MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Hierarchical and High-Girth QC LDPC
Codes

Wang, Y.; Draper, S.C.; Yedidia, J.S.

TR2013-011 March 2013

Abstract

We present an approach to designing capacityapproaching high-girth low-density parity-check
(LDPC) codes that are friendly to hardware implementation, and compatible with some desired
input code structure defined using a protograph. The approach is based on a mapping of any class
of codes defined using a protograph into a family of hierarchical quasicyclic (HQC) LDPC codes.
Whereas the parity check matrices of standard quasi-cyclic (QC) LDPC codes are composed of
circulant sub-matrices, those of HQC LDPC codes are composed of a hierarchy of circulant
sub-matrices that are in turn constructed from circulant sub-matrices, and so on, through some
number of levels. Next, we present a girth-maximizing algorithm that optimizes the degrees of
freedom within the family of codes to yield a high-girth HQC LDPC code, subject to bounds
imposed by the fact that that HQC codes are still quasi-cyclic. Finally, we discuss how certain
characteristics of a code protograph will lead to inevitable short cycles, and show that these short
cycles can be eliminated using a squashing procedure that results in a high-girth QC LDPC code,
although not a hierarchical one. We illustrate our approach with three design examples of QC
LDPC codes two girth-10 codes of rates 1/3 and 0.45 and one girth-8 code of rate 0.7 all of
which are obtained from protographs of one-sided spatially-coupled codes.
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Abstract—We present an approach to designing capacity- view of their practicality, we focus in this paper on the desi
approaching high-girth low-density parity-check (LDPC) codes of QC LDPC codes that have good decoding performance.
that are friendly to hardware implementation, and compatible For nearly any application, it is important to optimize

with some desired input code structure defined using a proto- d di f in the “water-fall” . h th
graph. The approach is based on a mapping of any class of codes ecoding periormance in the “water-lail” regime where the

defined using a protograph into a family of hierarchical quasi- Signal-to-noise ratio (SNR) is relatively low. The stardiaay
cyclic (HQC) LDPC codes. Whereas the parity check matricesfo to do that for irregular random constructions is to use “dtgns
standard quasi-cyclic (QC) LDPC codes are composed of cireu evolution” or “EXIT chart” techniques to obtain the degree

lant sub-matrices, those of HQC LDPC codes are composed of a ictrity iti P ; Syt
hierarchy of circulant sub-matrices that are in turn constructed distribution that optimizes the code threshold in the a

from circulant sub-matrices, and so on, through some number limit of long block lengths [8]. These techniques can also be

of levels. Next, we present a girth-maximizing algorithm trmt ~adapted to QC LDPC codes [12].
optimizes the degrees of freedom within the family of codesot However, for some applications, optimizing water-fall per
yield a high-girth HQC LDPC code, subject to bounds imposed formance is not sufficient, and one must also avoid the “error
by the fact that that HQC codes are still quasi-cyclic. Finaly,  f50rs” that plague many LDPC codes in the higher SNR
we discuss how certain characteristics of a code protograptwill . An floor” in th f that
lead to inevitable short cycles, and show that these short cles regime. n e”Qr oor”in the per orm"’.mce curve means f"‘
can be eliminated using a “squashing” procedure that resuts in  the decoding failure rate does not continue to decreasdlyapi
a high-girth QC LDPC code, although not a hierarchical one. as the SNR increases. Eliminating or lowering error floors
We illustrate our approach with three design examples of QC s particularly important for applications that have erige
LDPC codes — two girth-10 codes of ratesl/3 and 0.45 and rgjigpility demands, including magnetic recording and ribe
one girth-8 code of rate0.7 — all of which are obtained from fi icati t
protographs of one-sided spatially-coupled codes. oplic communication Systems.
In the past, QC LDPC codes have been constructed based
on a wide variety of mathematical ideas, including finite
|. INTRODUCTION geometries, finite fields, and combinatorial des_igns [C{ﬁ]_{l
[19]. Recently, there has also been great interest in the
TW(_) broad classes_ of mgthods have emerged for the c@iiss of “convolutional” [20], [21] or “spatially-coupl&d22]
struction of low-density parity-check (LDPC) codes [2]].[3 | ppc codes. They have been shown, using density evolution
One set of methods is based on highly random graph cqBghniques, to approach Shannon capacity closely, or even
structlons_, Whl|e. the other is based on structured alge.br%'rovably to achieve it on the binary erasure channel (BEC)
constructions. It is now well-known that random constroes 22]. These codes are significant here, because they can be
(see, e.g., [4]-[8]) can produce LDPC codes that closelplemented using quasi-cyclic constructions, and theyikh
approach the Shannon capacity. However, highly randqgys pe able to achieve very good performance while reinin

constructions are not easy to implement in hardware as {fpg practicality of other structured QC LDPC codes.
irregular connections between check and variable nodé®in t | this paper, we will focus on how to take a code structure

code graph imply high wiring complexity. In actual imple-g,ch 4 particular spatial-coupling structure, that hasnbee
mentations, more structured constructions have beengirongesigned to perform near the Shannon limit in the waterfall
preferred because they result in much more practical wirifggime, and constructing a QC LDPC code with that structure
and more straightforward parallelism in the decoders. that also empirically has excellent error floor performance
Quasi-cyclic LDPC (QC LDPC) codes are a particularly grror floor issues for LDPC codes were investigated in [23],
practical and widely-used class of structured LDPC codg%4) which showed that error floors in belief propagatioi}B
These ches have a parity_check matrix which is broken int®ypc decoders are generally caused by “trapping sets.” A
sub-matrices that have a circulant structure. QC LDPC COQ?épping set is a set of a small number of bits that reinforce
are featured in a variety of communications system stasgard,ch other in their incorrect beliefs. Trapping sets of hits
such as IEEE 802.16e [9], DVB-S2 [10] and 802.11 [11]. Ithyariably arranged in clustered short cycles in a code’si&a

. : . graph [25]. Therefore, one way to try to remove trapping sets
This paper was presented in part at the 5th Int. Symp. Turldingoand

Related Topics, Lausanne, Switzerland, Sep. 2008. [1] Toek wlescribed is to dESign the code’s Tanner graph Carefu”y so that the
in this paper was done while all the authors were affiliateth wlitsubishi dangerous clusters of short cycles do not exist [26].

Electric Research Laboratories, Cambridge, MA 02139 USA.. An alternative, and at least conceptually simpler apprpach
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this paper, we focus on optimizing the girth of QC LDPQ@omplicated procedure. First, we need to introduce a new
codes that have already been given a structure optimizaghily of generalized QC LDPC codes, which we call “hi-
for waterfall performance. In this way we hope to design a@rarchical” QC LDPC (HQC LDPC) codes. The parity check
practical code that simultaneously has good waterfall arat e matrices of these hierarchical codes consist of circulabt s
floor performance. matrices, which in turn consist of circulant sub-sub-ncaisi

There has been considerable work on optimizing girth @nd so on for multiple “levels.” We show that, via a graph
LDPC codes. In some of this literature, the focus is spedifica“lifting” procedure [26], [34], [35], we can transform any
on designing codes with very large girth. For example, if] [2Pprotograph with multiple edges between proto-checks and
codes with girths up to 14 were obtained using parity chegkoto-bits into atwo-level HQC LDPC code with circulant
matrices with sub-matrices that were sums of permutatiomatrices with higher weight at second level.
matrices, while [28] showed how to obtain QC LDPC codes It turns out that many different hierarchical QC LDPC
with girths of 18. More recently, [29] designed another slagodes correspond to a particular protograph, and thus many
of regular QC LDPC codes with girths as large as 24. Whildegrees of freedom exist following the lifting. We use our
these design techniques yield codes of very large girthy, thiill-climbing algorithm to choose from this family to getdri
have the limitation that the structure of the code will be aof as many short cycles as possible. However, HQC LDPC
output of the design rather than an input so, for examplg, theodes with weights greater than one at higher levels wib als
do not help in the design of a spatially-coupled code witéar automatically have some short cycles, just as non-hieigakth
girth. QC LDPC codes do. Our hill-climbing algorithm can do

The focus in this paper is somewhat different. We assumething about these “inevitable” cycles but it can, hoplgful
that we are given a specific code structure that has already beliminate all short non-inevitable cycles. To get rid of the
optimized for waterfall performance (e.g. a spatiallyjl@d inevitable cycles we introduce a “squashing” procedures Th
code with specific length, rate, and degree distributioas)i squashing step destroys the hierarchical structure ofdbde,c
desire to create a QC LDPC code with that code structupat the squashed code nevertheless remains a QC LDPC code
and optimized girth. Codes with good water-fall performandhat corresponds to the desired protograph. The squashing
inevitably have some irregularity in the degree-distiiutof procedure is computationally trivial. This makes the tveps
the factor or variable nodes of the code graph. For the cga®cedure — first HQC LDPC then squash into a QC LDPC
of QC LDPC codes, these irregular distributions are mosbde — much more computationally efficient than directly
easily described in terms of “protographs” [30]. Protodrsp applying our hill-climbing procedure to maximize the gigh
are variants of Tanner graphs where bits and checks of thigher-weight QC LDPC codes with the desired protograph
same type are represented by a single “proto-bit” or “protstructure. Thus hierarchical QC LDPC codes are a necessary
check.” In the case of QC LDPC codes, proto-bits can, fantermediate stage in the design of practical QC LDPC codes
example, represent sets of bits belonging to the same airtulthat will simultaneously have good waterfall and error floor
sub-matrices. performance.

Previous approaches which optimize girth given a particula The rest of the paper will explain in much more detail the
code structure include the progressive edge growth (PEi@gas outlined above. We begin in Section Il by reviewing the
algorithm [31], which was generalized to QC LDPC codes istandard construction of QC LDPC codes in terms of their
[32]. Another approach to optimizing the girth of QC LDP(parity check matrices. Then in Section Ill, we review the
codes was studied in [33], where high-girth QC LDPC codestandard Tanner graph representation of LDPC codes and the
were obtained using a random “guess-and-test” algorithm. “protograph” representation of structured codes. In $adiV/

In this paper, we use a hill-climbing search algorithm fowe review how short cycles can be identified from the parity
optimizing girth, that we previously introduced in [1], tha check matrix of a QC LDPC code. We also discuss why
more efficient than the PEG and guess-and-test methods. e most straightforward transformation of the protogsaph
hill-climbing algorithm greedily adjusts an initial QC LE@P interesting LDPC codes, such as spatially coupled codés, in
code to find a code of short length that meets the specified cd@€ LDPC codes will lead to inevitable short cycles in the
and girth parameters. Since the algorithm is greedy, it @&n ganner graph of the resulting codes.
stuck in local minima. However, given a set of parametess, th This leads us to the heart of our paper, where we in-
algorithm finds QC LDPC codes of shorter length and in lessoduce hierarchical QC LDPC codes that can be used to
time than guess-and-test or PEG. solve the problem of inevitable short cycles. In Section V we

The protographs that arise in codes that have been optimizetloduce the most general form of HQC LDPC codes and
for waterfall performance typically have some pairs of prot show that they can be described both in terms of a multi-
bits and proto-checks that are connected by multiple edgesvariate polynomial parity check matrix in multiple variabl
straightforward way to handle this would be to use QC LDP@&nd in terms of a tree structure. In Section VI, we explain
codes where the circulant matrices had rows and columnshaiw to find cycles in the Tanner graphs of HQC LDPC
weight greater than one. However, as we shall see, thistdireodes. In Section VIl we describe our hill-climbing algbrit
approach inevitably introduces short cycles into the graph for finding high girth QC LDPC codes and HQC LDPC

The tricky problem of creating QC LDPC codes witlcodes. In Section VIII, we discuss restricted two-level HQC
good girth and that correspond to protographs optimized fobDPC codes, the lifting transformation of protographs into
waterfall performance is solved in this paper by a somewhaich codes, and the “squashing” procedure that efficiently



eliminates inevitable cycles. Finally, in Section IX, wehéit For this code/ = 2, L = 3, andp = 3, andH can equivalently
high-girth QC LDPC codes that simultaneously have godmke written as
theoretical waterfall thresholds (because they are djyatia o o lo
coupled codes) and have good error-floor behavior resulting H= { 0 Ip 1141 } .
from their high girth (which in turn is a result of the fact ) ) ) o
that they are squashed versions of HQC LDPC codes). Mah§je Polynomial version of the parity check matrix is
details are deferred to the appendices. 20 20 20 1 1 1
H(x):[ 0 20 2!4+2? } - [ 0 1 at+42? ] ()
[ |
We begin by reviewing the well-known construction of | [35] Smarandache and Vontobel classified QC LDPC
standard quasi-cyclic (QC) low-density parity-check (LOP ¢odes according to the maximum weight among the circulant
codes as previously described in the literature, €.g., In [3up-matrices in their parity check matrix, or equivalently
[20], [33]. In Section V we will generalize these codes angccording to the maximum weight of the polynomials in their
introduce a novehierarchical family of QC LDPC codes.  polynomial parity check matrix. (The weight of a polynomial
Quasi-cyclic LDPC codes are defined in terms of circulagy simply the number of non-zero terms in that polynomial.)
permutation matrices. Lét , denote the circulant permutat|0n-|-hey defined a “typev/” QC LDPC code as one for which
matrix, or “cyclic shift matrix,” obtained by cyclically & the maximum weight among all polynomial entries, () in
shifting ap x p identity matrix by: positions, wheré) <i < (4 is A7. We will change their terminology slightly and call
p—1; lo, is thus thep x p identity matrix. We often suppressgch a code aveight:\/ QC-LDPC code
Fhe dependence gn writing |; instead ofl; ,,. As an example, Sincewt(hs.s(z)) = 2 in the code of Example 1—that is,
if p =4, then ha 3(z) = 2t + 22 is a binomial—and becauset(hs 3()) >

(4)

II. QuAsi-cycLic LDPCcCODES

(1) 8 8 (1) wt(hj(z)) foral 1 < j < J,1 <1 < L, the code in
I, = 010 0 Example 1 is a weight-Il QC LDPC code.
0010 For any QC LDPC code, we define the vector of weight

sums Y7, wt(h;(x)) for 1 < I < L, to be the “column

An important special case of QC LDPC codes are “weightweight sum,"wt..1(H(z)), of H(z). We define the row weight
(J,L) regular” QC LDPC code. The parity check matrix oum wt,., of H(x) similarly. Thus, the code of Example 1
such a code consisting of rows andL columns ofp x p  has column and row weight sums

cyclic shift sub-matrices. The sub-matrix in thth row and Wtea(H(@) = [1 23] wheow (H(z)) = [3 3.

Ith column isl;,, = (I1)%* and the code has blocklength
N = pL. We abstractly represent tig, /)th submatrix as a ~ As we often work with weight-l QC LDPC codes, and
power of dummy variable: asz't. these codes are particularly important in practice, weduce

More generally, a QC LDPC codes is represented bysame additional useful notation for them. We use the stahdar
polynomialparity check matrixH(z) whose entries arpoly-  definition [3] of thebase matrixof a weight-1 QC LDPC code

nomialsin x: to be theJ x L matrix of powers (circulant shifts) that defines
hi1(z) hia(x) -+ hip(x) the code, i.e.Jog, (H(z)) where logarithms are taken entry-
hoi(x) hoo(x) -+ hop(x) by-entry, and wherég, (0) is defined be-1, used to indicate
H(z) = : _ : , (1) an all-zero sub-matrix.
hoa(@) haa@) oo hop(@) I1l. GRAPHICAL REPRESENTATIONS OFQC LDPC (DES
where p—1 As is very well known, an LDPC code can either be
hji(x) = ZCS [j, ]x* 2) represented by its parity check mattik or equivalently by
5—0 its Tanner graph [25]. A Tanner graph for an LDPC code is
fori<j<J,1<1<L. a bi-partite graph consisting of “variable” nodes repréisgn

For binary QC LDPC codes, which will be our focus forthe codeword bits, and “check” nodes representing theyparit
the rest of this paper, the polynomial coefficients, /] must checks. A variable node is connected to a check node by an

all be 0 or 1. For aveight-QC LDPC code for eachy, !) at edge if and only if the corresponding entry lihis nonzero.

most one coefficient, [j, /] is non-zero. The degree of a node is defined as the number of edges
Example 1:Let C be a lengtlh QC LDPC code described Incident to that node. _ _
by A “protograph,” as introduced by Thorpe in [30], is a

template that can be used to derive a class of Tanner graphs.

