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Abstract

AbstractAutomatic Speech Recognition (ASR) systems classify structured sequence data, where
the label sequences (sentences) must be inferred from the observation sequences (the acous-
tic waveform). The sequential nature of the task is one of the reasons why generative classi-
fiers, based on combining hidden Markov model (HMM) acoustic models and N-gram language
models using Bayes rule, have become the dominant technology used in ASR. Conversely, the
machine learning and natural language processing (NLP) research areas are increasingly domi-
nated by discriminative approaches, where the class posteriors are directly modelled. This paper
describes recent work in the area of structured discriminative models for ASR. To handle con-
tinuous, variable length, observation sequences, the approaches applied to NLP tasks must be
modified. This paper discusses a variety of approaches for applying structured discriminative
models to ASR, both from the current literature and possible future approaches. We concentrate
on structured models themselves, the descriptive features of observations commonly used within
the models, and various options for optimizing the parameters of the model.
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Structured Discriminative Models
For Speech Recognition

Mark Gales,Fellow, IEEE Shinji WatanabeSenior Member, IEEEEric Fosler-LussieGenior
Member, IEEE

Abstract—Automatic Speech Recognition (ASR) systems speaker adaptation, discriminative training, and noise
classify structured sequence data, where the label se-compensation [3].

quences (sentences) must be inferred from the observa-  Thoygh current state-of-the-art systems yield satisfac-

tion sequences (the acoustic waveform). The sequentialy, . ocqanition rates in some domains, performance
nature of the task is one of the reasons why generative .

classifiers, based on combining hidden Markov model is generally no.t g.ood enough fqr .spe.ech applications
(HMM) acoustic models and N-gram language models to begome ublq_u_ltous. In discriminative models '_[he
using Bayes’ rule, have become the dominant technology POsterior probability of the classes (sentences) given
used in ASR. Conversely, the machine learning and natural the observations are directly modelled. This type of
language processing (NLP) research areas are increasinglymodel has the potential to improve performance as a
dominated by discriminative approaches, where the class wider range of features from the observation and word
posteriors are directly modelled. This paper describes sequences can be used for inference compared to gener-
recent work in the area of structured discriminative  g4ye models. These discriminative models have started
models for ASR. To handle continuous, variable length, to dominate the area of Natural Language Processing

observation sequences, the approaches applied to NLP . . 2
tasks must be modified. This paper discusses a variety of (NLP) [4], [5]. One issue in NLP training is that text data

approaches for applying structured discriminative models COMPprises variable Igngth sequences of words yielding a
to ASR, both from the current literature and possible Vast number of possible classes. It is thus rarely possible

future approaches. We concentrate on structured models to robustly construct models of complete word sequences
themselves, the descriptive features of observations com-(sentences). To handle this, structure must be introduced

monly used within the models, and various options for nto the classifier by breaking the sentence into smaller
optimizing the parameters of the models. units, typically words.

Applying these forms of discriminative classifiers to
ASR adds another level of complexity. The observed data
comprises sequences of observations, often continuous

The dominant technology for Automatic Speechalued feature vectors, extracted at a fixed frame rate.
Recognition (ASR) is based on generative models: Hitthe word sequences associated with these observations
den Markov Models (HMMs) [1] are typically used asnust then be inferred. Thus the number of labels (the
the acoustic models to derive the likelihood of a paword sequence) and the number of observations (frames)
ticular class generating an observation sequence. Thiglifer. For approaches such as Conditional Random
combined with a prior, e.g., alW-gram language model Fields (CRFs) [5], [6], there is an implied assumption
[2], to yield a posterior probability of the class given théhat the number of labels and observations are the
observation. Acceptable performance in generative mashmet To address this problem it is possible to intro-
els is accomplished via refinements to the standard HM@Mice latent variables into CRFs, yielding Hidden CRFs
acoustic models, including context-dependent modellingdCRFs) [9], [10], and make use of sequence kernels

and score-spaces [11], [12]. Models that handle this type
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models There are a number of approaches that haseility to handle sequence data, combined with elegant
been applied to ASR which can be described withimaining and inference algorithms; they also yield good
this framework: log-linear models [13]-[15], Structuregberformance in a range of domains.
Support Vector Machines (SSVMs) [16], HCRFs [9], Generative classifiers for ASR can be split into two
Segmental CRFs (SCRFs) [17], Conditional Augmentegarts: a language model, the priaf(w) that yields
Models (CAugs) [18], Maximum Entropy Markov Mod-a probability of any sentence; and an acoustic model
els (MEMMs) [19], Augmented CRFs (ACRFs) [20].p(0;.; A)) — the likelihood that a sentencegener-
These models differ from each other in terms of thated the observatior®;.; with model parametera(@).
observation features considered, training criterion a@assification is based on the sentence posterior obtained
how the latent variables are handled. using Bayes’ rule

In addition to models that directly map from the
observation sequence to the word-sequence, probabil-
ity distributions over the word-sequences can also be
represented in the same form, yielding discriminative
language models [21]. These can either be used inThe HMM acoustic model is defined by its topology
combination with generative acoustic models via Bayeahd its conditional independence assumptions.
rule, or as part of a discriminative model.

This paper gives an overview of a number of discrim- m m
inative sequence and language models. The following 0 Q 0
sections will describe the general forms of this type of
model, the criteria that can be used to train them, and *  ~ 2 38 4 3 @
some example applications to speech recognition.  Fig. 1. Example HMM: three emitting states left-to-righpaiogy

(left), and DBN (right). Note for the DBN the dependence oé th
state on the sentence has not been shown.

