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Abstract

This paper proposes stereo-based speech feature enhancement using dictionary learning. Instead
of posterior values obtained by a Gaussian mixture as in other methods, we use sparse weight
vectors and their variants as an alternative noisy speech feature representation. This paper also
provides an efficient algorithm that can be applied to large-scale speech processing. We show the
effectiveness of the proposed approach by using a middle vocabulary noisy speech recognition
task based on WSJ, which was provided by the 2nd CHiME Speech Separation and Recognition
Challenge.

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright (©) Mitsubishi Electric Research Laboratories, Inc., 2013
201 Broadway, Cambridge, Massachusetts 02139






STEREO-BASED FEATURE ENHANCEMENT USING DICTIONARY LEARNING
Shinji Watanabe, John R. Hershey

Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA

ABSTRACT expanding the original noisy feature space with the additional Gaus-
sian posterior-based feature space. That is, the noisy signals are first
This paper proposes stereo-based speech feature enhancement ugiagped into points in the high-dimensional space, and the transfor-
dictionary learning. Instead of posterior values obtained by a Gausnation can be realized as a projection from the augmented feature
sian mixture as in other methods, we use sparse weight vectors ag@ace to the enhanced feature space. This view is inspired by [2],
their variants as an alternative noisy speech feature representatiaghich uses various types of posterior values based on discriminative
This paper also provides an efficient algorithm that can be applied tmethods other than GMM posteriors.
large-scale speech processing. We show the effectiveness of the pro- ag an alternative augmented feature, we focus on sparse sig-
posed approach by using a middle vocabulary noisy speech recog| representation based on compressive sensing [3]. Compressive
nition task based on WSJ, which was provided by the 2nd CHiMEesing with dictionary learming decomposes an original signal
Speech Separation and Recognition Challenge. into a dictionary matrix and a sparse weight vector. This is a very
Index Terms— Speech recognition, speech feature enhanceefficient representation of high-dimensional signals, and sparse

ment, dictionary learning, sparse representation, 2nd CHIME chafignal representation with dictionary learning has been applied to
lenge track 2 speech/audio enhancement techniques [4—7] as well as feature ex-

traction and acoustic modeling [8-10]. For example, because of the
non-negative constraint of the power spectrum, non-negative matrix
1. INTRODUCTION factorization has been actively studied [4—7] in this framework. Al-
though these approaches successfully model speech signals in the
The investigation of speech enhancement techniques for automatewer spectrum domain, they do not always improve speech recog-
speech recognition (ASR) is one of the most important topics imition performance because of the domain mismatch. Therefore,
modeling realistic environments. Unfortunately, speech enhancdhis paper applies the dictionary learning techniques to the MFCC
ment techniques do not always improve ASR performance andomain speech enhancement, which minimizes speech distortion in
sometimes degrade it, even when noises are correctly subtractéae MFCC domain, and improves ASR performance more directly.
in terms of SNR measure or some subjective criteria. The main  |n this application, we also extend the proposed approach to deal
reason for this degradation is the difference in speech signal reprevith multistep feature transformation and long context information.
sentations for power spectrum and MFCC domains. For exampleon the basis of these extensions, we provide an efficient compres-
spectral subtraction can aggressively denoise speech signals. Hogive sensing algorithm with dictionary learning, which is applicable
ever, since spectral subtraction makes speech signals unnatural (etg.large-scale speech corpus. We applied these techniques to a rever-
discontinuity due to a flooring process), these outliers are enhancesérant and noisy speech recognition task based on a 5K vocabulary

during the MFCC feature extraction step, which degrades ASR pefw/SJ setup, provided by 2nd CHIME Speech Separation and Recog-
formance. Thus, the speech enhancement techniques for ASR mygition Challenge [11].

consider compatibility with the back-end ASR process.

One promising approach is to address this denoising problem in
the MFCC domain. Note that, unlike the power spectrum domain,
the MFCC domain does not retain the additivity property of signals
and noises, and therefore, this approach may not effectively reduce
noise components. However, since this approach directly enhancéis section explains the conventional stereo-data-based feature en-
MFCC features, it yields steady improvement in terms of ASR perhancement using Gaussian mixtures [1,2]. In our task setting, we
formance. SPLICE is a typical technigue for feature-domain speechave stereo data composed of a clean feature seqieneg(x; €
enhancement that can obtain transformation functions from noisy tR”|t = 1,--- ,7} and the corresponding noisy feature sequence
enhanced speech features [1, 2]. An interesting concept in SPLICE — {y: € RP|t = 1,-.- , T}, whereT is the number of frames,
is that a (linear) feature transformation depends on a region that inp js the number of dimensionality, adlandY areD x T matrices.
cludes a set of neighboring noisy feature vectors. By modeling noisyhe key concept of stereo-based feature enhancement is to obtain a
features on the basis of a Gaussian miXture, the region information iﬁansformation from noisy features to clean features depending on

represented by a posterior distribution of mixture components (sofhe posterior probability of a Gaussian mixture comporieit a
clustering). The transformation parameters are usually estimated uggmet.

ing parallel clean and noisy features that have the same label infor- %
matlon_uttered b_y the same speaker. Thus,_ the approach conglders Xt = yi + Z’Yk,tbk, 1)
approximately piece-wise linear transformations, and can precisely
enhance noisy feature vectors.