10 01 0 Of1 0 O Each node in a protograph represents a “type” of node in a
01 0/{0 1 0j]0 1 O Tanner graph. The nodes will all be duplicatetimes in the
Ho 00 1|10 0 1]0 0 1 3) Tanner graph derived from the protograph.
0 0 0|1 0 0j0 1 1 As an example, consider Fig. 1, which shows a simple
00 0j]0 1 0|1 0 1 example of a protograph that has three types of variablemode
L0000 0)0 0 1}]1 1 0 and two types of check nodes. This protograph tells us that



I 2 3 e p:{l 1 1] (6)

0 1 2

To derive a quasi-cyclic parity-check mattik(z) from the
template specified by a particular protograph, one “liftsf’,(
e.g., [3], [26]) the protograph into & (z) that specifies a
Tanner graph. The Tanner graph so produced is termed a
“cover” [34] (see [35] and references therein for a more
formal definition) of the original protograph. The liftingg
cedure is simply to replace each entry in the incidence matri

A B with a polynomial of weight equal to the entry.
For example, the protograph in Fig. 1 which has the

Fig. 1. A simple protograph with three types of variables amd types of incidence matrix® givenin (6)’ can be lifted into a QC LDPC

checks. code with parity check matrix
z® b z°
. 2 3 H@) = | ") sd e vaf |- )
Q (Q Q QL)

where a, b, ¢, d, e and f are integer exponents between
0 andp — 1, with e # f. These integer exponents (with
some additional constraints such as# f) parameterize an
ensemble of QC LDPC codes all of which are liftings of (and
which cover) the original protograph. In our algorithms we
will optimize over the choice of these explonents to find a
lifting that maximizes the girth of the resulting code.

As an example, the particular lifting that would conversthi
protograph into the Tanner graph shown in Fig. 2 (b), i.ee, th
QC LDPC code with parity check matrix given in Example 1,
is when the exponents are chosen to give:

20 20 20

x a:1+x2

Fig. 2. Two Tanner graphs corresponding to the protograplwshn Fig. 1. IV. CyCLES INQC LDPCCODES
The Tanne_r graph in (a) does_ not have a ql_Jasi-cycIic streicthe one in (b) In this section we review how to identify cycles in QC
‘é‘)es' ﬁndlm fact has the parity check matrix of the QC LDPgiden in LDPC codes from their parity check matrices. As was shown
xample 1. ; al =
in [33], there are efficient ways to describe sets of cycles
of a QC LDPC code in terms of the code’s polynomial
each check of type A should be connected to one variable.pefrlty check matrix. I_n S.eCt'On I.V'A we mtrpduce_ the_ basic
each of the three types, and each check of type B should 'h&2> from [33] behind identifying cycles in weight-I QC
Pes, ype LDPC codes. These results have been extended to higher-
connected to one variable of type 2 and two variables of ty eeight QC LDPC codes [27], [35], [36]. In Section IV-B, we
g;,f'g;]"eﬂygf ?Che\f“::lje scc))f Ct))r/]pe 1 should be connected review how to identify cycles in QC LDPC codes of arbitrary
Fig. 2 sh YP T’ h derived f h eight, and introduce the notation we will subsequentlydnee
'g. 2 SNOWS two Tanner graphs derived from t gprotograp discuss cycles in hierarchical QC LDPC codes. Finally, in
of Fig. 1, withp = 3. Note that there are many possible Tann ection IV-C we review why higher-weight QC LDPC codes
graphs that one can construct that correspond to a partic

: h and th d not v h . h certain characteristics inevitably have short cyché&
protograph, and they need not necessanly have a quast-Cyfio;ne ot that this poses an obstacle to constructing QC LDPC
structure. The Tanner graph shown in Fig. 2 (a) is not qua

lic. Butitis al . licsi bdes with good girth—an obstacle that we will overcome by
C¥C ic. Butitis avr\]/ays easy to construct a quasi-cyclicsien introducing hierarchical QC (HQC) LDPC codes in Section V.
of any protograph. As described in Section VIII, we will ultimately apply a lifig

Protographs can equivalently be described by an “incidenGgansformation into HQC codes combined with a “squashing”
matrix. An incidence matrix has a number of rows equal to thqcedure to obtain high-girth QC codes.

number of types of checks in the protograph and a number of

columns equal to the number of types of variables. Each entry ] ]

in the incidence matrix tells you how many edges there afe Finding cycles in weight-l QC LDPC codes

connecting a type of check node to a type of variable node inA cycle is a path through nodes in the Tanner graph of a
the protograph. For example, the incidence matrix (altetyja code. It alternates between check and variable nodes, artsl st
termed a “protomatrix”P for the protograph in Fig. 1 would and ends at the same node. In terms of the code’s parity check



matrix, each check node in the Tanner graph corresporfeg. 3 and results in a cycle of length four. However, with the
to a row in its parity check matrix, and each variable nodgightly different choice of circulant shifts of the righ&nd
corresponds to a column. A cycle can thus be visualized agxample, a return to the same column of the cyclic shift matri
sequence of alternating vertical and horizontal movesutfino occurs only after two more passes around the base matrix and
the parity check matrix starting and ending on the same roan overall cycle of length2.
A vertical move (along a column) corresponds to choosing We now specify the conditions on tHe, b, ¢, d} developed
a second edge connected to the same variable node that imil[33] that result in a cycle (in fact in a set ¢f cycles).
form the next step in the cycle. A horizontal move (along Galculate an alternating sum of the shift indices assatiate
row) corresponds to choosing two edges connected to the samith neighboring permutation matrices along a given path
check node that form part of the path. (every odd shift index is subtracted rather than added). For
To make the connection between this logic and the specé&dample, consider the left-hand path of Fig. 3. The sum is
structure of QC LDPC codes more concrete, consider Fig. 3a + b — ¢ + d. Each difference between neighboring shift
This figure depicts the parity check matrix of a weight-I Q@ndices in the sum corresponds to the shift in what column
LDPC code with parameters = 4, L = 9, andp = 3. (i.e., what variable node) of the cyclic permutation masic
We focus on the fouB x 3 cyclic shift matrices (representedthe path passes through. Only if the differences sum to zero
by the black squared),, I, I., andl,;. Two choices for the (mod#) at the end of the path will the path return to the
parameters of these four matrices are shown in the sub-figurgame variable node in the starting permutation matrix etner
a=0,b=2¢=1, andd = 2 on the left, ande = 0, forming a cycle. For the example of Fig. 3, the condition for

b= c=d =2 on the right. a length-four cycle to exist is:
(—a+b—c+d) modp=0, 9)
H = which is satisfied form = 0, b = 2, ¢ = 1, d = 2, but is not
satisfied bya =0, b=c=d = 2.
B. Finding cycles in higher-weight QC LDPC codes
7]:"0"6’" *0”11 6 6 We now consider the more involved example of the weight-
010 |00 1 1 Il code of Example 1 from Section Il. Recall that this code is
‘ : ! defined by the2 x 3 polynomial parity-check matrix
001 (100 9 o o o
| ! oz T
j -~ 4 o H(z) = 0 20 !4 g2
Q 10 001 0
001 |[100 -1 In terms of the coefficients:[j,!] defined byh;,(v) =
1-0-0»0-1 0 0 Do esli et cf (2), coli ] = 1 (4,0) equals(l, 1),
h o - a a - (1,2), (1,3) or (2,2); and c,[2,3] = 1if s =1 or s = 2;
Fig. 3. A parity-check matrix and fous x 3 circulant permutation matrices all otherc;[j,1] = 0.
(la, 1y, 1c andl ) selected from it. One set of parameters (lower left: 0, Now, consider the following ordered series:
b=2¢=1,d = 2) results in a cycle of length four. An alternate set ’ '
(lower right,a = 0, b = ¢ = d = 2) results in a cycle of length twelve. 0 =1{(1,2),(2,2),(2,3),(2,3),(2,3),(1,3)} (10)

Consider any path through the base matrix of this codehere each paifj,/) in O satisfies1 < j < J = 2 and
Because of the replacement of each base matrix entryplypa 1 < [ < L = 3. This ordered series specifies a sequence of
circulant matrix, a path through the base matrix corresponictilinear moves throughl(z). These moves are analogous
to p paths through the Tanner graph. For any of these patiosthose in Fig. 3 with the important distinction that if the
to be a cycle it is necessary for the path through the baselynomial in position(j,7) has more than one term (that is,
matrix to form a cycle, without passing through any all-zera4[j, {] is non-zero for more than one value 9f then the next
matrices. But, this is not sufficient since each cyclic shifiair in the sequencean be the same. For example, in (10)
matrix corresponds tp parity andp variable nodes. The paththe third, fourth, and fifth pairs are identical.
could end up at a different variable node in the same cyclic To specify a candidate cycle through the Tanner graph, we
shift matrix and thus not complete a cycle. associate a coefficient indexwith each pair(j, 1) in O, such

The necessary and sufficient condition for cycles to exitat ¢,[j,!] # 0. We denote this series of coefficient indices
is that when the path through the base matrix returns to thg S. To ensure that each step in the series corresponds to
starting entry, it returns to the same column of the cyclift shtraversing a distinct edge in the Tanner graph we require the
matrix from which it started. In the example of Fig. 3, comsid following of neighboring pairg;—,/~) and(;*, (") in O and
the path through the base matrix starting at the entry lahgle the corresponding neighboring coefficient indieces and s™
then progressing through the entries labéled andd in turn, in S:if (=,i7) = (j7,1T), then the corresponding indices
and terminating at the entry labeledThe corresponding path s~ # s¥.
through the parity check matrix, with parameter settings 0, The candidate cycle will be a cycle if the alternating sum
b=2,¢c=1,d=2,is depicted in the left-hand example ofof coefficient indices inS modulop equals zero.



In our example, consider the two following choices for thet al. [22]. Notice that if we convert these protographs into
respective (ordered) sets of coefficient indices: QC LDPC codes by a simple lifting, the QC LDPC codes
B corresponding to the protographs in Fig. 8 (a) would ind®hta
Sa ={0,0,1,2,1,0} (11 have eight-cycles, while those in Fig. 8 (b) would ineviabl
Sy =1{0,0,2,1,2,0}. (12) have six-cycles.
Each of these choices corresponds to a cycle of lefigth- It should be noted that even for weight-l QC LDPC codes,
through the Tanner graph of the code. The alternating suffigre are limits to the girth. In particular, Fossorier [3@#s
modulo3 can be verified to be equal to zero. RespectiveRroven (see his Theorem 2.5) that 4oy L) regular QC LDPC

these sums are: code must have girth of at most 12, and that theorem can easily
be extended to show that there are inevitably 12-cycles for
(<0+0-14+2-140)mod3 = (0)mod3 =0 any weight-l QC LDPC code with a base matrix containing

(-0+0—-24+1—-24+0)mod3 = (—-3)mod3 =0. a2 x 3 or3x 2 non-zero sub-matrix. One can evade that
bound with constructions that place a large number of all-

C. Inevitable cycles in higher-weight QC LDPC codes  Z€roes sub-matrices into the parity check matrix [27], [28]

. . . : . but the challenge we take up here is somewhat different. We
Unfortunately, the logic described in the previous section . . . . ;
o . ; A are interested in taking as an input a protograph for a djyatia
implies that higher-weight QC LDPC codes will inevitably 2. . .

coupled code where it is not even obvious how to avoid cycles

contain short cycles. An important theorem proven by Smara lenath 6 or 8. and obtaining a reasonably larae-airthigers
dache and Vontobel [35], (see also O’Sullivan [27], ExampP suc?h a code' g ylarge-g

3.2, where inevitable cycles are called “balanced cycles ) )

states that any weight-lll QC LDPC code will inevitably It turns out that there d_o exist techniques to construct QC

contain cycles of length six. Suppose that, without loss GPFPC codes corresponding to these protographs that have
generality, that the polynomial, (=) is weight-lll and has girth of 10 or greater. We present _such codes in Section IX-

the formz® + ¥ + 2¢. To see that a cycle must exist usinga" But, to understano! these t_echnlq_ues, we need to make an
our notation, choose the length-six ordered series apparent detour and introdubérarchical QC LDPC codes.

0= {(]v l)a (.]7 l)v (.7’ Z)a (.]7 l)v (.7’ Z)a (.]7 l)}v (13)
and choos&S = {a,b,c,a,b,c}. We find that V. HIERARCHICAL QC LDPCCODES
(ma+b—c+a=-b+c) modp=0, (14) " \We now introducehierarchical QC LDPC codes (HQC
for any value ofp. Therefore an “inevitable” cycle exists. LDPC codes), motivated by the fact that these codes will
One can also prove (see [35], Theorem 17 or [27], ExampMimately enable us to solve the problem of constructing QC
3.3) that a parity check matrid () of a weight-1l QC LDPC LDPC codes corresponding to protographs with multiple sdge
code that contains two weight-two polynomials in the sanf&tween check and variable types, without creating inbldta
row or the same column will inevitably have eight-cycles. Tehort cycles in the Tanner graph of the code. However, becaus
see this, suppose the two weight-2 polynomials are in thesathese codes may eventually have other applications, weptres
row j, but in two different columng;, # lo. Leth,;, = 2+ their construction in a form that is actually more generakth
andh;;, = z¢ + 2. Consider the length-eight ordered seriege will need for the purpose of eliminating inevitable short
: : : : : : : : cycles.
0= {(]’ll)’(]’ll)’(j’b)’(]’lg)’(]’ll)’(j’ll)’(]’lg)’(]’li)S} A hierarchical QC LDPC code is formed from “levels”
(15) that each have a quasi-cyclic structure. The structure ean b
specified in two equivalent, complementary forms. The finst,
§={a,bc,d,b,a,d,c}. (16) terms of the polynomial parity check matrices of these cpdes
We again find that is presented in Sec. V-A. The second, in terms of the “tree
structure” of these codes is presented in Sec. V-B. Thisrgkco
form finds use in our girth maximizing algorithms. Finallg, i
regardless of the value gf Sec. V-C we connect the hierarchical structure to a pagicul
These inevitable six-cycles and eight-cycles appear to ggguence of liftings of a base graph, per the discussion of
serious limitations on what protographs can be convert&@c. Ill. The number of liftings equals the number of levels
into quasi-cyclic codes with high girth. For example, if thén the resulting HQC LDPC code.
protograph has a type of variable that is connected to a ti/pe o Although our definitions of general hierarchical QC LDPC
check by three edges, the simple lifting of the incidenceimat codes are novel so far as we know, we have identified one prior
of the protograph described in Section Il will inevitablald example of a discussion of hierarchical codes the liteeatur
to six-cycles in the QC LDPC code obtained. This is the short discussion in [35, Sec. VII] of the possybli
Furthermore, protographs with higher edge weights aof using a sequence of graph covers to increase the minimum
not particularly exotic. Consider for example the protgirs distance of the base code. The special case described shere i
shown in Section IX-A, Fig. 8, which are the protographs faa two-layer code, discussed in more depth in our examples in
“one-sided” spatially coupled codes as described by Kudekaec. VIII.

and choose

(—a+b—c+d—b+a—d+c) mod p=0, a7)



20 0 b+ 2 0 T 1+ 22 0 0 O 25 22 1
!t + 27 x6 0 142 0 x 0 0 0 1 26 23
0 bt 427 0 x 1+ 22 0 0 0 0 2 1 2
H(z) 0 x 1+ 22 28 0 xl + 27 A ! 0 0 O (18)
14 22 0 x b 427 26 0 1 28 23 0 0 0
T 1+ 22 0 0 at + 27 26 2 1 2 0 0 O
[ 2+ (e 42Ty | (1 +2%)y +ay? | 0 | 2% + y + 2®y?
H(z,y) i (1+a:2)y+a:y2 | I6+(I+I7)y | 20 1y + 7592 | 0 (19)
Hi@.y,2) = [2° + @+ 2Ty + (L+22)y +ay)z | @€ +y+ay?)z] (20)