P(w)p(O10; A@)
> o P(@)p(O1.0; A@))

P(w|O1.15A) = (2)

[I. SEQUENCEMODELS AND CLASSIFICATION

ASR can be viewed as a structured sequence classi-
fication task: there is a sequence of observations fromFigure 1 shows the topology and Dynamic Bayesian
which a single sentence hypothesis must be inferrddetwork (DBN) [22] associated with a typical HMM.
Consider a set df’ observation);.r relating to a single The left diagram illustrates a standard phone topol-

sentence label: ogy, strictly left-to-right with three emitting states,eth
right diagram the DBN with conditional independence
w =the dog chased the cat assumptions: the state at tinte ¢;, is conditionally
O1.3120 = {01,02,03,04, ...,0339, 0340, 0341, 0342 } independent given the state identity at time 1, ¢;_1;

and the observation at tinigés conditionally independent
%iven the state at time

"For an HMM, the likelihood is found by marginalising

The sentencé he dog chased t he cat has been
uttered, taking 3.42 seconds, resulting in the observati
sequencd);.zyo (@ssuming a frame rate of 10ms).

Inferring the most likely sentencé uses Bayes'’ over all valid state sequencag={q,..., ¢r}. Thus
decision rule: T
& = argmax { P(w|O1.7; A)} (1) p(O1:; X)) = %: l_Ilp(Qt|Qt_1)p(0t|Qt;)\(w)) 3)
w q:|q|=T"t=

where statistical model parameters are indicated\by .
, e L where the model parameters for a particular word se-
In this classification, the number of output labels (the

sentence identity), is not related to the number of obs I;_Jence/\ defines the set of valid state sequences.

vations7'. Statistical models that can handle this formnference with these forms of model can be efficiently

of data will be referred to asequence model#s with achieved using the Viterbi algorithm [23], where the
standardstatic classifiers, these are often split into twAikelihOOd is approximated using the best-state sequence.

broad classes: generative and discriminative models. In mo_st gtatt_e-of-the-art A_SR systems,.the pa_ramef[ers
of the distributions in Equation 3 are trained using dis-

criminative criteria [24]-[26] (see section 11I-C) rather

than maximizing the likelihood of the observations [1].
For many years HMM generative models [1], [3] hav&n alternative approach, discussed next, is to change the

dominated speech recognition. This is partly due to themodelto directly discriminate between sentences.

A. Generative Models
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B. Discriminative Models discriminative model feature-functiorp(O1.7,w), are

Discriminative models directly model the sentenc@@sed on the sentence lahel For some tasks, pre-

(class) posterior given the observation sequence [2¢{Cting the whole sentence is reasonable [31], but as
One of fairly broad-class is the maximum entromax- the vocabulary size and number of possible sentences

entmodel [28], also known as a log-linear model. Herlicreases, this approach becomes impractical. To address
this issuestructure® can be introduced into the statistical

P(w|O1.1; o) = lexp (aT¢(01:T7w)) (4) model, where the sentence hypothesis is broken into a
4 sequences of units such as words or phones. An example
where Z is the normalisation term to ensure a validecomposition ofw into an L-length word sequence,

probability mass function over all sentences, andhe ),.;, or K-length phone-sequencp;.x, where typi-
discriminative model parameters. This form of model cagally I £ K # T is:

be related to SVMs [29] and the perceptron classifier
depending on the form of the training criterion. Thisrela- w =the dog chased the cat
tionship will be discussed in more detail in sections llI-C ;.5 = {t he, dog, chased, t he, cat }

and V. prag={/sil/, /dnh/ lax/ [dl,... [t/ [sill}
| the dog chased the cat | The standard CRF formulation [5] is problematic for
representing the match between the label and observation
- @O Q) sequence; a model of the word labels,.,, yields

Fig. 2. Graphical model for a simple discriminative model

L
P(’lUl;L|01;T;O£) = % H exXp (aT¢(01:T7wT>T)> (6)
T=1

The form of feature-functiop(O1.7, w) is central to T

. . The problem arises with the feature-functions
the performance of this model. A fundamental reqwr%— P

h
(O1.p,w,,7), as the number of labelsZ, and
gﬁservationsT, are not constrained to be equal so there

no one-to-one matching between observations and
Pbels as in [6].

ment of the feature function is that it transforms th
variable length observation sequence into a fixed Ienq
feature vector as multiple different length segments m
be used by the same feature functforiThe undirected
graphical model for the simplest feature-function form

. moc : ! e | dog § chased--
is shown in Figure 2. Feature-functions define the rela- el d) | Jaof | Iyl ' reh/ |
tionship between the sequence of observations and the .'0-0/0-00-Q!0..q |
sentence label; for example, a feature-function of the
form Fig. 3.  Word, phone and observation hierarchy with assediat
possible segmentation of the observations at the phone amd w
: levels.
(5(w,the dog chased the cat)
$(Orr,w) = T ) L .
6(w, the dog chased the cat) D ;1 O Rather than considering the complete observation se-

guence, the observations can be segmented into sub-

sequences each of which are associated with an indi-
where §() is the Kronecker delta-function, provides gidual label. This hierarchy of word and phone with a
simple, first-order relationship betwe&h andw. More possible observation segmentation is shown in Figure 3.
powerful feature-functions are discussed in Section \gjnce this segmentation is not observed, it must be

inferred or marginalised over in the final model. Given
C. Structured Sequence Data the structuring of a sentence into labels and associated

