRFs were trained
to optimize a regularized CML criterion (16); in par-
ticular, both an L1 and L2 regularizer were included
in the CML term which penalizes solutions with large
weights, and will tend to prefer sparser solutions. In this
particular implementation, the Rprop algorithm was used
for gradient ascent in the regularized CML space; this
allows for relatively fast convergence. Another imple-
mentation detail to note is that theoretically the system
must investigate all possible segmentations of the data.
To cut down on the number of possible segmentations,
a fast-match approach is used to restrict the possible
set of hypothesized segmentations. In the cited studies,
the fast match was achieved by restricting possible
segmentations to those found in the lattice produced by
the generative baseline system.

C. Structured Support Vector Machines

The theory behind binary SVMs [29] and multi-
class SVMs have been well established in the ma-
chine learning literature. More recently structured SVM
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(SSVMs) [39] have been proposed to handle situations
where there is structured data to classify. This section
briefly describes the application of SSVMs to noise
robust speech recognition [16].

The SSVM criterion can be expressed as minimising

1

2
||α||22 +

C

R

[

−max
a

{

αTφ(O(r),w(r),a;λ)
}

(35)

+ max
w 6=w(r),a

{

L(w,w(r)) +αTφ(O(r),w,a;λ)
}

]

+

This can be related to large-margin training of structured
log-linear models with a Gaussian prior of the form
N (0, CI) and the best segmentation (12) [14].

One of the standard problems encountered in speech
recognition is changing background noise environments.
Rapidly modifying the parameters of a discriminative
model to reflect these changes is challenging. As dis-
cussed in section III-D there are a number of approaches
that can be applied. The approach that has been adopted
with SSVMs is to generate noise-independent features
by appropriately compensating generative models [48].
This allows an environment independent discriminative
models to be used. The same approaches have also been
used for discriminative log-linear models with first-order
derivative features [15]. For the work on SSVMs a log-
likelihood score-space was used as the basis for the
feature-function

φ(O{ai};λ) =







log
(

p(O{ai};λ
(v1))

)

...
log
(

p(O{ai};λ
(vV ))

)






(36)

whereV = |V|. Two forms of task have been examined
with different forms of acoustic model “vocabulary”.
Both tasks are from the AURORA framework: AU-
RORA2 a continuous digit recognition task with whole
word models; and AURORA4 a medium vocabulary con-
tinuous speech recognition task with phone-level models.

Having specified the nature of the features, the pa-
rameters of the SSVM must be trained. As discussed in
section III-B to handle SSVMs it is necessary to only
use the one-best alignment. Initially this can be obtained
from the compensated HMMs used to derive the features.
The parameters can then be found using thecutting-plane
algorithm [60], which has been found to be an efficient
method for training these forms of model. This has been
used to train models for speech recognition in [14].

The initial segmentation from the compensated HMM
will not be optimal, but it can be refined using (12). For
the log-likelihood score-space this expression is related
to inference for factorial HMMs [16]. This optimal seg-
mentation can then be integrated into the overall training
procedure usingconcave-convexoptimisation [61].

Extending SSVMs to larger vocabulary tasks is non-
trivial. The number of possible constraints to be satisfied
can becomes very large, impacting both the computa-
tional load and memory requirements. This is the rea-
son for selecting a log-likelihood based score-space for
SSVMs, rather than the derivative forms that have been
successfully applied to conditional augmented models
for larger tasks [15]. Some of these issues are addressed
in [16] where the following techniques are applied: 1-
slack variable optimisation; score-space caching; and
improved priors.

VI. SUMMARY

This paper has presented a brief overview of struc-
tured discriminative models for speech recognition. For
general ASR tasks, the model structure must handle both
variable-length observations and word (or sub-sentence)
sequences. Typical discriminative approaches used in
natural language processing tasks do not need to account
for segmentation, which can be introduced for ASR by
means of latent variables. Segmentation of the sentence
and observations sequence enable model-parameters to
be tied together and robustly estimated.

Feature-functions play a central role in the model; this
work explores both a large number of different kinds
of feature-functions; the relation of feature-functions to
sequence kernels and score-spaces allows a wide-range
of existing approaches to be applied. The combination
of latent variables and sequence kernels permits general
classification of speech with discriminative models.

Given the rich variety of possible features that can be
extracted from the observation and word sequences, the
full potential of these discriminative models has barely
been touched. The hope is that by incorporating a full
range of various features, speech recognition systems
will achieve the levels of performance that enable their
use as a part of everyday life.
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