A. Parity check matrices of hierarchical QC LDPC codes parity check matrix whose entries are ones and zeroes. To

Before fully defining HQC LDPC codes formally, itis easiexpand a polynomial matrix, we obviously need to know the

Example 2:Consider the polynomial parity check matri _We now present a formal deflnl_t|0n of the f_amilyﬁf-level
specified in equation (18) with — 8. Because the highest ierarchical QC LDPC codes which generalizes our example.
weight of any of the polynomial entries & (e.g.,h1 3(x) = Definition 1: A hierarchical QC LDPC code witlk levels
x! +27), and because there are columns in the matrix, this is defined by aJix x Lk} multi-variate polynomial parity
is a length-96 weight-1l QC LDPC code. check matrixH () in K variables. The entry in thgh row and

But note that this parity check matrix has additional struéth column ofH(-), 1 < j < Jig), 1 <1 < Lk is aK-variate
ture which makes it &ierarchical QC LDPC code. In partic- polynomialh;;(-,...,-) over the K variables,rpy, ..., (]
ular, in this example, each x 3 sub-matrix of polynomials The maximum exponent of any of these polynomialsig,
in (18) has a circulant structure, as do both the left-hartl ah < k¥ < K, is p) — 1. The coefficient associated with the
right-hand sets o2 x 2 sub-matrices o8 x 3 sub-matrices. term (), - x5, - - - x5, Where0 < s < py) — 1 for all & is

Just as we use polynomials in the dummy variabléo ¢, . s, [j,!]. With these definitions we defined the code by
represent the underlying circulant sub-matrices in a stahdthe Jix) - Lk polynomials
QC LDPC code, we can use a bi-variate polynomial in the

two dummy variables: andy to represent both the circulant hji (), - .., 2x]) =

matrices represented by the variahtein (18) as well as pir)—1

the circulant arrangements within ea8hx 3 sub-matrix of Z Z Coyosic lJs 1 <H e ) . (21)
polynomials inz. The latter circulant structure we represent sK=0 51=0

using the dummy variablgg. We can further represent the ) ) ) ) ]
2 % 2 circulant structure o8 x 3 circulant sub-matrices using 1 N€ Parity check matrix of such a code is obtained by repgacin

the additional dummy variable. each of theJix, - Lix) entries ofH(zpy, ..., k) with the
Thus, in equation (19) we contract thiex 12 polynomial Sub-matrix

parity check matrixH (z) of equation (18) into th& x 4 bi- P —1

variate polynomial parity check matrbt(z, y). As we use this Z Z Corsn i (|3K Q. .. ® |§1pm) . (22)

example to illustrate many aspects of the ensuing discussio [, —,
please make sure you think about and understand why, e.g.,
the upper righ x 3 sub-matrix inH(z) is represented by the where ® denotes a Kronecker product. Defining the recursive
bi-variate polynomial:® + y + 2%y2 in H(z, y). relations Jy, 1) = Jix) - ppry @nd Ly 1) = Ly - pgy, Where
We can repeat the process to contid¢t, y) into thel x2 0 < k < K, th}? parity check matrix thus const;ycted has
tri-variate polynomial parity check matrid (z,y, z) given in - Jjo) = Jix) - [[x=1 Py rows andLyg) = L - [ P
equation (20). columns. u
Each of the three contractions of the parity check matrix of while the definition of HQC LDPC codes holds more
this code into the polynomial parity check matrices repmésg generally for codes defined in fields other than GF(2), in this
by (18), (19), and (20), corresponds to a “level” in thgaper we exclusively considbinary QC LDPC codes wherein
hierarchy of this 3-level HQC LDPC code. B allc,, .. ..[j,1] are binary. We return to our previous example
In this example, we started with a polynomial parity checto illustrate our definitions.
matrix H(z), and contracted it first t¢d(z,y) and then to  Example 2 (continued)fhe code of this example is a three-
H(z,y, z). When constructing an HQC LDPC code, it is oftetevel HQC LDPC code. To cast this example into the language
more natural to go in the other direction—expanding a matrof Definition 1 we first identifyx with x[;), y with x5, and
like H(z,y,z) into H(x) and then ultimately into the full z with .
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In this examplep;;; = 8, pjg) = 3, pj3) = 2. Therefore, this matrix by expanding out all but the lagt levels.
Jigp =1, Lig) = 2; Jjg) = 2, Lig) = 4; Juy = 6, Ly = 12, Replace eaclh; (1, ..., z(x)) with the polynomial matrix
and J[O] =48, L[O] = 96. in Ty .- ,x[k]

We can rewrite, e.g., the terin ; (x,y, z) of (20) as

pix;—1 pp—1 N K
haa (@), o), 2g3)) DD ca SKU’”('?;[K]@ - ® '1Z§+1]) 1=
=z —|—(x1 —|—x7):102 —i—((l—i—xQ):vQ +:101:102):v3 =0 =0 =
[ [ () “ )~ WP 7B he matrixH (zpg, . . . ,x[f{]) has dimensionf[f{] X Lig)-
1 2 7
= Z Z Z Cor,s2,5a (1 1]:3[11]:3[22]:3[3?’], B. Tree structure of HQC LDPC codes

= We now show that we can alternatively describe an HQC
where all coefficientscs, s, s;[1,1] are zero except for | ppc code by specifying the codeteee structure The tree

c.00[1,1] = craio[l,1] = eraolli1] = coaall,1] = structure of any HQC LDPC code is defined by a matrix of
o[l 1] = croa[l,1] = 1. B |abeled treesdefined in Definition 2. These labeled trees quite
Rather than expanding (z(y), ..., z[x)) into a full parity naturally reveal the hierarchical structure of the code.Wile

check matrix as in (22), one often wants to generate the foghow that there is a complete equivalence between Defirition
given in equation (1) of the polynomial parity check matrixf the last section and the definitions of this section. We can
H(z[1)) of a QC LDPC codén one variable To do this we use start with Definition 1 and easily find the unique set of labele
the construction of (22) for all but the first level. We re@actrees that specify the code or, starting from a tree strectur
eachh;i(zpy, ..., rx)) with the polynomial matrix inzy find the unique HQC LDPC code that has that structure.

The reasons to consider this alternative description aoe tw
fold. First, the representations of this section help revea
the hierarchical structure within the algebraic desaviptof
Definition 1. Second, we will usanlabeledtrees to define a
The matrixH (zy)) is of size.Jj;) x Lyy). We return once more family of HQC LDPC codes, and then will want to search for
to our example to illustrate this idea. a labeling within that family to optimize girth.

Example 2 (continued): Consider the term of The basic observation that motivates the following defini-
h1(zy, 2, 7)), namely (1 + $[21])I[2]I[3], corresponding tions is that the non-zero terms of the polynomials that @efin
to the non-zero coefficientsyp ;1 1[1,1] and c21.1[1,1]. any HQC LDPC code have lierarchical clusteringthat can
According to equation (23), The contribution of this term tde represented by a labeled tree. We formally define such a
H(zp)) is labeled treeas follows.

0 5 Definition 2: A labeled tre€T’, corresponding to an entry in

co11 1] (12 @ la) apy +c21a (L 1 (T2 @ 1) 2y, the Jixj x Lix) multi-variate polynomial parity check matrix

Wherex%] =1, co11[1,1] = c211[1,1] =1 and H(-) in K variables defining & -level HQC_LDPC (_:ode, is
a depth# tree. The root node of the tree is the single node

px1—1 pp—1
D oD U1 @+ 15, ) 7l (23)

sk =0 s1=0

0 000 01 at the top Kth) level. Each node at levéd, 1 < k < K, has
0001 0O a number of edges connecting it to nodes in the next level
Ly @15 = 000010 (24) down. The number of edges must be an integer in the set
, = 001000 {1,...,ppy — 1}
100 0 00 Each edge below a node at leVeis labeled by an integer

o

10 0 00 in the set{0,1,...,py) — 1}. Edges are termed “siblings” if
Referring back to the left-hand six-by-six sub-matrix 0¥hey share thg same parent (i.e., are connecteq t_o the same
. . -node at the higher level). The edge labels of sibling nodes
H(z,y,z) in (18) we can confirm the correctness of this . o
5 . are constrained to be distinct. We refer to the edges below
pattern, as al + x° term appears in each of the non-zer . . . g
N . . e lowest nodes as “leaves.” We will have need to index the
entries in the matrix of equation (24).

Having worked this example, we can now see how th%dges at each level of the tree, so Y3&k]| to denote the

form of equation (23) nicely reveals the structure of HQ(g;\%b:rp(:r:rﬁgnes dg‘ifatalte\lle]e\;e.lk, .e., the set of edges that

LDPC codes. Each row and each column of the matrix : . . .
Sk 5 The code discussed in Example 2 is characterized by the
I R b has exactly one non-zero element. If the

Lpix) o _ . Matrix of two labeled trees shown in Figure 4. The left-hand

COEﬁ'C'entC.51=S2 """ sxclg 1] 1 non-zero, the permutation _mamxtree characterizes the polynomial ;(z,y, z) and the right-

Ii}Pm (equivalent to the term:[sll]) is added at the location of hand tree characterizésm(a:,y,z),’ both specified in (20).

each of these non-zero elements. Before understanding how these labeled trees relate to the
Finally, we note that the polynomial parity check mastructure of the code we note that for this cogg = 8,

trix of a K-level HQC LDPC code can more generally bg,, =3 andp; = 2, and node and edge labels are within the

expanded into a parity check polynomiHI(x[ll,...,x[fq) ranges specified by Definition 2.

in K variables wherek < K. We call this the “level-  The next definition relates these trees to the structureeof th

K" polynomial parity check matrix of the code. We derivecode.



into the least-factored form of the polynomial). The resigit

O (hierarchical) clustering of terms specifies a labeled.tree
Conversely, we now show that any set of labeled trees can

be uniquely mapped to an HQC LDPC code. Starting with the

set of labeled trees, we first solve for the non-zero coefftsie

i

01 2 by concatenating edge labels on all paths from distinctdeav
O to the root. Using the resulting set of non-zero coefficieémts
Definition 1 specifies the code. [ |
6 0 s Example 3:To understand the structure on the code im-

posed by the tree topology, consider again the two treesrshow
in Fig. 4. By “tree topology,” we simply mean the unlabeled
Fig. 4. Example of the tree structure of a family of threeelelnierarchical yersions of these trees. Each unlabeled tree has thres vel

QC LDPC codes. The left-hand tree’S 1, the right-hand tree i ». there are two of them. From this we infer that these unlabeled
trees specify a family of three-level HQC LDPC codes where
Jiz) = 1 and L3 = 2. Since the maximum number of leaves
below a node at the first level is two, these trees specifies a

Definition 3: The tree structureof a K-level HQC LDPC
code is specified by a matrix of labeled tre€s= {T,;}, family of weight-ll QC LDPC codes

L= J = Jug, I <1< Liq. To each leaf o, we 0 to06"on the left-hand tree. To simplify notation, let

sxc[J, ] In a one- us again user for xqj, y for xpey, andz for x. Since the
to-one manner. If the edge labels on the unique path from 1 (2 3l .
number of leaves is six, we deduce that; (x,y, z) has six

.....

the leaf to the root node are,...,ex then the non-zero .
o . . . , terms, i.e.,
coefficient associated with the leafds, .. ..[j,!] = 1. p
In certam_cases (correspond|_ng_t0 all-zero polynomlahs) w hia(z,y,2) = Z gy
want to define a “null” tree. This is a non-existent tree (and Pt

therefore no edges exist so all coefficients are zero). We use

the special symbok to denote the null tree. E.gTy; = « Wherepu) =8, ppy = 3 andpg = 2,0 <a; <7,0 < b; <2,
for the code specified in (5). m ando < ¢; < 1. Since the root node has two edges, we deduce

The number of edges below levél of tree T;, indi- that these six terms are clustered into two sets of polynismia

cates the number ofiistinct powers of z that appear in defined byc; = c; = ¢z andey = ¢5 = ¢, thus
hji(xp, ..., zk)). Each node at levell — 1 corresponds to . 4. | 4y by | as. bsy .1 as bi | as bs | ag. by _ca
one of these terms. The number of edges below each of e Y YTy )2 (2T Y ey )2,

nodes at IeveK— 1 ind_icates the number of distinct POWETSyherec; # ¢4. (Sincec; andcy are both binary, without loss
of 2 1) associated with that term, and so on down the tregs generality we could set; = 0 andc, = 1 at this point.)

The number of leaves in the tree equals the number of terRy§yy from the second level in the tree we deduce that the terms
in the polynomialh; ;(zpy, . . ., zx)). The maximum number in 2! group into two sets, one with two terms 8¢ = bs.
of leaves below any of the lowest level nodes (acrosgjall  The same happens with the terms:ift whereby = bs. This

pairs) tells us the weight of the code (weight-I, weightelic.). g5 ys that the polynomials compatible with this tree have
The edge labels indicate the exponents that define the mon-z¢¢ torm

polynomials.

We can also define a more fine-grained “weight at levék® % 4 (2% 4 9)y%2) 21 4 (294 4 295yt + x%6yPs) 2%,
k" of a hierarchical code by the maximum number of edges (25)
below any of the nodes at leviel A hierarchical code can havewherec; # cy, by # ba, by # b, as # a3 anday # as (but,
different weights at different levels; for example, the edbm e.g.,b; = b, is allowed). [ ]
Example 2 with tree structure shown in Figure 4 is weight-1l One can now see that the topology of the unlabeled version
at level 1 (the lowest level), weight-Ill at level 2, and weigl  of the trees of Fig. 4 specifies a family of HQC LDPC codes, of
at level 3. which the code considered in Example 2, and specified in (20),

The following lemma shows that the two ways of concefs one member. As the last example illustrates, many degrees
tualizing HQC LDPC codes (Definition 1 or Definition 3) areof freedom remain within the specified family. In particular
equivalent. these are the choice of thg, b; andc; in (25), subject to the

Lemma 1:There is a one-to-one mapping between argonstraintsc; # c4, b1 # bo,...,a4 # as. In the algorithms
HQC LDPC codes as defined in Definition 1 and a treef Section VII, were we maximize the girth of our codes, we
structure, as defined in Definition 3. B search among these degrees of freedom, keeping the code’s

Proof: We first show that any HQC LDPC code hasinlabeled tree structure fixed.

a tree structure that can be read off from the form of the Finally, we note that in a non-hierarchical weight-l QC
polynomials that make up its polynomial parity-check matri LDPC code, the trees il are quite simple. Each is either
To see this, start with Definition 1. Thgx L) polynomials the null tree or a tree that consists of a single root node with
each define one labeled tree. Using the distributive law, veesingle leaf below it. No leaf has a sibling so no constraints
cluster the terms of each polynomial as much as possible (i@&re placed on the choice of edge labels.
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C. Hierarchical structure as a particular choice of graph
coverings

We now connect the hierarchical structure of HQC LDPC
codes to a particular sequence of graph “covers” [34], [25.
illustrate this connection by showing how the code discdisse
in Example 2 is a three-layer cover of the code’s protograph.
This is the persective taken in [35]. The sequence of cogers i
depicted in Fig. 5.

Example 2 (continued)rig. 5(a) depicts the Tanner graph
of the QC LDPC code, whose parity check matrix is obtained
by substitutingl,; for eachz? in (18). In Fig. 5(a), the dots
in each circle depict the variable nodes that correspond to
one circulant matrix. The squares in each rectangle defpéct t
check nodes that correspond to one circulant matrix. Fig) 5(
can be regarded as g -cover (wherep;;; = 8) of the
protograph of Fig. 5(a) and represents (18). Each column and (@ ®
each row inH(x) of (18) respectively correspond to a dot
and a square in Fig. 5(b). If any non-zero elementif:)
is the summation of more than oné term, the number of
edges connecting the corresponding dot and square in . 5(
equals the number of terms.