. observation sub-sequences, one itemodel parameters
The sequence models described above have been q P

based on whole sentence models, where the ger]era’l-zor some machine learning tasks structured data and segjuenc

tive model parametera®), the prior P(w), and the gaea are used inter-changeably. In ASR there are two distiee

guences, the words in a sentence and the observationsrithstteic-

2In this presentation, in common with work on CRFs [5] andured here will be linked with the statistical model. Modéle the

SSVMs [30] joint feature-spaces involving both featuresd #abels Flat Direct Model [31], for example, have structured oba&pbns, but

will be used. Even when structure is introduced this requéet to utilize an unstructured maximum entropy classifier as thgissical
handle variable length data is still necessary. model.
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together and form the complete sentence “model” by m m
combining multiple sub-sentence labels together.
This structuring of the labels and observations is the @, (a) @, (a)

standard approach for generative models for ASR. Thus
the HMM likelihood and prior (both based on words anflig 4. Graphical models for MEMM (left) and HCRF (right)

phones) can be expressed as features. Note the dependence of the state on the word hd=zent
shown.
p(Orrlwir; A) = (7)
|a|
ZP(ai\wLL) Hp(o{m};,\(aﬁ) relating the observations and state is simply reversed
a =1 compared to the HMM, yielding the discriminative ob-

wherea is a set ofsegmentationsf the observations, Servation state relationshi(q|o;, ¢:—1; ) with model
a, is the 7th segment in the sequence. Each segmditrameters. HCRFs, closely related to other forms of
specifies a phone/word/sub-unit identity indicated fgtructured ASR models, have a posterior defined as

segmentr as at, and range of framesQy, . The 1

same notation can be used for phone, HMM state,P(w1=L|01:T?a) = EZ Z ©)
and Weighted Finite State Transducer (WFST) [32] arc @ a€Qa

sequencesa® = {ai,... ,qfa‘} is the sequence of seg- oo [T solal > ie{a,) P(O: a1, a7)

ment identities. ThusP(a'|w,.;,) is the pronunciation P “ Ytefay e G-1,a7)

probability when the segmentation is associated with _
phones. AnN-gram language model is often used withvhereQ, is the set of all state sequences whiefle= T

generative models, for example and satisfies the segmentation defined dy[33]. If
I the segmentation of the data is at the word-level then
P(w) = P(wy.1) = P(uwr) Hp(w lwr_1) 8) a:l = w,. As there are latent variables (states) in an

HCREF it is possible to associate these states with par-
ticular words in the feature-functions. These words are

us'an?ean:;(TELit?(l)%rZT ;ir;gsujggnr?ﬁgﬁgea b examiniﬁhen combined together to yield the complete sentence
P P y 2 in an HMM [10]. This is also the underlying form

Si\'/f;e:ﬁgés;ms of structure incorporated into d|scr|mma0f augmented CRFs [20], where frame-level augmented

observations are combined to predict a sentence.

The form presented in (9) implies that the features
only depend on the observation and state at timeis

Structured discriminative models aim to make use glssible to generalise this to a fixed span of frames and
the same sub-sentence units as the acoustic model {#3ervations - a dynamic undirected graph [6].
and language model (8) of the generative classifier. ThisThig type of model allows the structure to be imposed
section describes some forms for these models, possigle the feature-function. However, in (9) the feature-
approaches to handling latent segmentations, and trainjjgction generates a vector for each frame: while this
criteria. The features (and models) described will focygnction can act on a fixed window of observations, or
on the observation sequence. ForASR itis also necessgites. it will still generatel’ vectors for a sequence
to have pronunciation-stylej(a*, w), and word,¢(w), of T observations. For a particular form of feature
features. These are discussed in more detail in section f\fnction, see (24), HCRFs can be shown be equiv-

alent to discriminative training of HMMs [34]. Seg-

A. Model Structures mental feature-functions in models such as Conditional

The simplest form of structured discriminative modehugmented Models (CAugs) [18], and Segmental CRF
is to make use of graphical models that are closely linkédCRFS) [17], [35] can allow observations across a seg-
to the DBN of the HMM, Figure 1. The discrete statgent to contribute to the function (similar to generative
latent variables can either be introduced in a directetfgmental HMMs [36]; the feature functions relate to the
or undirected, graph. This is the basis of the Maximuggmentation of the observatio0s,, ;:
Entropy Markov Models (MEMMSs) [19] and Hidden

T=2

I1l. STRUCTURED DISCRIMINATIVE MODELS

L . P(w;. i) = 10
Conditional Random Fields [9]. (w11‘L|01‘T’a) (10)
The graphical models associated with MEMMs and 7 Zexp (aT [ Z‘T‘il #(Oyq.y,a}) D
HCRFs are shown in Figure 4. For the MEMM, the arrow a
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. { dog H chased ‘* that of the generative model. The optimal segmentation
for the discriminative model is given by

a = argmax { P(a|O1.7)P(w1.|01.7,a; )} (12)

Since this “best” segmentation is a function of the model
Fig. 5. CAug/SCRF graphical model for a particular segmtioiia parameters the process must be iterated, interleaving the

refinement of the segmentation and model parameters

during training.
More generally, the segmentation simply enables the
ature-function to be clearly associated with units
words) of the sentence. It is not necessary to use
segmentation if this process can be achieved in an
ernative fashion. One example of this is based on
generative score-spaces [8], discussed in section IV-B.
For a derivative score-space, it is possible to write for
B. Handling Latent Variables the features of wordv; of sentencev = wy.p,

Figure 5 shows the corresponding graphical mod?(le.
The feature-function is able to describe all the observ;
tions for that segmen®y, ;, requiring the function to
convert a variable length set of features to a fixed Iengzll}
feature-vector. (See more detail in section IV.)