In this paper, we emphasize an alternative view of this piecewhere~; . is the posterior probability of a Gaussian mixture com-
wise linear feature enhancement technique. In this interpretatiomonent (i.e.p(k|y:)), and K is the number of mixture components.
the noisy signals are represented in an augmented feature spacelyyis a bias vector that represents a shift transformation fyerto

2. STEREO-DATA BASED FEATURE ENHANCEMENT

k=1



x:h where® = [v,_;, -+ ,9,_r]. Inthe following sections, we will
By considering the above process for all frames, Eq. (1) is repdiscuss each step in detail.
resented in the following matrix form:

Y 3.1. Compressive sensing
X=Y+BI=[Ip B]{ } (2

r This paper uses two approaches to obtain sparse weight vectors. The

first approach is orthogonal matching purs@MP), which is a
greedy search algorithm commonly used for the recovery of com-
pressive sensed sparse signals [12].

wherelp is the D x D identity matrix.I" is a K x T matrix com-
posed of the posterior probabiliti€$ys . 1 ;}i—;. BisaD x K
matrix composed o bias vectors, i.eB = [by=1, - ,br=x].
Eqg. (2) indicates the interpretation that the noisy sigiéalare rep-
resented in an augmented feature sga€g I'"|™ by expanding the
original noisy feature space with the additional Gaussian posterior-
based feature space. That is, the noisy signals are first mapped irfpie approach finds the smallest number of non-zero elements among
points in the high-dimensional space, and the transformation matrix; that satisfies the upper boung) ©f the signal residual. The
(Ip,B] can be obtained as a projection from the augmented featursecond approach is calldcissg which uses an L1 regularization
space to the enhanced feature space. term to obtain sparse weight vectors.

The bias matrix is obtained by the following MMSE criterion.

argmini wi[|o 5. |ly: ~ Dwel[} < < ™

Wi

argmin||y: — Dw||5 + \||w
argmin|[X — Y — BT/ 2. @3) gminlly: = Dwellz + Allwells ®)
B

This paper mainly investigates the effectiveness of dictionary learn-

ing by using these two approaches. However, there are many vari-
B = (X — Y)FT(ITT)—l, 4 ants used to obtain sparse vectors (see [13, 14]), and the proposed

approach can in principle apply any sparse coding algorithm.

In the evaluation step, unseen noisy features are transformed to the  Once we obtain the weight vectors, we can compute the poste-

enhanced features by substitutibg into by in Eq. (1), which can  rior value at each dictionary atoinas follows:

be directly used in a back-end ASR process. This is a basic for-

mulation of SPLICE, which has many variants. The most popular p(yelk) lly: — w,di||3

extension of SPLICE is to consider the frame-level contexhe plkly:) = SE Dydk) & exp (‘ 952 ) ©)

posterior value domaitby concatenating the contiguous Gaussian k=1 Pt

pOSteriOfS inC. This is an efficient way of Considering IOng context Because of the Sparsenessm’t, the Computa’[iona| cost of this

information since the frame-level context expansiorthe MECC  posterior estimation is very low. As a featug , for the latter trans-
domainleads to a serious dimensionality problem in Gaussian modformation step, we have the following two options:
eling.

Thus, the bias matrix is estimated as follows:

o Weight: ;2 wy s

3. DICTIONARY LEARNING BASED FEATURE e Posterior: 1.+ 2 p(kly:)

ENHANCEMENT Similar to SPLICE, we may use the posterior values in the transfor-

This paper replaces Gaussian mixture modeling with dictionarﬁma:mg;&fgﬁqvéh'tghladg;ﬁz\%? g?’nncaen:ferzggé %]}ttr;]z tvrva;r:sr](zgr?:?n(zn

learning in the stereo-based feature enhancement approach, whic & . TR ’ : ; 9

based on the interpretation in Eq. (2). The approach mainly consis Ortant |nfo_rmat|_on in dlctlor]ary learning, this paper evaluates both
" . . CA - eature settings in the experiment.