To get to Fig. 5(c) and (d) we recursively apply the same
logic. Fig. 5(b) is app-cover (wherepj = 3) of the
protograph of Fig. 5(c). Each column and each rowifx;, y)
of (19) respectively correspond to a dot and a square in
Fig. 5(c). Finally, Fig. 5(c) is gjs-cover (wherepjs = 2) .
of the protograph shown in Fig.[5](d). Each cqurr[wr]l and eagF 'e?'of\f,fgéﬂ:fég?stgfo';ﬁgrﬁﬁ PC cade of Example 2 as a these graph
row inH(x, y, z) of (20) respectively correspond to a dot and a
square in Fig. 5(d). Reversing the above steps, the prgibgra
in Fig. 5(d) can thus be “lifted” into the Tanner graph of(iii) j, = j,41 for t € Ze.en (€ven integers),

OO0 OO0 OO0 OO
N W

(d

Fig. 5(a) through a sequence of three covering steps. (iv) 1y = lyqq fOr t € Zogq (0dd integers),
(v) IC[4,1]| > 0 for all (4,1) € O, where the set[j,!] is
VI. CYCLES IN HIERARCHICAL QC LDPCCODES defined to be the set of coefficients in the polynomial in

We now state the necessary and sufficient conditions on the the jth row andith column ofH(.) that are non-zero:

polynomial parity check matrix of an HQC LDPC code for that Clj, I = {cor sl l] s sy sic 0, 1] #£ 0F. (27)
code to have a cycle of a particular length. These conditions ) o
generalize those specified by Fossorier in [33] for weighel ~ The second sef is a set of lengthk vectors of coefficient
LDPC codes. They are also formalizations and generalizatigndices
of the examples we gave for higher-weight QC LDPC codes in _ : : .
Section IV-B; the main important new requirement compared &= {slin, bl sl L), slian, lan]} (28)
to those examples is that our cycles now need to be cyclesniere, as implied by the notatiofy;, ;) € O for all t,1 <

all levels of the hierarchy simultaneously. t <2A, and|S| = |O|. Furthermore,
(vi) the kth coordinate si[j,!] of s[j,I] satisfies0 <
A. Finding cycles in HQC LDPC codes sklg, 1] < pp —1forall (j,1) € O,

csplds 1] € Clg, 1] for all (4,1) € O, wherecg; 514,1] is
a compact notation fots, . s, [4.1]-

if consecutive elements aP are identical, i.e.(j;, ;) =
(Je+1,li41) for somet, 1 < t < 2A, thens[j, l;] #
s[je+1, le1]-

The above definition generalizes those definitions made and
used in Sections IV-A and IV-C for finding cycles in higher-
weight QC LDPC codes. In those sections the ordered set

O = {(j1,11),(j2, 12),(js, Is), - - - ,(jans l2a)}  (26) O and coefficient indicesS were first introduced and their
characteristics were described. For exampleo$ee (10),
such that (13), and (15), and for those & see (11), (12), and (16).
() 1<y <Jgyandl <[, < Lk forall ¢, 1 <t <2A, These examples illustrate the reasoning behind critejia(§)
(i) Joa = J1, in the definition above.

We start by defining a path (or “candidate cycle”) througlgvu)
a K-variate polynomial parity check matrix. (viii)

Definition 4: A length2A path P through a K-variate
Jix) % Lk polynomial parity check matrix matrixi(-) of
an HQC LDPC code is specified by two se3,andS, i.e.,
P={0,S}.

The first setO is an ordered series
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We now state the conditions for a lengiA- path P = the path originates and terminates on the same variable node

{0, S} actually to correspond to lengthh cycles in the and cycles exists. |
Tanner graph. Consider the following alternating sums, oneWe immediately have the following theorem.
for eachk, 1 <k < K: Theorem 2:A necessary and sufficient condition forfé-
9A level hierarchical QC LDPC code to have girth at lex(gt+1)
S[k] = Z(_l)tsk[jt,lt]- (29) s the following. For all paths through the polynomial pgrit
P check matrix of length at mostA (path length at least four
and at mosRA), condition (30) does not hold for at least one

As reflected in the following theorem, these sums are t € 1< K -
generalization of the sum in (9) to HQC LDPC codes. oo
Theorem 1:A path length2A path? = {O, S} through the
K-variate Jjx| x Lk polynomial parity check matrix matrix B. Examples
H(:) correspond to lengtBA cycles in the Tanner graph if We now give examples of two paths through the polynomial
and only iffor everyk, 1 <k < K, parity check matrix of the code of Example 2. In the first
we describe a path that corresponds to cycles through the
%[kl mod pyy = 0. (9)  Tanner graph. We first consider the code as a QC LDPC
m code (ignoring its hierarchical structure) and use Fosseri
Proof: First consider the case whefé = 1, i.e., anon- condition to verify the existence of cycles. We then look at
hierarchical QC LDPC code for which (30) corresponds tghe same code from a hierarchical perspective to illustrate
Fossorier's condition. Recall the logic of Section IV. Iristh Theorem 2. In the second example we consider a path through
setting if condition (30) isnot satisfied, then the column ofthe same code that does not correspond to a cycle through the
the polynomial parity check matrix from which the path origTanner graph.
inates is distinct from the one on which the path terminates.Example 4: (Cycle in an HQC LDPC cod€pnsider again
Since distinct columns of the polynomial parity check matrithe polynomial parity check matricesl(z) and H(z,y),
correspond to distinct sets of variable nodes in the Tanr@spectively specified in (18) and (19). First consider tbe-n
graph, this means that if (30) is not satisfied the path does hégrarchical description of the code specifiedtbi). A cycle
correspond to a set of cycles. of length-four exists traversing the path= {O, S} where
In general, what condition (30) is helping us to understand i _
whether, in the expanded parity check matrix atitlet lower 0 =1{(0,0),(1,0), (1,5), (0,5)}-
level the path through the polynomial parity check matriXhis corresponds to, in order, the four polynomials
corresponds to a set of path through the parity check matrix 6

— 6
that all correspond to cycles in the Tanner graph. In the case . _— c6[0, 0] 2%, 7
of a non-hierarchical QC LDPC code there is only one level Tt B Cl[i’ (5)] @+ er[l1, 0],
of expansion, from the polynomial parity check matrix to the * 9 all, ]xb 9
parity check matrix. However, in an HQC LDPC code there L+2% = 0,527+ [0, 5] 2%
are multiple levels of expansion. Selecting out[0, 0], ¢7[1,0], ¢1[1,5] and [0, 5] means we
Now consider HQC LDPC codes whefé > 1. Given any choose
path consider whether condition (30) holds fo= K. If the S=1{6,7,1,0}.

condition does not hold then, similar to Fossorier’s loglie )

path through the parity-check matrix at the next lower levefVe calculate the sum in (29) to be

i.g., through the Ieveﬂ{(—l) polynomial parity check_matrix_, S mod8 = (—6+7—-1+0)mod8=0, (31)

will not start and end in the same column. In the hierarchical

setting each column at levél — 1 corresponds to a set ofwherep(;; = 8 for this code. This example confirms, in the

variable nodes. However, due to the way we expand out theneral notation, the test for cycles in non-hierarchic@ Q

parity-check matrix using Kronecker products in Definitbon LDPC codes already discussed in Sec. IV-A.

the sets of variable nodes corresponding to distinct column Now, consider the same cycle from the hierarchical per-

of the level% polynomial parity check matrix for any giveln  spective. With respect to the two-level representakigm, y)

are non-intersecting. A path that originates and termate of (19) the same cycle through the Tanner graph corresponds

distinct subsets of the variable nodes cannot correspord tto the ordered series

set of cycles. Thus, if (30) does not hold for= K, the path

cannot correspond to a set of cycles. 0 = {(0,0),(0,0),(0,1), (0,1)}-
On the other hand, if (30) is satisfied fbr= K then cycles Now we have polynomials® + (x4 z7)y and (1+z2)y + 2>

may exist, depending on what happens at the lower levelghich, respectively, are

Using the same argument we recurse down the levels from

k = K to k = 1. If there is anyk for which (30) is not ¢6,0(0, 0] 2% + ¢1,1[0, 0] 2y + ¢7,1[0, 0] 27y,

satisfied then the path originates from and terminate andist

variable nodes and therefore does not correspond to a set of

cycles. However, if (30) is satisfied for dl| 1 < k < K, then c0.1[0,1] y + ¢2.1[0, 1] 2%y + ¢1.2[0, 1] 29/
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The same cycles correspond to the coefficient indices

s={[s} 1T

Note that the first sub-index of each coefficient corresponds
to the sub-index of the coefficients selected at the ond-leve
view. The alternating sums along the path are

Al

Y1 mod8=(—6+7—1+0) mod 8 =0
Y2 mod3=(-0+1-2+41) mod3=0 al

where p;;; = 8 and pjy) = 3 for this code. While we do

not work out the example for the three-level representation

H(g;, 1, z) of (20), we note that the ordered traversed by thigg. 6. The Iabelejd trees in a restricted two-level HQC _LDI%ﬁecwill all

cycle would be® — {(07 0)’ (07 0)’ (07 0)’ (07 0)} m E::gewt\go levels, with each node at the bottom level havingtex@ne leaf
Example 5: (Non-cycle in an HQC LDPC codéje now '

provide an example of a path throudh(z,y) for which

¥[1] = 0 mod pyy; but X[2] # 0 mod pjy. Let the ordered node, than this would be a weight-lll (weight-1l) QC LDPC

set beO = {(0,0),(1,0),(1,1),(0,1)}. This corresponds to code, and the conditions of the last paragraph would apply.

polynomialsz® + (z+x7)y, (1+22)y +zy? 25+ (zx+27)y, However, the sibling condition is not required for inevitb

and(1+z?)y+zy®. We select the set of set coefficient indicesycles to exist.

to be The logic behind these statements is almost identical to the
S = {{ 6 } 7 [ 2 ] ’ { 6 } 7 [ 2 ]}, earlier case. We describe it completely for the first sitrati
0 1 0 1 We pick a length-six ordered serigd equal to (13), i.e.,

from which we can verify that[1] = 0 mod 8 but £[2] # O = {00, (5,1, (1), (4,1, (G.1), (45,1}, where (j,1) is

0 mod3. Hence while condition (30) holds at level one, it doeffie index of the labeled tred’;; that has three leaves.
not hold at level two. Referring to the expandedz) in (18) Let the three lengthic coefficient vectors correspond to the
one can confirm this conclusion using the logic of Sec. IHree leaves ba,, sy, s. and select the coefficient sé&t =

A. In particular,2? is located in the sixth column of the first{Sa, S Sc, Sa, Sv, Sc}. Then, because each element is both an
row of H(z), while the polynomial:® traversed by the path €ven and an odd element of the set, (30) is satisfied for évery

is located in the fifth column of the fifth row dfi(z). ~ m Justas it was in the QC LDPC example of (14). The logic for
automatic eight-cycles follows from the analogous ex@msi

. . of the choices made in (15) and (16).
C. Inevitable cycles in HQC LDPC codes We now illustrate these points about inevitable cycles for
Since HQC LDPC codes are QC LDPC codes, they alg0sypclass of two-level HQC LDPC codes that are described
have inevitable cycles. In this section we describe how tlgg|e|y by labeled trees with weight-one at the bottom level.
logic and results of Sec. IV-C regarding inevitable cycleshat is, none of the leaves of the trees have siblings. In
extend to HQC LDPC codes. We illustrate the logic for specifi§ec. VIII-A we name such code®stricted two-level HQC
examp|eS Of HQC LDPC COdeS that we W|" use in our deSIg_I’DpC CodesAn examp'e Of SUCh a tree is given in F|g 6
pipeline presented in Sec. VIIL. Example 6: (Inevitable length-six cycle in HQC LDPC
Recall that in Sec. IV-C we discussed two classes ghdes)First consider any code containing a tree of the type
inevitable cycles. We first saw that there will inevitably bqystrated in Fig. 6. This code has three leaves and so,
cycles of length six in any weight-lll QC LDPC code. Weyccording to our discussion, the code must contain six sycle
also saw that the code will have eight-cycles if the polyraimiyithout loss of generality, let such a tree be located in row

parity check matrixH(-) of a weight-l QC LDPC code ; and column! of the parity check matrixH(z,y). The
contains two weight-two polynomials in any row or in anyolynomial has the form

column. w A A A

We analogously find that there will inevitably be cycles of Ty A atryTE 2y
length six for an HQC LDPC code if any labeled @&, As discussed above, choose the ordered sei¢s be
in the tree matrix defining the code h#wee leavesThere
will inevitably be eight-cycles if, in any row or in any colum O ={0.0,0,0, 00,0, 0, G0, (6.0} (32)
of the_ matri.x of labeled trees definir_1g the HQC LDPC codeyq the ordered set of coefficient vectors to be
there is goair of labeled treeboth having two leaves$n terms
of the polynomial parity check matrid(-) in K variables the S = {[jﬂ, [ZZ], [23], [Zl], [ZZ], [23] } . (33)
former means that one of the polynomials has three terms ! 2 3 ! 2 3
(cf. Ex. 7, below), and the latter means that in some colunfiycles inevitably exist because
or row there is a pair of polynomials having two terms each
(cf. Ex. 6, below). We also note that if the three leaves (or
the two pairs of leaves each) are siblings of the same parent (—41 + A2 — Az + A1 — Ay + A3) mod pyy = 0,

(—ay1 +az —az +a; — az +a3z) mod pp; =0,
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regardless of the values of the coefficients opgf or po. @ This means that we randomly assign labels to the tEes
Example 7: (Inevitable length-eight cycle in HQC LDPGubiject to the constraints that sibling edges must havindist
codes)Now suppose that the parity check matrix of a restrictdebels.
two-level HQC LDPC code contains two labeled trees in the Our algorithm iteratively updates a sequence of edge labels
same row or column where both trees are similar to the oA¢ each iteration it changes the single edge label to theevalu
depicted in Fig. 6, but with only two leaves each. that effects the greatest reduction in a cost function. Tost ¢
Suppose that the two weight-two polynomials are ifunction we use depends on the number of cycles in the current
the same row; but in two different columns; and .. code that have length less than the desired girth. Shorter
Let the polynomial at(j,l;) be xz%y4 + x%2y42 and cycles are weighted to be more costly than longer cycles.
let the polynomial at(j,l2) be z®1yP2 + xb2¢yB2. Con- The algorithm terminates when either (a) the current values

sider the same ordered series as in (15), i®@., = of all coefficients give zero cost (and thus the code has the
{1, 1), (4, 1), (4, 12), (4, 12), (4,11), (4,11), (4, 12), (4, I2)}, and desired girth), or (b) when we can no longer change any single
choose the ordered set of coefficient indices to be coefficient to a value that further reduces the cost (andttineis
s {[m] [az by by as] [as by by numb_er of undesire_d cycles)..Wh_en the tree topolqu of the
A A B | Bol | A (AL By | By [ code implies the existence of inevitable cycles (b) will ays
be the stopping criterion. Updates are performed subject to
Eight cycles are inevitable because the sibling constraint on edge labels. This preserves @ tr
topology of the code and thus, e.g., the protograph stractur
(—a1+az—bi+bz—az+ay—bz+b1) modpp; = 0, of the code is an invariant under the updates. We note that a
(A1 +Ay—B1+By— A+ A1 — Ba+ By) modpg = 0, change in a single edge label will, in general, have a trickle

down effect on a number of code coefficients (equal to the

regardless Qf t_he values of t.he coefficients op@f or pyz). @ _number of leaves in the tree that are a descendent of that
Although it is not our main focus, we note that there W|I|9dge)_

be structures in tree matrices that also give rise to inkldta The main challenge in implementing the algorithm lies in

10-cycles and 12-cycles. For example, if there i3 & 3 or book-keeping: tracking how many cycles of each length the

3 x 2 sub-matrix where all the entries contain trees with at Iea&ﬁrrent code contains, and what the resulting number osycl
one leaf, one inevitably obtains 12-cycles, analogousitheo will be if each edge label is changed to each of its other

situation described in Section IV-C for ordinary weight-CQ possible value. The calculation becomes particularly lire