The previous section has considered summing over @(Ov.z,wi; X)) (13)
all possible segmentations, of the data. Though it
is possible to define recursions for this task [17], the
resulting parameter estimation is no longer convex [37],
and the decoding and training time can become slow

depending on the exact nature of the feature-extractiwplerevj is an element in the vocabulafy. There is

process. Also as the optimisation approaches usedniRy no segmentations, of the observation sequence.
train discriminative model parameters are iterative, r¢6ygh an interesting theoretical direction, to the author
fining the segmentation every iteration may becomgqgyledge this form of approach has not been used.
impractical. Making the feature extraction stage a function of the
An alternative approach is to perform the equivalejnole observation sequence means that decoding can

of Viterbi training and decoding [23]. Using a singlerapid|y become impractical, requirinyy-best lists.
segmentation yields a concave maximisation probtem

Furthermore it is possible to make use of standaEJI
optimisation approaches associated with the perceptron
criterion and structured SVMs discussed in section V. In the same fashion as standard, non-structured, dis-
For some structured discriminative models, such as tféminative models and generative models it is possible
structured SVM [39], this approximation is essential. t0 use a range of discriminative criteria. One of the most
With a single segmentation the following posterior iB0PUlar is conditional maximum likelihood training [24].

6(wi7 Uj)VMwi) 10g (]’)(01/117 A(UJ)))

Optimization Criteria

obtained This aims to maximise the probability of the correct
sentence label. Though directly linked with the Bayes’

P(w1..|O1.1, ;) = (11) decision rule, it may not always be optimal for all tasks.

T &l " First, the scoring of speech data is not usually at the

7 P (a { 2 =1 9(Oga,y, r) D sentence level, more commonly word error rate (WER)

) ] o ] is used. Thus more general minimum Bayes’ risk [40]
The ISSU€ Now 1S how _the segmentations obt_alned. _training may be better. Second given the large number of
The simplest approach is to use the segmentation deriygdqe| harameters that are often trained with these forms
fr_om a 9‘?”_Efat"’e _m_odel, for.example an HMM: Th'%f system, approaches for improving generalisation per-
yields efficient training and inference irrespective h\ance may be very useful. These same considerations

the nature of the features. However the optimal Viterply e jed to the use of a number of criteria for generative

segmentation for the discriminative model may differ thodels for ASR [24]-[26]. Similar forms of criteria can
also be used for structured discriminative models [41].
“It can be argued that once the segmentation has been obitined Some of the more standard criteria are briefly dis-
can be converted into a frame-label sequence that couldahersed . .. .
for CRF training. This is the form examined in the Semi-MarkoCUSSed below. Here only supervised training data is con-

CRF [38]. sidered where the training dat®, comprises (sequence



SPECIAL ISSUE ON FUNDAMENTAL TECHNOLOGIES IN MODERN SPEECRECOGNITION 6

length has been dropped for notational simplicity)  and maximum margin (19) criteria, it is not necessary to
ever compute this term. During training the criterion is
— (1) @ (R) 1B : : . -
D= {{0 W },---,{0 W }} a function of the ratio of posteriors (the normalisation
Discussion about the form of the actual optimisatiofg'™ cancels) and the rank ordering for inference is not
process or regularisation is deferred to section v.  altered by the normalisation term.
All the criteria have the same general forms Directly using the above expressions can also cause

F(a,w,0), and can be trained using either batch é}eneralisation issues as the feature-function can result
on—Ii;le ’algorithms. For batch training in a very high-dimensional feature-space. To address

" this, regularisation terms, normally in the form of L1 or
. ) 1 L2 regularisation, are introduced [17], [20], [44]. When
— = ) o) _ _ . : -

* arg;mn {R z_;f (a’w O )} (14) combined with maximum margin training these regu-
"= larisation terms result in discriminative models closely

related to structured SVMs [14]. Furthermore for some
& = argmin {J_- (a7w(r)’ O(T);d(r—1)>} (15) fegture-functlo_ns one can introduce a more mforma’qve
fe! prior on the discriminative model parameters by using

non zero mean priors faw [16].

and for the mini-batch, on-line, equivalent

Conditional Maximum LikelihooR4]: D. Adaptation

Fem (o, w, 0) = —log (P (w|O0; @) (16) For generative models adaptation to a particular

This is the form typically used for training discriminativeSPe2ker or environment condition is an essential part
models such as CRFs [5] and is usually the startirﬂj current speech recognition systems [3]. A range of

point for structured discriminative models [17]. approaches have been developed including: maximum a-
posteriori (MAP) adaptation; linear transformation-tchse
Perceptron Algorithm[42] approaches; model-based noise compensation; and fea-

ture enhancement. For details and references see [3]. Re-

Fper(a, w, 0) = [max {_ log <w> H (17) lated approaches have been developed for discriminative
wFEw P(w|0; ) + models®. These can be split into three broad categories:

where [z]+ is the hinge-loss function. This can beéleneral adaptation; linear transformation approaches;
extended to the averaged perceptron algorithm Whé‘@d feature adaptation. Note in contrast to the majority

the parametersy are averaged [42]. of adaptation approaches for generative models which
are based on maximum likelihood, discriminative model

Minimum Bayes Ris[0]: adaptation is usually based on conditional maximum
likelihood.