of 1) dictionary learning with compressive sensing and 2) transfor-

mation estimation. In the dictionary learning step, we focus on the

following decomposition of data: 3.2. Dictionary learning
argmin||y; — Dwq||3 + A(w) Vt (5) Once we obtain the weight vectors, we can also estimate a dictio-
D,w nary matrix. This paper uses a typical dictionary learning algorithm
named method of optimal direction (MOD), which estimal®sas

whereD is aD x K dictionary matrix andw: is a weight vector
at a framet. A(w;) is a regularization term fow, and L1 norm is = T -1
usually used to find a sparse solution. The step corresponds to the D = fne (YW (WWT) ) (10)
GMM estimation step with the Gaussian posterior estimation in thevhere f,,.(-) is a function used to normalize the column vectdrs
conventional SPLICE framework. _ to be unit vectors (e.gdx — d/|dx|). There are other approaches
In the transformation estimation step, we simply replace the posyoy estimatinge the dictionary matrix (e.g., k-SVD [13], online dic-

terior distributions in Eq. (3) with the feature vectgy,, which is  tipnary learning [15]). A dictionary matrix and sparse vectors are
obtained by compressive sensing wa, as follows: iteratively updated.

follows:

argmin||X — Y — B¥||3, (6)
B 3.3. Transformation estimation
1we can also consider the linear transformation matrix of the feature vec- . . - . o
tors (€.9.3 %, .. (Ary: + by) ). However, it is very practical to con- Once we obtainv, given D, we can consider the similar transfor-
sider only bias vectors since the linear transformation does not significantlgnation to Eq. (1) by replacings,. with ., as follows:
improve ASR performance and requires a complicated estimation process.
Therefore, the paper does not involve linear transformation in the formula- K
tion. Note that the following discussion can consider the linear transforma- Xe =y + Z Yr.tbr, (12)
tion matrix in this paper. ’

k=1



or we can represent this equation with a weight mafrias follows:  Algorithm 1 Dictionary learning in thén) step

1: Initialize D™
X =Y +BU. (12) 3 repeat

3 Suw=0,S:,=0
Thus, by using the same MMSE criterion with Eq. (3), we canobtain 4:  for w = 1to U do

the following transformation matrix: 5: argmin, () X - DWM |2
- _ 6: AccumulateS ., += W{ (W{)T
B=(X-Y)rT (¥ 13 e W) e (m
( A ) (13) 7: AccumulateS ., += Xﬁffg (WE[”)T
8: end for

Thus, the approach first transforms noisy feature ve&ots sparse
vectors® on the basis of a dictiona@, and then the sparse vectors 10': un
are transformed to the bias vectd®P between clean and noisy
feature vectors in order to denoise the noise elemerys.in

UpdateD™ = foc (Sew(Sww)™")
til some condition is met

Algorithm 2 Transformation estimation in the:) step
1 Sww =0, Szdj =0

Since the approach enhances original features to transformed fea?: for u = 1to U do () A (2

tures in the same speech feature domain, the process can be iterd: ~ &rgmin, e [[Xu" — DY/ W[5

tively undertaken. This multistep feature transformation is inspired 4.  Getw(™ from W™

?ﬁ/ tpell fee}:lure I(taarr]n!ng c?fncetp'; mtrd(re]e? Li;a\r?lnﬁfEl(rsr]].EWe ggn_5|der5: AccumulateS ., += ¥ ()T
e following extension of feature transformation from Eq. (12): 6. AccumulateS,,+— (X, — thn))(\I,&n))T

3.4. Multistep feature transformation

7: end for
X = x4 e, (14) & UpdateB™ = S, (Syy) "
9: UpdateX (1 = X(™ 4 B(Mg ™)

wheren is the number of transformation step aKd" £ Y. The
sparse vector@ ™ and the transformation matriB(™ are esti-
mated step-by-step as follows:

argmin ||x§”> —D(">w§”)|\§+A(w§")) VL. 3.6. Implementation

D) w™ (15) . . . .
An important factor in applying a new technique to speech process-
B™ = (X — X" (@)1 (@™ (g m)Ty 7L, ing is that we must consider the computational efficiency of dealing
with large-scale speech database. For example, the famous WSJO
We experimentally observe that the iterative process monotonicallffaining set used in the 2nd CHIME challenge track 2 holds a to-
decreases the L2 norm between the clean and enhanced speech féhof 5.4 million speech feature frames, and cannot store the entire
tures in the training step. The consideration of the theoretical conve®W or ¥ if the dictionary size K) is large. Therefore, this paper

gence property of this multistep transformation is our future work. introduces utterance-by-utterance processing of dictionary learning
and transformation estimation, which can only store utterance unit

features, weights, and posteriors.