LDPC codes. when one searches for codes of gitth (which is the largest
girth for which we have so far implemented our algorithm)
VII. M AXIMIZING THE GIRTH OF QC LDPCcCODES because of the many possible ways that eight-cycles can form

In this section we present the ideas behind our girth-
maximizing algorithms for QC LDPC and for HQC LDPC ) o i
codes. The latter is a generalization of the former, presen: Girth maximizing algorithm for QC LDPC codes
in part in [1]. These algorithms can rid the codes of all non- In this section we present the main algorithmic ideas in
inevitable cycles. In Sec. VIII we will describe a secondarthe simplified setting of weight-l QC LDPC codes. This
procedure for ridding the codes of their inevitable cyclesimplification also reduces notation. For the duration a$ th
As the details of the algorithms are somewhat involved, vection, we sepj;) = p, Ljy) = L, Jjy) = J. Further, path
choose only to describe the basic ideas in the main text, agidments are scalars sg, /] = s[j, []. In a weight-l QC LDPC
defer to the appendices the details. The overall algorithres each treeT;; has a single edge and|[j,!] # 0 for at most
described in Appendix A while in Appendices B-D we deene value ofs (if T;; = * thenc,[j,{] = 0 for all s). The set
scribe the subroutines that contain much of the computationf other possible edge labels are the setzoh) < z <p — 1,
complexity (and descriptive intricacies). such thatz # s (there are no sibling edges so there are no
In Section VII-A we describe the general idea of théurther constraints on the choice of.
algorithms, which applies both to QC and to HQC LDPC We now define a set of cost vectors, each of which tracks the
codes. Then, in Section VII-B we give more detail for theost (in terms of the weighted sum of the number of cycles) of
case of weight-l QC LDPC codes. The discussion of thghanging any edge label to each of its other possible values.
generalization to HQC LDPC codes (which includes highem particular, for each edge in eadh;; # * we define
weight QC LDPC codes as a special case) is deferred to the
appendices. L= [vo, 715, p—1l, (35)

) o . o whereT'; ;(z) is the cost we pay for assigning|[j,{] =1 for
A. Girth maximization using hill climbing each value of for 0 < z < p—1. If the desired code girth ig
The general idea of our algorithm (for both QC and HQ@hen the cost’;; is a linear function of the number of cycles
LDPC codes) is as follows. We start by specifying the desired each length that results from each possible choicezfor
tree topology of the code by specifying a set@f unlabeled The weight vectow = [w2, w3, - -+ ,w,/2_;] defines the cost
trees. We initialize our algorithm with a code chosen rangomfunction, wherew, is the cost assigned to each length-
from the ensemble of codes that have the desired tree topolagycles.
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It is useful to visualize the set of cost vectors as a matrizariable and check nodes. Thus, a QC LDPC codes created via
of vectors. For example, a regulés, 6) LDPC code can be a simple lifting operation would suffer from inevitable ¢gs.
represented as Through our procedure we want to deliver a high-girth code

that will also have good performance in the error-floor regim
T Tig Tog Taa Ths T In Section IX we design such spatially-coupled codes, for a
Fon Too Tog Toy Tos Tag |- (36) i i ; i ,
o oo Tov Dav Tav Ta var_lety ofglrths_, and illustrate the error-floor improvemdue
1 %382 733 T34 735 736 to increased girth.

Given a parity check matrikl and desired girtly, the cost ~ We first show how to map such a protograph into an
vectors are calculated via the following argument. We atersi “inflated” HQC LDPC code structure, on which we can use
the set of all possible and distinct lendgtiA-paths per Def. 4, the girth maximizing algorithm of Sec. VII to remove all non-
ie., inevitable cycles. We then show how the resulting HQC LDPC

codes can be “squashed” down to yield a non-hierarchical QC

Pr={P}={0,5} st.|0| = || = 2Aforall P € Px, | ppC code which no longer contains the inevitable cycles and
for A =1,...,q/2. For each pattP € P, and each(j,, 1) € which is a member of the family of codes described by our

O we consider the corresponding coefficieryi, 1, € S. protograph. The s_ubclass of HQC LDPC codes with which we
Assuming all otherdistinct coefficientss|jy, l/] for ¢/ # ¢ Work_are ther_estn(_:ted two-level HQC LDPC codealready
are kept fixed we note the “guilty” value(s) efj;, /] to be Mentioned briefly in the examples of Sec. VI-C.

the valuez, 0 < z < p— 1, such that ifs[j;, ;] were changed It is Worth_ ment|0n|_ng a cou_ple related t(_echnlques. In
to z, then condition (30) would be satisfied. In other words, & /]: @ “masking” technique was introduced which zeroes out
cycle would result. particular elements of the base matrix of a weight-l QC LDPC

For example, for a potential six-cycle, we know that a cyclePde to improve its girth. Of course, this has the effect of
will exist if and only if —s[ji, 1] + sljo,lo] — s[js, ls] + changing the code structure, while the intent in our metisod i
s[ja, 1a] — sljs, Is] +sljs, ls] modp = 0. Suppose, for example,to maintain_ the in_put code_structure. In [38], a two-s_tep'ng
that the current summed value ofs[j, ] + slja,lo] — procedure is applied to weight-1 QC LDPC codes which allows
s[j, 1] + slja, la] — sljs, 5] + sljs,ls] mod p is equal to the resulting code to exceed bounds on minumum distance that
one. Then, the guilty values fofj.. 11, s[js, ls], ands[js, ls] apply to ordinary QC LDPC codes. However, the technique

would be one less than their respective current values,fand /@S Only applied to codes based on protographs that never

guilty values fors[js, Lo, s[js, 1], ands[js, ls] would be one had more than one edge connecting two nodes.
greater than their respective current values. The outline of the section is as follows. In Sec. VIII-A we

Computing “guilty” values is relatively uncomplicated forfully define the class of restricted. two-level HQC LDPC cades
paths consisting oRA distinct elements. It becomes more!n Sec. VIII-B we show how to lift any protograph into such
complicated if some elements of the path appear more th/f0de: In Sec. VIII-C, we describe the squashing procedure,
once. This can occur in potential eight-cycles and occugs, e @nd finally in Sec. VIII-D, we explain the full design pipedin
in the second example of Fig. 3. In such cases, we migluding “inflating” the incidence matrix correspondirgthe
keep in mind that when such coefficients are changed, tEPtograph, lifting the inflated incidence matrix into a fgm
contribution to alternating sum can double, triple (e.g.tie ©f restricted two-level HQC LDPC codes, maximizing the

length-12 cycle of Fig. 3 because the path passes thro&jﬁh over that family, and squashing the resulting HQC LDPC
each sub-matrix three times), or contribute even more tim&ode.

Alternately, repeated elements can also cancel (if thegrent

modulated by botht-1 and —1), not contributing at all to A. Restricted two-level HQC LDPC codes

the. sum. We de?" .Wiﬂl this complexity in Apper_1dix B by As “restricted two-level” implies, the hierarchy in rested
defining the “multiplicity” x of a path element; used in the cos}

lculati laorith b | fiod i . wo-level HQC LDPC codes has only two levels. The addi-
calculating algorithms subsequently specified in App tional “restriction” is that the weight of the first (lowedével

and D. must be one. In terms of the tree structure description afethe
codes, the labeled trees will all have a form like that shawn i
VIII. D ESIGN PIPELINE FOR HIGHGIRTH QC LDPC Fig. 6, with the nodes at the bottom level each having exactly

CODES one leaf, i.e., leafs have no siblings. In comparison, tlaeee

In this section we describe our design procedure for higf?—aVes in left-hand tree of Fig. 4 that_do have siblings. Node
girth QC LDPC codes. We pause to recall the overall objecti@ the second level can have an arbitrary number of edges.
of the paper. We want to be able to map any interestingThefaCt that these codes have two levels means that they are
existing code design specified by a protograph into a higl§lescribed by a polynomial parity check matrix in two dummy
girth QC code. As mentioned earlier, the protographs thédriablesH(z,y). The restriction to the lowest level having
motivate us are those of spatially-coupled codes. Thesesco¥eight one means that any weightpolynomial in the matrix
have excellent theoretical and empirical performance i thi(z,7) must have the form
waterfall regime. Furthermore, they can be specified to have
a wide range of rates and lengths. However, the protograph
of a spatially-coupled code will have multiple edges betweevhere all theA; exponents must be distinct. As usual, the

Ia1yA1 +a:“2yA2 4 +IawyAw (37)



15

exponents are integers which range betwe@mdp(;; — 1 for ~Second, we concentrate on restricted two-level HQC LDPC
the = exponents and andpy — 1 for the y exponents. codes wherepp) = 4, which implies that the base matrix is
Because the weight at the lowest level is restricted to be omemposed of circulant sub-matrices of size four by four.
these codes, when described as standard QC LDPC codes, lookhere are two situations we will want to consider. Respec-
like weight-1 QC LDPC codes, whose base matrix is compostidely they will correspond to Ex. 6 and 7 of Sec. VI-C. The
of circulant sub-matrices of sizg,) by pyj2);. In [35] Smaran- full connection to these examples will only become clear in
dache and Vontobel briefly introduce a further restrictesg! the next section, when we explain our “inflation” procedure,
of such QC LDPC codes in the context of designing cod&gich has the effect of placing pairs of similarly structlire
of large minimum distance. They also required that the codisir by four sub-matrices on top of each other (or besides
be weight-II at the second level and thas = 2, which they each other).
term “type-1 QC codes based on double-covers of type-Il QC The first situation involves a polynomial of weight 3 in the
codes.” They do allow for generalization beyopg;, = 2 to polynomial parity check matrix(x,y), which after inflation
pr2) = M which, for M = 4, is the starting point of our will be converted into two polynomials of weight 3, e.g.,
design. hi1(z,y) and ho1(z,y), with identicaly exponents, in the
same column of the polynomial parity check matrix. Assuming
a restricted two-level code with;) = 4, the corresponding

B. Transforming protographs into Restricted Two-Level Hqub-matrices in the base matrix would respectively lookesom

LDPC Codes -
thing like
Recall that in Sec. Ill, we introduce a graph lifting trans- [ a b ¢ =11

formation to convert a protograph into an ordinary QC LDPC -1 a b ¢
code. The transformation replaces the incidence matrixvequ ¢c -1 a b
alent to the protograph with a polynomial parity check matri b c -1 a
H(z) whose polynomial entries had weight equal to the entries ) T, (40)
in the incidence matrix. A completely analogous transferma d e f -1
tion exists for converting protographs into restricted etel -1 d e f
HQC LDPC codes. One replaces the incidence matrix with -1 d e

a bi-variate polynomial parity check matrid(z,y) whose e f -1 d

polynomial entries each have the restricted form of (37) anghere we recall that-1 represents theyy x py all-zeros
have weight equal to the entries in the incidence matrix. matrix. These sub-matrices are obtained from lifting thiypo
For example, the incidence matrix corresponding to theomials hy 1 (z,y) = 2% + y22¢ + y32® and ho(z,y) =

protograph depicted in Fig. 1 is 20+ y2af + yBae.
11 1 The second situation involves four polynomials of weight
P= [ 0 1 2 } . (38) 2 arranged rectilinearly, .91 ,1(,y), ho.1(z,y), h12(z,y)

and hs 2(z,y),. Furthermore, after inflation, thg exponents
This matrix is lifted into a two-level restricted HQC LDPCof the polynomials in the same column will have the same
code with polynomial parity check matrix exponents, so that the corresponding sub-matrices woald lo
something like

a, A b, B c, C

_| Ty ry Ly _ - _ _

H(z,y) = { 0 atlyD zoyF 4 afyF }, (39) a b -1 -1 1 ¢ d -1

) -1 «a b -1 -1 -1 ¢ d

wherea, b, ¢, d, e, and f are integer exponents betweén 1 -1 a b d -1 -1 ¢

andp;;; -1, andA, B, C, D, E, andF’ are integer exponents b -1 -1 a e d -1 -1
between0 andpjy — 1 that satisfyE # F. - - " -
e f -1 -1] [-1 g h -1]

C. Squashing sets of trees to eliminate inevitable cycles _i el fo-1 _hl _i 91 h

Because restricted two-level HQC LDPC codes are weight- _f :1 _61 J; g _h :1 _gl

| at the lowest level, they can also be considered weight-I " (41)
QC LDPC codes, and can therefore be described in terms oBy the results of Sec. VI-C the first situation contains six-

their base matrix.In this section we develop a technique thagycles within each sub-matrix and the second situation con-
selectively removes rows or columns from the base mathiXins inevitable eight-cycles between the pair of sub-ivesr

describing a restricted two-level HQC LDPC code in a waj, each row and in each column. We argue that if we “squash”
that eliminates all inevitable six- and eight-cycles frohe t the two matrices in the first example—by stacking the first two

corresponding Tanner graphs of the code. There are twWys of the upper matrix on the last two rows of the lower
underlying assumptions in this section. First, that viarthgi matrix—then the matrix produced

maximization procedure the base matrix entries involvacgtha
already been optimized to eliminate all non-inevitablelegc
(42)

c
1Recall from Sec. Il that the base matrix is the matrix of pawvef the /-1 d e
polynomial parity check matrix expressed in a single dummagable. e f -1 d
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contains no six-cycles. Similar if we squash the matrices in -
the second example then the resulting pair of matrices % o %
= c <
a b -1 -1 -1 ¢ d -1 g = £ g 8 code
-1 a b -1 -1 -1 ¢ d = o ™ E g = £ >~ T ™
1 -1 e f ho—-1 -1 ) s - g 3 2
f -1 =1 e g h -1 -1 5 o O = ~
g2 o
contains no eight-cycles. ==

Since by assumption there were no non-inevitable six-
or eight-cycles between the original matrices, to show ofjj: 7- The design procedure to produce high-girth codes.iiputs are a
. rotograph and the dimension of the first-level circulantrioes. The output
assertion we need solely to demonstrate that the squastﬁrwweight_| QC LDPC code.
procedure removes all inevitable cycles. We argue thiscase
on the following lemma, proved in Appendix E.
Lemma 2: D. Design procedure for high-girth codes
() Any inevitable six-cycle within a polynomial of the form
z@yA 4 pr2yA2 g3y As traverses three distinct rows
and three distinct columns of the corresponding ba
matrix.