Faor (e, w,0) = P (#|0; ) L(®,w)  (18)  |n [45], two approaches for adapting log-linear models

w — MAP adaptation and minimum divergence training
where £ (w, w) is the loss between the word sequence- are discussed. These approaches yield a general
w and the referencev. The loss may be measured aadaptation scheme that makes no assumption about the

the word, phone, or frame level. nature of the features in the model. MAP adaptation has

also been applied to HCRFs [33]. Though these general

Maximum Margin[26]: adaptation approaches can be used for discriminative
dels, they d t take advant f tructure i

Fu(c,w,0) = (19) models, they do not take advantage of any structure in

the features. Alternatively Linear transformation based
[f}lax {5 (W, w) — log (P("f’m?a)) H approaches for log-linear models are described in [46],
wiw Pw|O;a) ) |, [47]. These schemes use approaches similar to the linear
The margin here is the loss between reference afgnsformations for HMMs. Assumptions are made about
“closest” Competing word sequences. This loss may B’@ relationShipS between features. To date they have
at the frame level or at a higher level, e.g. word or phon@nly been applied to models where the features are very
similar to those used in standard HMMs. Whether these

One issue that can occur is that the normalIsatlonsIn the machine learning literature the problem of handling a

term can be very expensive, or even intractable, t0 COMmatch between training and test conditions is sometirfesred
pute [43]. However for some criteria, the perceptron (119 as sample selection bias or covariat shift.
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form of approaches can be extended to more genemdiere ¢() is the score-space associated with the se-

features is an open question. quence kernel and(.,.) is the static kernel. Here
The final form of adaptation is related to the featurthe score-space is the feature-space associated with the

compensation schemes used with generative modalsquence kernel. This form of kernel combination has

Rather than adapting the model parameters, the featyvesviously been discussed for speaker verification [50].

are modified to make them independent of the speaker

or environment. This is simplest to do when the feature IV. MODEL FEATURES

extraction process is based on generative models [15]he previous section has assumed the existence of

[48]. This approach is discussed in more detail in segn appropriate feature-function: the selection of this

tion V-C. function is central to the performance of these classifiers.
Features can be broadly split into observation-features,
E. Kernel Representations pronunciation features and word-features

The discussion of the model-parameters and feature- Z\‘a| $(0 at)

functions have so far assumed that there is an explicit _ =1 % lah
. . . 1:T>w1:Laa) - ¢((1 ,’wl;L) (22)

representation of each of these. It is also possible to d(wi.1)
consider a more general form that can be highly efficient
in dealing with large feature-spaces. Since the modéihen the segmentatiom is at the word level, the term
uses an inner-product between model-parameters #@"; wi.) which relates to pronunciation probabilities
features, it is possible to kernelize this operation i@&nd variants (i.e. the mapping from segments to words)
the same way as SVMs [29]. This allows the so-call€&n be ignored. In this section a word level segmentation
“kernel-trick” to be used where it is not necessary tts assumed unless otherwise stated. Similar forms of
explicitly operate in the full-feature space. A non-lineafiscrete features can be applied for the pronunciation
kernel function can be applied in the original featuredeatures as the word features described below.
space to yield the results of the inner-product in the full-
features space. Here the term in the exponential becordesFrame-Level Features

(017, w1.1) (20)  The simplest form of feature function is restricted to
R frame-level features in the same fashion as the HCRF
= Zd’“k ( {0, w07, w1, L}) features. The general form of features can be written as
®(Ofo1,0i) = > ¢(os,a}) (23)

where &, is the equivalent of the Lagrange multiplier
for each training utterance in an SVM, and., .) is the

kernel. Depending on the nature of the criterion, and t
form of regularisation being used, only a small subs
of the Lagrange multipliersy, may be non-zero. For

te{a;}

One of the simplest form of feature-function directly uses
e Gaussian sufﬁuent statistics of observatlons

example if the parameters of the discriminative model are 5(%1'7 v;)
trained using the maximum margin criterion with a0 dloy,al) = (ak,v;)o Vo, eV (24)
regularisation term, the Lagrange multiplieks should §(at, v;)diago;0f)

be sparse as this form is related to SVM training [14]. :
As the length of the observation and word sequences L : i
vary over the training and test samples, a sequengRere) is the vocabulary of segment identities. Using
kernel is required, a range of which can be describéliese features yields systems related to discriminatively
in the rational kernel (both discrete and continuousiained HMMs [34], but it can be extended to introduce
framework [12], [49]. More generally when sequenckeatures of higher-order statistics [13].
kernels are combined with feature-functions and staticAn interesting question is what form the observation,
kernels the following form can be obtained (assuming, takes. Rather than just considering a single frame,

segmentatiors”) anda at the word levela} = w;) frames can be spliced together and optionally trans-
1a®]| |a formed (as is adopted in augmented CRFs [20]), much as
k({07 w™Y, {010, w. _ 21 generative systems use delta and delta-delta parameters
<{ W' {Our wl'L}) Z Z (1) (and other generalisations e.g., kernel application).