We now turn to demonstrating how to construct a weight-|
QC LDPC code that does not have any six-cycles or eight-
cycles. We first sketch the procedure, depicted in Fig. 7 and
(i) Any inevitable eight-cycles between a pair of polynasi then illustrate the_detalls with a Workeql design _example..

of the form z®yAt + ge2ydz and zb1yBr 4+ gbeyBe Roughly speaking the procedure will start with a desired
located in the same row (column) of the polynomial paritprotograph and code paramejer) (our procedure assumes

check matrix traverses three distinct rows (columns) &2 = 4)- We first map the protograph into a incidence matrix,
the corresponding base matrix. m cf (38). Depending on the weight and relative locations of

Now, consider the squashing of the matrices in (40) into t{Be entries in the incidence matrix, we “inflate” the inciden
matrix in (42). Note that the latter matrix has ortiyo rows matrix. We then use the lifting transformation of Sec. \Bto

from each of the matrices in (40). However, by Lemma 2_(Broduce a polynomial parity chec_k matrix for a r_estricted_—tw

all inevitable cycles pass through three rows. Therefdre, tl€vel HQC LDPC code. Next, using our max girth algorithm

matrix in (42) does not contain any inevitable six-cycles. We eliminate all non-inevitable six- and eight-cycles. dfiy,
Next, consider the squashing of the matrices in (41) into th¢¢ use the squashing procedure of Sec. VIII-C to eliminate

matrices in (43). First we show that the squashing proceddpéVitable cycles. Of course, the way in which we inflate the
eliminate the automatic cycles between pairs of matric€8de must be compatible with the way we squash the code to

arising from pairs of weight-2 polynomials on the same roRroduce a valid parity check matrix that meets the parammeter

of the polynomial parity check matrix. This follows from©f interest. _ _
Lemma 2-(ii) which tells us that these eight-cycles tragers It should be emphasized that the LDPC code resulting from

three distinct rows, because only two rows of each of the mus procedure will be a QC LDPC and nohrarchical QC
trices is retained. Next consider the inevitable cyclesvben LDPC code, although the final structure will be quite simitar

pairs of matrices arising from pairs of weight-2 polynomialthat of an HQC LDPC code. Note also that although a lifting
in the same column of the polynomial parity check matrirocedure is being applied, that does not necessarily mean
Since we squash vertically, parts of all columns of the baleat the resulting code must have very large block-lengtss,
matrix are retained. However, if one examines (43) one sdB§ increase in the number of sub-matrices may be partially
that the second and fourth columns of the left-hand mat® entirely compensated for by a decrease in the size of the
only includes contributions from the upper left-hand an8ub-matrices that is required to obtain a desired girth.
bottom-left-hand matrices of (41), respectively. The riting 1) Inflate incidence matrix: As indicated, the procedure
inevitable cycles from (41) therefore cannot include thedist produces the incidence matixof the protograph, which
columns. But, that leaves only two columns in the left-harie assume has no entries greater than 3. (We make no effort
matrix and by Lemma 2-(ii) we know that these inevitabl8ere to deal with inevitable cycles caused by weights greate
cycles require three columns. Therefore the inevitabldesycthan 3). The “inflation” procedure works as follows. We fist
have been eliminated. The same logic holds for the rightthafark for duplication each row of the matrix with two or more
side of (43). elements of value 2 or greater or a single element of value
Note that for the above logic regarding eight-cycles to hot We also mark for duplication each column that has two
it is important that thej-exponents of the two matrices to bedr more elements of value 2 or greater. Then we inffate
squashed together (those in the same column) are the sapfeduce a new incidence matiX in which each of the rows
Thus, the two matrices should represented by polynomialsiBfP marked for duplication are duplicated. We then inflate
the formz®yA +2by? andz¢yA+2/y 2, which share the same again to produc®” from P’ by duplicating each of the marked
y exponents. Note also that the same squashing procedeRBImns. As will be evident when we get to squashing, we
would work in the horizontal direction as long as the masicénust track in the matriceB’ andP” which rows and columns
on the same row have the samexponents. The logic is the are duplicated versions of each other. The following exampl
same with the argument for rows and columns reversed. illustrates the inflating procedure.
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Example 8:Suppose we start with a protograph that has thiehe code with the above polynomial parity check matrix is

incidence matrix equivalent to a standard weight-l QC LDPC code with base
matrix B” given by
3 2 1
P= 0 2 1 . (44) r—1 72 131 82 -1 —-1189 79 -1 —1 30 91 —1 —1 —1 1627
82 —1 72 131 79 —1 —1 189 91 —1 —1 30 162 —1 —1 —1

131 82 —1 72 189 79 —1 —1 30 91 —1 —1 —1 162 —1 —1
The first row in this incidence matrix contains an elemenhwit| 3 131 §3 1 —1 18 79 —1 —1 80 0L oF 71 T1 1
value 3 (and also two elements of value 2 or greater), so we§2 r4 137 44 47 —1 =1 19 54 —1 —1 18157 =1 —1 —1
mark it, and we also mark the second column because it hps37 44 162 —1 -1 14 17 —1 —1 148 54 —1 —1 —1 157 —1
two elements with value 2 or greater. Duplicating the first,ro B T 19060 gé oA 11539 1_5%) e Aot

—1
H -1 -1-1 -1 -1 —1100 96 —1 —1 13 150 —1 —1 —1 141
we obtain L1 -1 -1 -1 96 —1 —1100150 —1 —1 13 141 —1 —1 —1 4
3 21 (47)
P=1[3 2 1/|. (45) Notice that the base matr&” is composed of by 4 circulant
0 2 1 sub-matrices. ]

Now duplicating the second column, we obtain the inflate\gld') Squash the base math)/( to remove _mevnable _cycles:
incidence mairix e now have a base matr&’ corresponding to the inflated

incidence matrixP”. The next steps in our procedure will

3 2 21 remove columns and rows fro®” to obtain a base matrix
PP=|3 2 2 1/|. (46) corresponding to our original incidence matmx
0 2 2 1 First, we note that each column of the incidence matrix

P” corresponds to four columns in the base ma®i% In

In P”, the first and second rows, and also the second and thifd next step of our procedure, we focus on the columns that
columns, are tracked as duplicated versions of each otller.nave been marked as duplicatesPh We retain the left two

2) Lift P” into H” (z, ): Next we lift the inflated incidence columns and remove the right two columnsBff from the
matrix P” into the polynomial parity check matrik”(z,y) four that correspond to the left column of a duplicated pair i
for a two-level restricted HQC LDPC code wifly = 4. We P”, and also remove the left two columns but retain the right
perform this transformation under one additional resoict two columns inB” from the four that correspond to the right
The restriction is that theg exponents in pairs of duplicatedcolumn of a duplicated pair i?”. We call the thinned-out
rows or pairs of duplicated columns must be identical to eablase matrix that is obtained from this procedBfe
other. The value opyy; is left as a design parameter. Example 8 (continued)Recall that the second and third

Example 8 (continued)fhe inflated incidence matri®” is  columns ofP” given in equation (46) have been marked as

lifted into a polynomial parity check matrid” (z, ), yielding  duplicates of each other. So to obt@hfrom the base matrix
the form B” given in equation (47), we retain the left two columns from

the second four iB’, and the right two columns from the third
ZIJayA‘f-ZIJéyB‘f-ZIJCyC IdyD+$eyE mfyD+mgyE IhyH g

H (2,y) = | a'yA+alyP 1oty alyP+amy® myPtaoy® gryH four in B', so thatB’ is given by
0 quQJrITyR zsyQJrItyR Iqu

. . . r—1 72 131 82 —1 —1 30 91 —1 —1 —1 1621
Notice that they exponents in the first and second row and 82 —1 72 131 79 —1 —1 30 162 —1 —1 —1
: H H H 131 82 —1 72 189 79 —1 —1 —1 162 —1 —1
in the second and third columns of this matrix have been 79 131 82 —1 —1 180 91 —1 —1 —1 162 —1
i i i 1 —1 137 44 162 —1 —1 148 54 —1 —1 —1 157
restricted to be identical to each other. Otherwise, all the e sy Sr S st 01 11 o
exponents are free parameters that satisfy a; < p;;; — 1 - 14347 162 1137 141 A R e
for any 2 exponenta; and0 < A; < pjg) — 1 = 3 for any y -1 -1 -1 —1100 96 —1 —1 —1 141 —1 —1
-1 -1 -1 -1 —1 100 150 —1 —1 —1 141 —1

exponent4;. u —1 -1 —1 —1 =1 —1 13 150 —1 —1 —1 141
L—-1 -1 -1 -1 9% -1 —1 13 141 -1 —1 —14

3) Maximize the code’s girth: In the next step we apply
the girth-maximization algorithm of Sec. VII to produce a u
set of z-exponents:; and y-exponents4; such that no short Now note that each row in the incidence mat®x corre-
cycles exist except those that are inevitable. Of coursehilk ~ Sponds to four rows in the base matBk In the final step of
climbing algorithm of Sec. VI is just one possible approactpur procedure, we focus on the rows that have been marked
Other algorithms could be used in its place. The polynomia$ duplicates irP’. We retain the top two rows B’ from
parity-check matrixH” (z,) obtained in this manner can pethe four that correspond to the top row in a duplicated pair
converted into an equivalent base mai% for a weight-l QC in P’, and we retain the bottom two rows Bf from the four
LDPC code. that correspond to the bottom row of a duplicated paiPin
Examp|e 8 (Continuedwsing our girth_maximizing a|go_ We call the base matrix obtained by this further thinning'ou
rithm, we find that withp;;; = 200 the following choices for ProcedureB; this is the base matrix that will correspond to
the 2 and y exponents irtH” (z,y) will create no six-cycles Our original incidence matri.

or eight-cycles except for inevitable short cycles: Example 8 (continued)The first and second rows d¥
given in equation (45) have been marked as duplicates. That
282yl 4131y 2 g T2y8 57Oy 4 1892 491, 4,

TSRV ST S IR ANEVE SRR ;”157 ' means that we should retain the top two rows of the first group
‘ ‘ ‘ ‘ SO 150y3 g111,3 of four rows fromB’, and the bottom two rows from the second

0 m100y0+196y‘ z

82 1 131, 2 72,3 30y2 162

13
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group of four rows. Thus, we obtain A. Performance of girth-10 or girth-8 QC LDPC codes
-1 72 131 82 -1 -1 30 91 -1 —1 —1 162

82 —1 72 131 79 —1 —1 30 162 —1 —1 —1 In this section we present word-error-rate (WER) results
44 162 —1 137 14 17 —1 —1 —1 157 —1 —1 . . . .

B | 137 44 162 =1 —1 14 54 —1 —1 —1 157 —1 for two girth-10 and one girth-8 one-sided spatially-caapl
IR T T v A S B e PO codes. We plot analogous results for girth-6 codes for compa
-1 -1 -1 -1-1-113150 -1 -1 —1141 ison. The first code is a rate45 length8000 QC LDPC code.

-1 -1 -1 -1 96 -1 -1 13 141 -1 -1 -1

Notice that the code defined by the final base mafiis The protograph structure of the code is a lengthened version

not a hierarchical QC LDPC code, because that base maf?{xt.hilonﬁ deg)icted i:\hFig. 8(3)' ﬁ\s iI? thzt pr(r)]togradph, each.
is constructed from 4 by 4 sub-matrices that are not circulaf2'adle has degree three and check nodes nave degree six,

Still, the code is a member of the class defined by the origirrglur or two. The protograph of the code we present has 20

variable nodes and 11 check nodes (in contrast the protbgrap
protograph. In our example, each group of four rows and fOU?Fig. 8(a) has 10 variable and 6 check nodes). In other words

columns in the base matrix defines a type of check or bit. L . )
in our example, from the structure &, each check of the ~[2 — 20 and Jiy = 11. The incidence matrix of the code is

first type will be connected to three bits of the first type, and

| | | SECHT IR RS
two bits of the second type, and so on, just as required by the PIT1T100080080000000
o h - | imi po= BR800 ITIEEERERENS
In fact, any code defined by a base matrix of a form similar 1= 2000000 1ITTT000000
to our B, for example of the form 000000000000 11111100
—1 a3 a2 az3 —1 =1 a4 a5 —1 —1 —1 a
ar 1 ar ae a0 —1 —1 an a1s —1 —1 -1 00000000000000001122
a13 a14 —1 als ale ailrt -1 -1 -1 als -1 —1 i . . . .
B = | ®9 @20 a21 —1 —1as as —1 -1 —1az —1 (48) Settingppy = 4 and using our design approach (girth maxi-
—1 —1 —1 —1 as5 as¢ —1 —1 —1 a27 —1 —1 ? . . . .
—1 -1 —1 —1 —1 a2s aze —1 —1 —1 agy —1 mization and squashing) we found a girth-10 QC LDPC code
-1 -1 -1 -1 =1 —1 a3y az2 —1 —1 —1 as: . .
—1 —1 —1 —1 agq —1 311 a;i aszs —1 —1 jf with pp = 100. The code |ength |§4[2] X P2) X P = 8000
where thez; parameters are arbitrary, would also be a memb@fd its base matrixj3;, is specified in App. F.
of the class defined by our protograph. [ |

So the question might be raised, why not simply try t
find suitable parameters for a weight-l QC LDPC define
by a base matrix like that in equation (48) directly, instea
of using the squashing procedure? This question will t
answered in more detail in Section IX, but the short answ (a)
is that the squashing procedure is more practical becaus:
enforces useful additional structure in the base matrid thos
normally involves far fewer parameters for the hill-climbi
algorithm to optimize. When one tries to optimize over mor
parameters, there is a greater chance that the hill-clignbi
algorithms will get stuck in an unfortunate local optimum.

IX. NUMERICAL RESULTS

In this section we present a set of numerical results illu
trating our design methodology and associated performan (b)
In Sec. IX-A we present performance results for three code
a pair of girth-10 codes (of rates45 and 1/3) and a rate-
0.7 girth-8 code. All are one-sided spatially-coupled code
For each design we compare its performance to that
girth-6 code(s) that have the same protograph. In Sec. Ia-
B we give a sense of the effectiveness of the hiII-cIimbingg. 8. Protographs for “one-sided” spatially-coupled &pds described in
approach to girth maximization. We do this by considering [a2]. The QC LDPC code constructed by a simple lifting of thetpgraph
pair of metrics of success: the minimum block length code (&) will inevitably have eight-cycles because the chegtetat the right
found of the desired girth and rate, and the “success ra o L';;g””egted py two edges 1o the DL ypes ahove and beolné

code constructed by a simple lifting of the protograp (b) will

of the algorithm. We compare these metrics for hill-climininevitably have six-cycles because there exist bits typehearight end that
to three other approaches: guess-and-test [33], progees§ie connected by three edges to a check type.
edge growth (PEG) [31], and the code construction method
of O’'Sullivan [27]. Then, in Sec. IX-C, we discuss the The second code is a ratg3 length24000 QC LDPC code.
computational motivations and demonstrate the compunaltio The protograph structure of the second code is a shortened
efficiency of the squashing procedure in comparison to othegrsion of the structure depicted in Fig. 8(b). As in that
possible approaches. Finally, in Sec. IX-D, we address h@sotograph the variables are all of degree four. There are
the computational complexity of our approach scales with tisix variable nodes and four check nodes, ilgg = 6 and
target girth as a function of the code rate. Jig) = 4 (in contrast the protograph in Fig. 8(b) has 10 variable




and 6 check nodes). The incidence matrix of the code is

1100 0 0
111100

Po=17 1111 1 (49)
112 2 3 3

Again we use; = 4 and find a girth-10 QC LDPC code with

p; = 1000. This code’s length ii[g] X pp2; X ppiy = 24000.

The base matrixB-, of this code is also specified in App. F.
The third code is a raté-7 length28000 QC LDPC code.

The protograph structure of the third code is similar as th
one depicted in Fig. 8(b) but with four rows of variable node
instead of just two. As in that protograph the variables dire ¢
of degree four. There are in total twenty variable nodes ar

six check nodes, i.eL; = 20 and Jj; = 6. The incidence
matrix of the code is

11110000000000000000
11111111000000000000
pP. = 11111111111100000000
3= 11111111111111110000
ooo01111111111111111
00000000111122223333

Again we usepjs) = 4 and find a girth-8 QC LDPC code with

pp) = 350. This code’s length iSL[Q] X pr2) X pry) = 28000.
The base matrixBs, of this code is also specified in App. F.

In Figs. 9, 10, and 11 we plot the respective error ra
performance of the three codes for the binary symmeti
channel (BSC). For purposes of comparison we plot analogc
results for some randomly generated girth-6 QC LDPC code
These codes have the same length, same rate, and s
non-zero positions in the base matrix (i.e., same protdgra
structure) as the girth-10 and girth-8 codes to which they &
compared.

-5{{ —=8—WER g6 codel|,
—#— WER @6 code2 |:
—p— WER g6 code3|:
—©— WER g10 code |

5 5.5

6 6.5
Eb/No (dB)

Fig. 9. Word-error rate plots of the Gallager-B algorithnt foe rate0.45,
length8000 girth-6 and girth-10 QC LDPC codes over the BSC.
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-7
8.4 8.7 8.8 8.9
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Fig. 10. Word-error rate plots of the Gallager-B algorithon the ratet /3,
length24000 girth-6 and girth-10 QC LDPC codes over the BSC.

u 10 4
=
10° :
10° :
107k :
—+— WER @6 code?
_g[| —©— WER g8 code
072 74 76 78 8 8.2 84 86 88 9
Eb/No(dB)
Fig. 11. Word-error rate plots of the Gallager-B algorithar the rated.7,

length28000 girth-6 and girth-8 QC LDPC codes over the BSC.

between the error rates of a standard sum-product decoder an
Gallager-B, the performance trends of Gallager-B and sum-
product are typically quite similar. That said, computa&b
complexity is our main reason to plot results for Gallager-B
rather than sum-product. The error floor of Gallager-B oscur
at a higher WER and thus is easier to attain. In addition, the
Gallager-B algorithm runs very fast. This further helpshe t
collection of useful statistics in the error floor regime.

In the plots the SNRs are calculated assuming that the
BSC results from hard-decision demodulation of a binary

In all cases, we plot the WER as a function of the signal-t@hase-shift keying (BPSK)-1 sequence transmitted over an

noise ratio (SNR), using the Gallager-B decoding algorif@m
running for a maximum of200 iterations to guarantee the
convergence of decoding. Here, SNR is calculatedZbyN,
whereF, is the energy per information bit and, is the noise
power spectral density. While there is a significant diffee

additive white Gaussian noise (AWGN) channel. The reggltin
relation between the crossover probabiljtyof the equiv-
alent BSCp and the SNR of the AWGN channel is =
Q g\/QR . 105NR/10) , where R is the rate of the code and

Q(+) is the Q-function.
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Figure 9 plots the results of the raiet5 length8000 codes no cycles shorter than the desired girth exist. Guess-@sitd-t
and illustrates the general improvement to error floor biav can quickly generate each instance, i.e., a candidate eode,
provided by larger girth. At the highest SNR (around 7.8 dB)heck the girth conditions efficiently. But since the al¢jfum
the WER of the girth-10 code is about two orders of magnitudandomly and independently samples the space of codes, and
larger than those of the girth-6 codes. Further, we note thad structure is exploited to find codes satisfying the ddsire
the three girth-6 codes plotted show variability in theiroer girth that are “close” to the random samples, the algorithm
rates. This illustrates the observation that the error fismot runs into difficulty when the set of codes with the desired
solely a function of girth, though higher girth certainlylpe  parameters (length, rate, girth) is sparse in the overalbse

Figure 10 plots the results of the ratg¢3 length24000 QC LDPC codes with the same length and rate parameters.
codes and illustrates some of the same points that were matés is the regime where methods such as hill-climbing start
for the codes in Fig. 9, though somewhat more dramaticaltp. dominate.

First, we note that at these lengths the error floor effectin [27], O'Sullivan proposed an algebraic method to gener-
for girth-6 codes is very abrupt, initiating just beldvdB. ate large girth QC LDPC codes. We can compare directly to a
Again, as also noted in Fig. 9, we see some variability iportion of his results, when he constructs regular weigQ€l

the performance of the girth-6 codes. And again, highehgirt DPC codes of girth-8 and girth-10. Both [33] and [27] pro-
yields a marked improvement in the error floor. In fact, fovide a minimum size of circulant matrices (thg; parameter
the girth-10 code we cannot see evidence of an error floor,our notation), denoted gs,;,, at which the algorithms of
though it is possible that one would eventually be reachetiose papers were able to find a regular weight-l QC LDPC
One difference between these codes and those in Fig. 9 is thade of the target design parameters. In Tables | and Il we
the Fig. 10 codes have a longer block-length, but we beliegempare the besp,,;, (which directly translates to block
that the more significant difference leading to the qualiéat length asl-p,,;,,) we obtained using hill-climbing algorithm to
difference in behavior is that the codes in Fig. 10 have those obtained in [33] and [27]. We observe that while guess-
constant variable degree of four rather than the varialdestte and-test and O’Sullivan’s method give roughly similar fesu

of three for the codes in Fig. 9. hill-climbing results in a noticeably smaller (i.e., impex)

Generally similar results are also observed for higher ratg,;,, for both girth-8 and girth-10 codes. We note that no
codes, although as we describe below, the block lengttesults are reported for girth-10 codes in [33].
required to achieve girth-10 codes are prohibitive, so we
restrict ourselves to comparing girth-6 and girth-8 codas. | L |4 5[6[7[8[9 [10[11]12]

Fig. 11 we plot the results of a comparison of two rate-0.7 [[23%]';:&5 |I|I| g ig ig g; 2573 gi ig ig gg
Ieng_th—28000 codes with variable degree_ of four. The_gi‘rth- Hi”_’climbmg 9T 13118 21 25 T30 (35 (41 [ 47
version of the code was constructed using the hill-climbin TABLE |
prpcedure in combination Wlth the squashing procedure. FQf, \ . vium cIRCULANT MATRIX DIMENSION P
this class of codes, not all girth-6 codes had an error floor
that we could easily reach with our simulations, and we have
selected one with a noticeable high error floor for clarity.

We think that it is interesting to note that no girth-8 code
among any spatially-coupled code with a constant variahle
degree of four that we examined (we have simulated on t McTmbing | 30163 1 103 ] 160 | 2331 329 | 439 | 5771 758
order of 10 such codes) had a noticeable error floor to the TABLE Il
error levels we could reach in our software simulations. The, = e DIMENSION .
girth-8 code studied in Fig. 11 is one such example. P

FOUND, TABULATED
AS A FUNCTION OF L FOR GIRTH-8 QC-LDPCCODES WITHJ = 3.

T [4[5][ 6 7[8 ]9 [10]11] 12]
7], Table IV | 39| 73] 123 179 ] 277 385 507 | 665 837

FOUND, TABULATED
AS A FUNCTION OF L FOR GIRTH-10 QC-LDPCCODES WITHJ = 3.

B. Effectiveness of the girth maximization algorithm Another well-known algorithm for maximizing girth is “pro-

We now develop a sense of how much the hill-climbing girtgressive edge growth” (PEG). This algorithm was developed
maximization algorithm presented in Sec. VIl helps in firdinin [31] to find high-girth, but random, LDPC codes. PEG
high girth codes. We present comparisons with Fossoriecsnstructs the Tanner graph of the code sequentially, gddin
“guess-and-test” algorithm [33], Hu et al.'s “progressedge the required number of edges to each variable node, node-
growth” (PEG) algorithm [31], and O’Sullivan’s code con-ty-node. At each step the newly added edge connects the
struction method [27]. current variable node to a newly neighboring check node.

In [33] Fossorier uses guess-and-test to find high girth Qhe check is chosen so that, once all variable and check
LDPC codes. To understand this algorithm, consider a reguteodes are already connected through some path, the rgsultin
weight-1 QC LDPC code specified by.ax L base matrix, and cycle has maximum girth. Different (random) initializai®
a desired girth. Without loss of generality, all entries lre t of the early steps leads to different final girths. In [32] the
first row and the first column of the base matrix can be fixed &pproach is applied to weight-1 QC LDPC codes. In effect, the
zero, while the remaining entries are chosen independantly PEG algorithm is applied to the protograph of the QC code.
uniformly betweer) andp — 1. The guess-and-test algorithmin comparison to the random sampling style of guess-and-
then tests conditions, e.g. (9) for four-cycles, to verifyatt test, PEG explores the space of codes in a sequential manner
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which can be much more effective. As no resultspan, are codes withpj;) = 100 using the girth maximization algorithm
presented in [32], we could not include them in Tables | and nd the squashing procedure. We also try to construct girth-
However, we did implement PEG so as to be able to compél@ weight-l QC LDPC codes with base matrices having the
the frequency with which it finds a good code. We define thsame size and same non-zero positions as those obtained from
“success rate” metric next. the squashing procedure using the direct method. The same
From Table | we cannot draw the conclusion that, e.djll climbing algorithm is applied to this design problem as
the hill-climbing algorithm isalways more effective than is used in conjunction with the HQC LDPC approach. We
guess-and-test since either algorithm could get lucky anelcord the time (in seconds) it took to design ten codes for
find an unusually good base matrix. To make an informatiwach configuration. Figure 13 depicts the average time redjui
comparison, we define the “success rate” to be the fractitmconstruct one girth-10 QC LDPC code using each of these
of times that a run of either algorithm yields a base matriwvo schemes.
that has the desired girth for some target circulant matze s

pp)- Figure 12 depicts the success rate of guess-and-test, X 10°
climbing, and PEG in generating girthweight-1 regular QC 35 e Squashing procedure
LDPC codes with base matrices of si2ex 12. We observe, —#— Direct method

e.g., that for the guess-and-test to find a parity check mati
with girth-8 at a circulant size;) = 115 we need, on average,
to test10° random matrices. In contrast, hill climbing has nea
certain success and PEG has a slightly lower success rate

z
[}
£
10° o ; : ; =
—O— Guess-and-test|
—#— Hill-climbing
» —p— PEG
10 "+
1072 ‘_9_—_6/0
10 15 20 25 3 35 40
10t | Number of rows in the base matrix

success rate

Fig. 13. Average time of constructing one girth-10 QC LDP@eavith the

0y direct method and the squashing procedure.

107} For both schemes, the time required to find a girth-10 code
increases with the number of rows in the base matrix. When
10° ‘ ‘ ‘ ‘ ‘ ‘ the squashing procedure is used, we can find a suitable base
0 60 B0 100 20 M40 160 180 matrix in reasonable time even for large base matricesglarg
number of rows). In contrast, when using the direct method,
we have to spend an extremely long time searching even for a
Fig. 12. Comparison of the success rate of guess-and-ibstlirnbing and small base matrices. From this comparison, we conclude that

PEG in finding a weight-I girth-8 regular QC LDPC code whenebasatrix . . . . -
has dimensio% X 12,9 g 9 the squashing method is quite a bit more efficient.

D. Complexity scaling with code parameters

C. Effectiveness of the squashing procedure In this section, we discuss how complex it will be to

We turn now to the computational motivations for the&onstruct codes of certain rates using our algorithm. Here,
squashing procedure. Recall that in Sec. VIII-D we raised thcomplex” refers two things. One is the block length reqdire
following question. Why do we not simply try directly to findto be able to find a code of a certain girth and the other is
suitable parameters for a weight-1 QC LDPC code, rather thaow much time it takes to find such a code. We emphasize that
constructing an HQC code and using the squashing proceduseth measures of complexity also depend on the protograph
We now show that it is much harder to find a suitable codpecified.
using this “direct” method. We studied three families of protographs. The first corre-

To show this we present results on the following experimersponds to regulafJ, L) weight-l QC LDPC codes with a
First we construct several protographs with structuresiaim J x L all-ones incidence matrix. Thgy;) i, found by the
to Fig. 8(a) with the number of check nodes ranging fromill-climbing algorithm as a function ofl. for girth-8 and
three to nine. We setj;) = 4 which means that the numbergirth-10 has already been tabulated in Table | and Table II,
of rows in the corresponding base matrices ranges from fespectively. The second and third protograph families are
to 36. For each protograph, we construct girth-10 QC LDP€imilar to those shown in Fig. 8(a) and (b), respectively, bu
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where we increased the number of rows of variable nodes,ismot sensitive tQy) i, Vi is closely related t®;) i, AS
that the number of types of variables increased from 10 to 1%y, increases)V; decreases. For the three families of codes
20, 25, and so on. (In both Fig. 8(a) and (b) there are twiiscussed above, we found th&f scales with the number
rows of variable nodes.) of potential cycles that must be ruled out in the protograph

To illustrate the complexity scaling, we tabulatg..;, structure. Thus, for the first family for fixed and target
for the second and third families of codes in Table Il andirths of 6, 8, and 10, we observed scalingdpfs = O(L?),
Table IV. Because we are here mainly interested in illustgat 7, ;s = O(L?3), and T, 410 = O(L*), respectively. (We note
the general scaling, we did not try seriously to optimizéhat the code rate is increasing infor J fixed, so it takes
P min for each set of parameters; for example in Table Nonger to find high-rate codes.) For the second and third
we only tried to find thep(i)win Value for larger values of families for .Jjy fixed, we similarly obtainT. , = O(L[QQ]),

Ly to the nearest multiple of 50. We observe that i, Tegs = ()(sz}), andT, 410 = O(LfQ]).

grows much faster with the increase of code rate (the rate

will be 1 — Jg/ L) for girth-10 codes than girth-8 codes.
For protographs similar to those shown in Fig. 8(a) and
(b), it is difficult to achieve girth-10 high-rate codes with  In this paper we present a methodology for designing high-
reasonable code length (for example, Table IlI indicates thgirth QC LDPC codes that match a given protograph structure.
a girth-10 code with rate 0.8 and protograph structure aimilln comparison to other approaches in which constructing a
to Fig. 8(a) would require a block-length of approximatelgode with maximum girth is the ultimate goal, in this paper we
30 x 4 x 2000 = 240000), but it is still possible to obtain have a combined goal: to maximize girth subject to an already
girth-8 high-rate codes. We also see that for the same girtipecified protograph structure. Thus, our methodology &n b
it is more difficult to construct codes with the protograph afhought of as a second step in a design chain that starts with a
Fig. 8(b) than with the protograph of Fig. 8(a). class of codes, such as spatially-coupled codes, that fuaa g
theoretical waterfall performance, and outputs a codehbat
large girth. The point is that, due to the increased girtle, th
resulting codes will also have good error-floor performance
Our numerical results illustrate this outcome.

In developing our methodology, we introduce a new class of
hierarchical QC LDPC codes and explain how to determine
the girth of such codes. The hierarchical QC LDPC codes
can be represented using parity check matrices over multi-
variate polynomials, or in terms of a tree structure. We also
connect the hierarchical structure of HQC LDPC codes to
a particular sequence of graph coverings where the number
of coverings equals the number of layers in the code. Each
covering has a cyclic structure, which make possible the
very compact polynomial representation. We show that highe
weight versions of hierarchical codes suffer from ineviab
cycles in analogous ways to non-hierarchical QC LDPC
codes, but that a straightforwarsjuashingprocedure can
remove these cycles. We introduce a hill-climbing procedur
to eliminate the non-inevitable cycles from the code, and
subsequently remove the inevitable cycles by squashings Th
the main use of the hierarchical codes in this paper is to
reduce the number of free parameters in the codes in an effort
to make the girth maximization procedure computationally

Finally, we discuss how the time required to construct theti@ctable and fast, while knowing that the inevitable cgcle
codes scales with the parameters. The total time to generesae be removed by squashing. In our numerical results we
a code with desired girth, denoted Hy,.;.;, is decided by illustrate the computational advantage of the hill-climdpi
many factors, among others, protograph structure, code rand squashing procedures in comparison with other standard
andp[i] min- FOr now we focus on the time scaling for a giverapproaches.
family of protographs. We consider how the execution time We demonstrate our concepts and design procedure for
to generate one instance (i.e., one iteration of our algm)t the case of one-sided spatially-coupled QC LDPC codes. We
denoted byT. scales with the code rate. Since our algorithmresent designs for three such codes, of different rates and
reduces cycles iteratively, if we need to genetsienstances block lengths, two of girth-10 and a higher rate example of
before finding the desired girth, theh,,;.; = T. x N;. girth-8. We compare the performance of each of these codes to
Here, T, is not sensitive tQ) min, 1-€., aSpj1jmin Changes, girth-6 codes with the same protograph structure and observ
T. is almost invariant. This is because the complexity & significant decrease in the error floor. We note that thesode
calculating guilty values is independent @f;,,;,. While 7. we designed that have variable nodes of degree four (eey., th

X. CONCLUSION

[ L [10]15]20] 25 ] 30 |

girth-8 4 8 13 20 30

girth-10 | 60 | 180 | 400 | 900 | 2000
TABLE Il

MINIMUM CIRCULANT MATRIX DIMENSION OF THE FIRST LEVEL, P[1] min>

FOUND, TABULATED AS A FUNCTION OF L9 FOR GIRTH-8 AND GIRTH-10

CODES WITH PROTOGRAPH STRUCTURE SIMILAR TO THAT DEPICTED IN
FIG. 8(A) BUT WITH ADDITIONAL COPIES OF VARIABLE NODES(IN

FIG. 8(A) L|2) = 10). OTHER CODE PARAMETERS ARE KEPT THE SAME AS

IN THE FIGURE: Jjg] = 6 AND p[g) = 4.