=1 j=1
") ’ A slightly different approach is to use classifiers to

d(wy”,w;) ket (¢ (0{(15“}7% >7¢(0{aj}7wj)) provide information about the discrimination between
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sub-word classes. This can provide bottom-up informare no constraints thdfa;}| = [{a;}|. This form of

tion to the system on where observations lie in a pseud@rnel has been used for both discrete observations [49]
linguistic space. Consider the case of linguistic uniend continuous observations [12]. It is able to efficiently
V = {v1,...,vy}, which are derived from applyingrepresent a range of standard kernels such as string
a discriminant functiong(), to a span of observationskernels and (gappyN-gram kernels [11].

Thus for frames: to b, g(O,.4) = uap, ur € V. Discrete  If the kernel representation in the previous section
features of the formd(u, v;) or class posterior featuresis used then rational kernels can be directly applied in
can then used for frameé. Examples of discriminant structured discriminative models. If the more standard
functions include: multilayer perceptron predictions dbrm is used then score-spaces from the kernel can be
the posterior probability of phone units given a fixedsed as the basis for the feature-function.

span of observations [7]; sparse representations arisin@ne interesting form of score-space for this form of
from finding then-closest Gaussians to a single obsekernel is based on generative models [18], [51]

vation from a trained system [20]; and an HMM-based

. . - \(a)
recogniser on the complete observation sequence [35]. log (p(Oya,y; X))

. V@) log (p(Oqay; X))
i A( 1) {a’l}

_ #(Oya,},07) = : (28)
B. Acoustic Segment Features

Rather than the feature-function generating a vector

for each frame, it can also act on all the observatio%ere Vv’ represents the (diagonaliseg)th order
associated with a segme@y, ;. Thus, the frame- yoaive with respect to\. If the generative model
level features are just one option for extracting featur?éan HMM then the resulting features do not have the
from this segment. It is possible to hypothesise a rangg e nderlying conditional-independence assumptions
of features that could be used. However it is mora the HMM [18]. Alternatively if GMMs are used
mterestmgkto C(I)nS|d§r this process 'g thi context ffan derivative score-spaces yields frame-level features
iequelnce emels S‘In lscorr(]e-spaces [18]. T (?se j?quﬂ%:%erivative with respect to the component priors, for
€rnels map \_/ar|ah_eher;]gt _sequenc((jas 0 a 'Xg enAh mple, yields sparse GMM posterior features [44]. An
score-space In which the inner product can be Cofio asting aspect of using structured generative models
puted. All the acoustic feature extraction schemes fm this fashion is that feature-extraction can be made

featl_Jre ex_tractlon se_1t|sfy this propgrty. The adv"?mtag?ﬁcient using an expectation semi-ring within the WFST
of discussing acoustic features in this framework is thﬁﬁmework [52]

existing developments from machine learning can b
used.

One general form of these sequence kernels, t
rational kernel [49], is

V? i 10g (p(Ogqy; A7)

AeD

€ Similar in spirit to the score-space paradigm are other
ethods that utilize detections of longer-term acoustic
ents. In [17], a baseline HMM system hypothesizes
linguistic units, which are then evaluated by measuring
k (O{ai}vo{aj}) =C [A{ai} ° (uOu-l) 0«4{%}] (25) how consistent the units are with the dictionary pro-
T nunciation of a hypothesized word. Another approach
=¢(010) ¢(0ay) (26) s to use template matching to suggest detections of
whereAy,, and.Ay, , are the acceptors associated withnguistic units that may or may not be consistent with
the observation sequencés,,; andOy, , respectively, Word hypotheses [35].
U is the WFST that determines the form of the ra-
tional kernel,o is WF_ST compositionC[] yields the ¢ Supra-Segmental Features
transducer shortest distance, agd) the score-space
associated with this kernél This representation allows
operations on sequences of different lengths, i.e th

The primary form of supra-segmental features are
sociated with the word (or phone) sequences. Applying
og-linear models for language modelling has been an
To map from this basis representation involves active research area for many years, for example see [43],
5(at,01)B(Oary) [53]. These exponential models allow a very rich set
S(Ory.at) o @) of features, for example lexical [21], linguistic, and
faado o hierarchical features [54], [55], to be used. For the
8(ai,vv)@(Oya;y)
The trivial generalisation is to allow the features to beatgfent on "The form of score-space described here can also be relatad to
the word. This is closely related to generating the jointdemxspace formation geometry and more general forms of generativeat{d8].
for SVMs [39]. For discrete cases it has also been connected to stringi&diil].
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notation in this paper the segment identity can be usegeature type E)é?,?;zlsmaﬂon Example papers
to specify the precise nature of the segment including _ — 30k, ;)
any hierarchical information. ﬁgg:tsl(':as“ sufficien 8(ai,vj)o [9], [13], [34]
Similar to the observation features, the number of - 8(aj, v;)diag(orof)
alignments, |a|, and the number of wordsw|, are ]':°°a! discriminant
- . . functions, e.g.
not fixed for all sentences; the same issues as disaLp postieriors,| 6(a*,v;)P(v]o:) (7], [19], [20],
cussed for segment-level features must be addressethsest Gaussiang, [35]
As these supra-segmental features are often discret@,HMMs
rational kernels and associated score-spaces can be usg‘ffmem"eve' 8(at,v1)$(Oya.) [18], ~[44],
c deri - | feat thi 'pld Core spaces ir U1 {a;} [51], [52]
onsidering word-level features this yields - _
] Y Segmentievel | 5(at, v)b(v, 0qary) | 117, [35]
@) D) = d(w T (e 29) |aode Teatures
k(w', wV) = ¢p(w')’ ¢p(wV’) (29) Suprasegmental 17, [21]
) ) 4 . features, e.g. L §(w-,d ’ :
with no constraint thaiw®| = |w@|. If the kernel | word-level featureg 27— 8 (1wr, dog) [43], [56]-{58]

representation discussed in the previous section is used TABLE |
then it is possible to directly use the kernel output, rather  symmaARY OF FEATURE FUNCTIONS IN COMMON USE
than requiring the explicit calculation of the score-space
One common form of feature-space is based on uni-
gram and higher-order discrete features. Thus one simple
form is based on the bag-of-word model [4] (unigram) V. EXAMPLE APPLICATIONS
and higher-orderV-grams. For bigram features A. Discriminative LMs and WESTs

As discussed in section IV-C, it is possible to use
ZL 5 (w,, dog) structured discriminative modelling approaches to train
o(wy.r) = L1 =1 m (30) a Discriminative Language Model (DLM) [21] which
2.7=1 0 (wr,dog) d (wr1, chased) can then be combined, if desired, with a generative
: acoustic model for classification. One of the advantages

It is possible to apply the same concepts to the segmgtfl-th's form of model, compared to standaig-gram

tation and word features which will represent, among odgls [2],_is thatitis simple to combine highly diverse,
other things, pronunciation probability. In addition, -feaIOOSSIny wide-span, features. For these richer models,

tures can be derived from traversing back-off arcs [1&1SR is often realized by re-ranking hypotheses rather

as well as word-labeled arcs, in the WFST framework. an dl_rect recognition, or lattice rescoring. )
Two important aspects of DLM that make them practi-

One of the interesting aspects of supra-segmentallf | traini d model f
features is that they can be easily combined with gen&al or large fraining corpora and models are sparse fea-

ative models for classification. The classification of a{r;\/‘;?cgisrjzgr:jtgt(':?gt:?edagﬁg\éez gpt:;nr:;aéf:ﬁgsra?nLMs
observation sequenc®;.r, with an HMM is based on N
d LT of word/Part-Of-Speech (POS) counts [21], [57], [58],

~ lal . the representation is usually sparse. Furthermore, as ther
W = argmax ZP(wﬂl) Hp(o{ai};/\(ai)) (31) are no latent variables associated with the DLM (or a
w a i=1 single segmentation/latent variable value used), it is a

Rather than using the standakdgram language model CONVEX optimisation problem.

and pronunciation probabilities it is possible to write]43 ©One successful approach to training discriminative
language models is to use the perceptron algorithm [21].

P(w,at;a) = %exp <aT [ ¢E;L(:U’;U) D (32) Here the parameters of the DLM are estimated using
(r+1) — o) (") ™y — (")
Here the feature-function for the observations is a single a = a4 907, W) — (07, @) (33)
element, the log-likelihood from the HMM. Thé/- wherew is the hypothesis for utteraneewith parame-
gram language model log-probability can also be addegts o("). To improve performance the average over all
e.g. [56]. The model parameters for these two elememistimated model-parameters is used for classification, the
are sometimes fixed and not updated. This is the baaigraged perceptron algorithm. Variants on this form are
of discriminative language models in section V-A. also possible [56]. An interesting aspect of this form
A summary of the features described here can bé optimisation is that it is not necessary to compute
found in Table I. the normalisation term (in common with the SSVM
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section V-C). For classification the normalisation term istate, whose inclusion allows joint discriminative traigi
not required. It is only needed if a posterior probabilitpf the language and acoustic models.
is explicitly required from the system. A richer set of functions for SCRFs was investigated
These forms of model can efficiently represented in [35], which essentially break down into four classes
a WFST, or lattice, framework. Indeed it is possible tof information: phoneme-based detection, word-based
describe the complete ASR process in this framewodetection, template-based features, and durational scor-
[32], [56]. WFSTSs, or lattices, also provide a frameworkng. In the first type of information, phoneme detectors
for efficient training and inference with structured disare used as complementary information to the HMM-
criminative models. The segmentation of data defindésed subword-unit detections; these phonemes can be
by a is at the arc-level in WFSTs or lattices. To reducderived by several means (experiments in [35] ranged
the range of possible segmentations and word-sequenémsn dynamic time warping templates, to MLP or Deep
lattices for training and inference can be generated usiNgural Network based hybrid ANN-HMM detectors).
a standard generative model [17], [18]. The lattice cdarhese types of detections can be used in place of,
be marked at the appropriate level of word, or suler in addition to, associational features between sub-
word to enable training and inference. An interestingord units and word hypotheses. [35] also investigated
aspect of this form of model is the segmentation of thesing point-process word detectors and maximum en-
observation sequenc@,,,;, for arca;. If derived from tropy word detectors trained using a novel demodulation
the generative model it may not be optimal for the struéeature; here the relationship betweéh,,, and w;
tured discriminative model. Thus this segmentation cam direct (assuming word segmentatioh = w;): the
be refined using the current discriminative model [16]feature fires ifOy,,, is a valid representation af;. It is
also possible to integrate features derived from exemplar-
B. Segmental Conditional Random Fields based systems. In [59] features derived from a k-NN
As a second application, a fuller description of an infémplate list is used to derived a range of features based
plementation of Segmental Conditional Random Fiel@) the @ DTW match including common word positions
(SCRFs) is given. SCRFs [17], and the closely relatéid countg and average template duratlon_ (war_plng fac-
CAug models [18], focus on deriving sequences 69")- Durgnonal features serve as a conﬁrmaﬂon of a
marginalising all valid segmentations of the data, ayPothesis; for example, if. = [Oy,,;|, they included
discussed in Section IlI-A. Thus, the feature functio&€asures OTPC(L‘wi)v the probab|l|ty of the observed
in this domain revolve around matching observations {gngth whenw; is a correct hypothesis, versis(L|w;),
segmental-level phenomena — that is, functions of tH& corresponding probability when the hypothesized
form ¢(Oy,,;, a}. For example, CAug models typicallyword is incorrect. _
utilize feature-functions based on generative models and 0" the studies in [17], [35], the SCRFs were trained
continuous features, as in the noise robust ASR work {6 OPtimize a regularized CML criterion (16); in par-