(L [10] 15 ] 20 [ 25 | 30 |
[girth-8 | 60 | 200 | 350 | 500 | 1000 |
TABLE IV
MINIMUM CIRCULANT MATRIX DIMENSION OF THE FIRST LEVEL, P[1] min>
FOUND, TABULATED AS A FUNCTION OF L[Q] FOR GIRTH-8 CODES WITH
PROTOGRAPH STRUCTURE SIMILAR TO THAT DEPICTED INFIG. 8(B) BUT
WITH ADDITIONAL COPIES OF VARIABLE NODES INFIG. 8(B) L[Q] = 10).
OTHER CODE PARAMETERS ARE KEPT THE SAME AS IN THE FIGURE
J[Q] = 6 AND P2 = 4.
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second and third examples of Fig. 10 and 11, respectively) do and
not demonstrate any error floor tendencies down to a WER of Cs[Jmaxs Imax] = 0.
about10~7, i.e., the slope of the WER as a function of SNR ) ) .
is still steepening. Computational effort limited us froima- We iterate by now returning to Step (ii). .
lating lower WERs. But we note that the Gallager-B algorithn{®) T 1 ... = Dimaxtmax = 0, the algorithm terminates.
we chose to simulate displays much higher error floors than
the standard sum-product or min-sum algorithms. (In f4is, t (i) Terminate algorithm: There are two possible termi-
is why we choose to simulate this algorithm.) Given that th@ation conditions.
class of one-sided spatially coupled codes has already begr) IfT';;(s[j,/]) = 0forall (j,1) such thafl'; ; # *, then we
theoretically shown to have excellent waterfall perforcgn have found a code that satisfies the desired parameters.
we believe the evidence presented strongly indicates kieat t(b) Else if there is a(j,/) such thatl';;(s[j,{]) # 0 the
techniques introduced herein can produce practical coites w  algorithm has converged to a local minimum.
very good performance in both the waterfall and error floor we now present the generalized algorithm for heavier-
regimes. weight QC LDPC and HQC LDPC codes. In contrast to the
first algorithm, the tree¥’; ; € 7 that define these codes have
APPENDIX more than one edge. Therefore, for each edge of each tree we
define a cost vector. We index the cost vectors both by their
level in the tree and by their position within each level, as
In this appendix we present our girth maximizing algowell as by; and!, thus
rithms. As discussed in the text the objective of these algo-
rithms is to remove alhon-inevitablecycles from the quasi- Lk = 0,715+ 5 Yppy—1]

cyclic codes. We first present our algorithm for weight-1 Qfor 1 < i < |T;[k)| and1 < k < K where we recall that

LDPC codes, and ther} for g(_anerlall heavier—weigr_lt or HQﬁ‘j,l[kH is the number of edges at levelin T;.
LDPC codes. We do this for simplicity of explanation as the -

latter algorithm is a generalization of the former. Algorithm 2: Hierarchical QC LDPC code construction

(i) Set-up and code initialization: Specify the desired girth
g, matrix dimensiorp, and7.

For each pait(j,!) such thatT,; # *, randomly initialize
the values for each edge label (while obeying the requirémen
that sibling edges must have distinct labels). Probablyrbst
k , , straightforward way to do this is to work down the tree from
the code withe.[j,1] = 1 (andc.[j,1] = 0 for all =’ # 2). level K to the first level, picking the edge labels for each
(i) Calculate cost vector of current code:Use Subrou- get of sibling edges at levél uniformly without replacement
tine 1, described in Appendix C, to calculate the cost vectoggm {0,...,p — 1}. Given the initial edge labels, compute

of the current code, i.el! = {I';;}. Then for each element 5| hon.zero code coefficients, i.e., those associated edtth
of I' we calculate the change in edge label that most reduggss.

cost, and the resulting cost, respectively:

A. Girth maximizing algorithms

Algorithm 1: Weight-1 QC LDPC code construction

(i) Set-up and code initialization: Specify the desired girth
g, matrix dimensiorp, and7.

For each pair(j,!) such thatT;; # *, pick a valuez
independently and uniformly from0,...,p — 1}. Initialize

(i) Calculate cost vector of current code:Use Subrou-
tine 2, described in Appendix D, to calculate the cost vector

Zjp = argmin I';(z), g
20<z<p—-1 of the current code, i.el; = {T';;; »}. Then for each element
Ijy= min I,2) of I' we calculate the change in edge label that most reduces
T zm0<z<p-1 7 cost, and the resulting cost, respectively:
Recalling thats[j, l].is the value of the of the coefficient of Ziin = argmin Ty, .(2),
the current code[j, ], let 2:0<2<ppy—1
I, =Tja(sl3, 1) Divin = o mim - Divin(2).

be the cost of the coefficient if it remains unchanged. Recalling thats,[j, ] is the value of the of théth coordi-
(iii) Identify best coefficient to change: Identify the nate of the current code coefficien, (], let
coefficient to change that would most greatly reduces the cos B )
ie., Fj,l,i,k = Fj,l,i,k(sk[jv l])
be the cost if the coefficient value at tii¢h level remains
Js

(,D): 1< <, 1<ISL, Tj unchanged.
(i) Identify best edge label to change:ldentify the edge

where we break ties randomly. There are two possible oype 1o change that would most greatly reduces the cost, i.e
comes.

(jmaxa lmax) - argmax F‘il - f‘j.,la

@ 1T, = Tt > 0, we update the code by (jmaX7lmaX7imaX7kma)§) = arg max Lo in—TLitiks
setting Glik) 11 <5 < Jigp 1 <UL L)
. T # %1 <1< |Ty k]
€2, as imas maxs lmax] = 1, 1<k<K
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where we break ties randomly. There are two possible out-(ii) Iterate through path lengths, paths, and path el-

comes. ements: Consider in turn: (a) each path length where

(@) IfI'; T ko >0, weup- 2<A<g/2—1andg is the desired girth; (b) each path of
J )

max;ltxlax7imax;ktllax jmax-,lmax-,imaxy max .
date the code by setting the value of the,th edge at the lengthA, P € Py whereP = {0, S} and |O] = [S| = 24;
Emaxth level of T equal toz; and (c) the first occurrence of each path element (indexed by

jmax;lmax lmax;imax7kmax

We iterate by now returning to Step (ii). t,1 <t <2A)in P that has non-zero multiplicity.
o -, = Lo Lo i = 0, the (iii) Calculate guilty values and adjust helper variables:
maxsblmax; ;?max;RFmax Jmaxtmax,tmax,/vmax 1 . )
algojrithm terminates. Let s[j,,l,] be the first occurrence of a path element of

multiplicity « # 0. We want to compute the set of possible
(iv) Terminate algorithm: There are two possible termina-Va!ueS forsljr, i-] that would satisfy the condition for the
existence of a cycle. Recall from (30) that a cycle exists for

tion conditions. the current path values if
(a) Ifforall (4,1,7,k) we havel';;; x(z) = 0 whenz is set P

to equal the current label of théh edge at levek in tree 20
T,,, then we have found a code that satisfies the desired > (=1)"s[ji, 1] modp = 0. (51)
parameters. t=1
(b) Else there is &j,1,i, k) such thatl’;,; »(2) # 0 and the To check if a value3 € {0,...,p—1} to whichss[j, ;] could
algorithm has converged to a local minimum. be changed would satisfy (51), we subtract the contribution
the current value of[j.,[;], add in the contribution of the
candidate values, and see if the result is equal to zero. That

) ) ] is, we check whether or not the relation
Recall from the discussion of Section VII-B that the de-

termination of guilty values becomes complicated whengher A . )
are repeated elements in a path. To aid in dealing with these > (=)' sl 1] = sz, Ir] + w3 ¢ modp =0
repeated elements, in this appendix, we define the “mudtipli =t

ity” of each path element. This definition is needed for fopolds. Equivalently, we ask is

B. The multiplicity of a path element

the cost vector calculation subroutines of both QC and HQC 9A
LDPC codes, described in Appendices C and D, respectively. KB = ksljr, ] — Z(—l)ts[jm L], (52)
Definition 5: Given a pathP = {O, S}, any coefficient in =1

S is said to berepeatedr times if there arer elements of

P, indexed byiy, ..., i,, for which (ji,.ls,) = (i, li,) = where the congruence is modui@-

For each value of3, 0 < § < p — 1 satisfying (52) we

ee = (ji7~7li7~) and for WthhS[]l1 s l“] = ... = S[jimli,‘]- . (A)
The multiplicity x of the element is computed as Incrementz; ;g as
” ) )
. T = + 1.
K = Z(_l)u (50) Jrile,B Jrolr.B
=1 RemarksBy only computing thes for the first occurrence

of each path element, we avoid double-counting the contribu
tion to cycles of elements with<| > 1. Allowing «, defined
in (50), to take on either positive or negative values lets th

For path elements wherp:| > 1, i; is termed thefirst
occurrenceof the element.

The multiplicity can be a positive integer, a negative ieteg A S o o
or zero. When a path element has multiplicity zero the vallﬁgumpl'c'ty of the element indicate its “aggregate polyl)

of the coefficient has no effect on whether (that particulape"twg]?her |St_enteth thel sulmt_(51) aﬁs a5203|t|ve ora n_@atlv
path corresponds to a cycle. ontribution. Since the calculations 6fin (52) are over a ring,

multiple values of3 can satisfy the conditioA.However, at
_ _ _ most there aréx| such values of3. This is because the set
C. Cost calculation subroutine for weight-l QC LDPC codesf satisfying values of3 forms a coset ofZ, with respect

In this appendix we present the subroutine for the calcult® the subgroug$ s.t. x5 = 0}, the cardinality of which is
tion of the cost vectors of a weight-l QC LDPC code. In othdtPPer bounded by:. Finally, we note that iflx| = 1, a 3
words, given a set of labeled trees we calculate the matftisfying (52) exists and it is the unique syéh

specified in (36). (iv) Compute cost vectors: After considering all paths
Subroutine 1: lengthsA, 2 < A < g/2—1, all P € Py, and all elements of
The subroutine takes as inputs the current tree strudfure€ach pathP, calculate the cost vectors element-by-element as
(i.e., the set of labeled trees or, equivalently, the curpanity g/2—1
chgck mgtrixH), the de_sired girth_;, an&)a vector of costw. T(z) = Z xwz wy.
(i) Define helper variables:Definez; ', to be the number A—2

of cycles of lengt2A that would result if edge labei[j, /]

were set to equal value. In other words, the code was °If, however, you restrictp to be prime, which we do not, then the
e : ; . _ . _ calculations would be over a field and there would be a unigligien 3. We

modified to be One In Whl((igjz [j’ l] = landec [J’ l] =0 do not choose to do this due to the greater limitation on trssipte resulting

for all 2’ # 2. Initialize all =0. block lengths of the code.

gz
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D. Cost calculation subroutine for HQC LDPC codes through each level of the code. For each lekel < k < K

We now present the subroutine used to calculate the ng{npute
vectors of a general HQC LDPC code. 2A
Subroutine 2: a = Y (=1)"sklje, l]) modpy,.
. t=1
The subroutine takes as inputs the current tree strucure )
(i.e., set of labeled trees or, equivalently, the curremitpa Unlessax = 0 for all but onevalue of &, there are no guilty
check matrixH), the desired girthy, and a vector of costa. values. If there are no guilty values, proceed to the next pat

(i) Define helper variables: Define ey k] to be the element. If there is a single levél such that, # 0 proceed
' J

i,z
number of cycles of lengtBA that would result if theth edge to step (v). o
Remark:The reason for the all-but-one condition is that we

at levelk in T;; were set to equal valug, 0 < z < p — 1. h dae label i ion. Theref |
Remark:Modification of a single edge has in a hierarchica '2"d€ at most one edge label per iteration. Thereforessinle

code will, in general, change a number of code coefficienfs® — 0 for all but one value ok there 'S No §|ng!e _change n
In particular, all coefficients associated with leaves the an edge label that would result in a cycle in this iteration.

descendents of that edge will change in theth coordinate. (V) Calculate guilty values and adjust helper variables:
These coefficients will change from ones in which Now consider coordinate of the path elemerd{;,, -] whose
multiplicity « # 0. The same logic as led to (52) can again

Corrsn 1osmoseinnsi ] =1 and be used to identify the guilty values, now at levelThat is,
' ' compute the set of values ¢f 0 < # < py; — 1 such that

Cs1,eiiiShm1,2,8k41,--SK []’ l] =0
i hich 2A
to-ones in whic K3 = ksklir,l] = Y (=1) skljr, 1] (53)
. t=1
CSl-,---75k717275k+17m81<[]a l] =1 and o
Corrsprosossnnsxc i) = 0. . For each(XaIue ofs, 0 < B < pyy — 1 satisfying (53) we
incrementz; " ; 5[k] as

Initialize all =), _[k] = 0.

(i) Set infinite costs: For eachT;; # , each pair(j, 1), :C%M_ﬂ[k] = x;ﬁzhm[/ﬂ] +1.
1<j<Jgp 1 <1< Ligy, each levelk, 1 < k < K, and ) ] . i
each levelt edge indexi, 1 < i < |T;,[k]|, let £ be the set wherei, 1 <i < |Tj,;[K]], is the index of the level- edge

of labels of sibling edges. For eache £ set in T, ;, whose label issi[j-,l;]. _
RemarksOne of the added complications of the generalized

5,/;)1, _[k] = occ. algorithm is that there is not a one-to-one mapping between t
o code parameters that we are adjusting (the tree edge values)
Remark: Recall from the algorithms described in Secand the code coefficients (each of which is associated with

tion VII that our approach to code optimization is to idewntif one leaf of the tree). When an edge value is adjusted there
the change in the single edge label that most reducessaa ripple effect, changing the coefficients associatedh wit
weighted sum of cycle counts. In the special case of weiglal descendent leaves. However, each change in a edge label
| QC LDPC codes there was a one-to-one mapping betweeffects only one of thd{ sums (29), all of which Theorem 2
code coefficients and tree edges (since each tree has onhgguires to be equal to zero for a cycle to exist. Thus, atihou
single edge). In the generalized setting we are now coriemlerthere is a ripple effect on the code coefficient when adjgstin
we seek to identify the change in a single edge of one of tedge labels, the values of the[k] at other levels is not
trees that will most reduce the cost. By setting certainsctust effected. Thus, considering the tree structure of the camiEyn
infinity, certain changes in code structure will never be emaddecouples the question of girth and the search for highsgirt
The changes thus barred are those that would change the frem the algebraic structure of the code.
topology. By setting those costs to infinity we ensure that th

unlabeled trees that describe our code remains an invariant
under our algorithm. E. Proof of Lemma 2

(iii) Iterate through path lengths, paths, and path To prove part (i) of the lemma consider the ordered set of
elements: Consider in turn: (a) each path length where coefficients (33) that describes the inevitable cycle. Nbga
2 < A < g/2-1; (b) each path of lengtiA, P € P, where the first and last coefficient must be in the same row of the
P ={0,S} and|0O| = |S| = 2A; (c) the first occurrence of base matrix since the path defines a cycle. The second and
each path element (indexed byl < ¢ < 2A) in P that has third and the fourth and fifth coefficients must also each be
non-zero multiplicity. in the same row. Since, when viewed at the first level of the

(iv) Determine whether a particular path element can code, successive rows in a path must be distinct, threedisti
have “guilty” vales: Let s[j,,l,] be the first occurrence of rows are traversed. In Fig. 14 we illustrate this logic for a
a path element of multiplicitys # 0. Recall thatsy[j,,l,] matrix corresponding to the polynomia} ;(z,y) = x1y° +
corresponds to the label of an edge of tlBg ;_ at levelk. z%y%+2%2y3, O = {(j,1), (5,1, (4,0), (4, 1), (j, 1), (4,1) },and
Now, for the coefficients|j,,l,] under consideration, iterateS = {[a; 0], [az 3|7, [a3 2]T, [a1 0]T, [a2 3], a3 2]T}
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ar--as-—az —1 eyttt =11 by
_;1 @’1”’&2 as ; G1--ay—Lt-1----by b1 —1 —1
‘ —1 —1 ar a9 —1 bg b1 —1
_ o—1-=1--ar|»{— _1b2b1f

Fig. 15. lllustrative inevitable eight-cycle that travessthree rows.

as—1 a; as

B agvag —1 ay |

Fig. 14. lllustrative inevitable six-cycle that travergbsee rows and three
columns.
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