[15]: ticular, both an L1 and L2 regularizer were included
1 Or 1 (@) in t_he CML term which penalizes solutions with large

¢(0{ai}>a§; A) = 08 (p( {a:}> ' )(L)ﬂ) (34) weights, and will tend to prefer sparser solutions. In this
Ve log (p(o{ai}v AL )) particular implementation, the Rprop algorithm was used

which are combined with word and pronunciatiofor gradient ascent in the regularized CML space; this
feature-functions. allows for relatively fast convergence. Another imple-

Another method of employing generative models asentation detail to note is that theoretically the system
features is to use a first pass HMM to generate deust investigate all possible segmentations of the data.
tected events; for example, the SCRF work in [17]o cut down on the number of possible segmentations,
incorporates what they term asbaselinefeature: does a fast-match approach is used to restrict the possible
the hypothesized wordy; appear in the best HMM set of hypothesized segmentations. In the cited studies,
hypothesis? This allows the SCRF system to benefit frdime fast match was achieved by restricting possible
a generative baseline and (hopefully) correct errors magiggmentations to those found in the lattice produced by
in that system. Other features that can be provided the generative baseline system.

a generative system include the existence dfgrams

of) subword units detected by an HMM, which can b€ Structured Support Vector Machines

associated directly with word hypotheses or evaluatedThe theory behind binary SVMs [29] and multi-
with respect to their consistency with the word’s proelass SVMs have been well established in the ma-
nunciation, as well as the wol¥-gram language model chine learning literature. More recently structured SVM
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(SSVMs) [39] have been proposed to handle situationsExtending SSVMs to larger vocabulary tasks is non-
where there is structured data to classify. This sectitnivial. The number of possible constraints to be satisfied
briefly describes the application of SSVMs to noisean becomes very large, impacting both the computa-
robust speech recognition [16]. tional load and memory requirements. This is the rea-
The SSVM criterion can be expressed as minimisingpn for selecting a log-likelihood based score-space for
1 , C - ") ) SSVMs, rather than the derivative forms that have been
sllallz + 5 {— mgx{a »(0", w ,a;/\)} (35) successfully applied to conditional augmented models
for larger tasks [15]. Some of these issues are addressed

t e a{ﬁ(waw(r)) + 04T¢(0(T)7W,a;/\)}} in [16] where the following techniques are applied: 1-
’ * slack variable optimisation; score-space caching; and

This can be related to large-margin training of structurq:ﬁhproved priors.

log-linear models with a Gaussian prior of the form
N(0,CT) and the best segmentation (12) [14]. VI. SUMMARY

One of the standard problems encountered in speecbrhis paper has presented a brief overview of struc-

recognition is changing background noise enVironments,qy discriminative models for speech recognition. For

Rapidly modifying the parameters of a dispriminativ eneral ASR tasks, the model structure must handle both
model to reflect these changes is challenging. As d

di i h ber of ariable-length observations and word (or sub-sentence)
cussed in section [ll-D there are a number of approac uences. Typical discriminative approaches used in

that can be applied. The approach that has been adopied, | janguage processing tasks do not need to account
with SSVM.S is to generate_nmse-mdependent featugf segmentation, which can be introduced for ASR by
by appropriately compensating generative models [4&l. 1< of |atent variables. Segmentation of the sentence
This allows an environment independent dlscrlmlnatlvgnd observations sequence enable model-parameters to
models to be used. The same approaches have also ti?eeﬂed together and robustly estimated

used for discriminative log-linear models with first-order Feature-functions play a central role iﬁ the model: this

Qeri\_/ative features [15]. For the work on SSVM_S a IO(v:\/'vork explores both a large number of different kinds
likelihood score-space was used as the basis for ot re-functions: the relation of feature-functions t

feature-function sequence kernels and score-spaces allows a wide-range

log (p(O{ai};)\(vl))) of existing approaches to be applied. The combination
¢(o{a_}; A) = : (36) of latent variables and sequence kernels permits general
log (p(Oa,y: A(UV>)) classification of speech with discriminative models.

Given the rich variety of possible features that can be
whereV = |V|. Two forms of task have been examinedxtracted from the observation and word sequences, the
with different forms of acoustic model “vocabulary”full potential of these discriminative models has barely
Both tasks are from the AURORA framework: AU-heen touched. The hope is that by incorporating a full
RORA2 a continuous digit recognition task with wholgange of various features, speech recognition systems

word models; and AURORA4 a medium vocabulary conwill achieve the levels of performance that enable their
tinuous speech recognition task with phone-level modeigse as a part of everyday life.

Having specified the nature of the features, the pa-
rameters of the SSVM must be trained. As discussed in VIlI. ACKNOWLEDGEMENTS
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