3.5. Long context features We consider an utterance indexwhere the number of frames

. . . of uisT,. The whole set of sparse weight vectors in a corpus is rep-
Similar to SPLICE, the approach can consider long context 'nforresented aW = {W, € RP*Tu . 4 = 1,... U}, and the other

mation. There are two ways of considering long context features i L :
. . . frame-dependent values are represented similarly. We mainly have
the stereo-based feature transformation approach. One is to consiger

et T T T _ T
the context information in the posterior domain at the transforma—0 compute the st_at|st|c¥V_W ! ‘I"I’  YWT, and_(X Y)\I.' :
tion step used in SPLICE, i.ey, . — [Y]_us--+ T, LT We use the following relationship of the sub-matrix property:

1 = ihte T t—c) v It » Ittcl

where c is the number of contiguous frames to be considered in

this feature expansion. The other is to consider the long con- u
text MFCC features in the dictionary learning step, i%|y = WWT™ =5 "W, W[ (16)
[(Xii)c).r7 7(X7(5n))T7"' 7(x§i)c)T}T' u=t

In general, since the Gaussian mixture cannot correctly deal with o )
high-dimensional features because of the dimensionality problent his equation indicates that we can compKteY, W, and¥ with-
SPLICE uses the posterior domain feature expansion. However, [t storing these matrices in memory by accumulating these statis-
points out the effectiveness of considering the long context MFCGICS for each utterance, similar to the E-step in the EM algorithm
features in the posterior estimation by employing dimensionality reYVe can also parallelize this algorithm for each utterance or set of ut-
duction techniques. One of the advantages of dictionary learninffrances. Finally, we provide the algorithms for the dictionary learn-
is that the approach does not significantly suffer from the dimeniNg and transformation estimation steps, as shown in Algorithm 1
sionality problem unlike the Gaussian mixture case. In addition, b)ﬁnd 2.
considering multistep transformation, as discussed in the previous
section, the latter transformation step can consider a longer context. 2some dgictionary learning techniques (e.g., k-SVD) need to explicitly
Thus, this paper proposes to use the long context MFCC features fiocess full frame size matrices, and cannot be represented in (16). In this
the dictionary learning step. case, an online learning based extension is required.




Table 1. Experimental setup for the 2nd CHIME challenge track 2

3rd step

Sampling rate 16 kHz 675
Feature type MFCC + log Energy+A + AA 70
(39.dim.) g
Frame length 25ms Eees
Frame shift 10ms 2
Window type Hamming g %0 B
# of categories 41 phonemes Zess nd step
z

Context-dependent 1,860 HMM states

HMM topology (3-state left to right)

8 GMM components

Language model | 2-gram (provided with WSJO corpus)
Vocabulary size 5k (closed vocabulary) 64.0

0 1 2 3 4 5
Table 2. WERs (%) for OMP and Lasso obtained using different Number of contexts
types of features.

_ _ Fig. 1. Average word error rate for each context length and layer.
Weight (wx,:) Posterior f (k|y:))

OMP 65.3 65.4
Lasso 66.5 65.6

Table 3. WERs (%) for SPLICE and dictionary learning
-6dB  -3dB 0dB 3dB 6dB 9dB
Baseline | 86.25 82.79 76.08 71.35 63.04 55.87
4. EXPERIMENTS SPLICE 80.72 7555 67.37 6240 54.39 4948
Dictionary | 80.66 75.46 67.74 62.60 54.64 49.13
We show the effectiveness of the proposed feature enhancement bysPLICE +
using the 2nd CHIME challenge track 2 [17] based on HTK [18]. Dictionary | 80.43 74.63 67.16 62.49 54.08 48.92
The task considers the problem of recognizing utterances being spo-
ken in a noisy living room from recordings. The task uses the same
setup as the 2011 CHIME Challenge [11] in terms of reverberatioframes and steps were set as 4 and 2, respectively, on the basis of the
and noise conditions, but the target utterances here are taken fro@sult in Figure 1. In the case where weight vectors were used di-
the speaker-independent medium (5k) vocabulary subset of the Watctly, the WERs depended on the compressive sensing methods (by

Street Journal (WSJO0) corpus 1%). In fact, we observed that the dynamic ranges of weight vectors
were different from those of OMP and Lasso, and the degradation of
4.1. Experimental setup Lasso would be due to this dynamic range difference. However, the

difference was mitigated when we used the posterior values in the
Table 1 summarizes the experimental setup, which is used in the 2nchnsformation step, which adjusted the dynamic ranges to the same
CHIME challenge. We used standard 39-dimensional MFCC vectorscale. Therefore, the posterior value based feature transformation
processed by cepstral mean normalization and a triphone HMM thatan somewhat absorb the difference caused by compressive sensing
has 1860 states and 8 components per state. The HMM was trainegethods.
by using 7,138 reverberant speech utterances, and a language model Finally, we compared the result with SPLICE using a similar
was a 5K non-verbalized closed bigram provided by WSJO. We usegktting (the number of mixture components was 1024 and that of
the development set (409 6 SNR conditions = 2,454 utterances) context frames was 4 in SPLICE). The WERSs were almost compara-
provided by CHIME for our evaluation, and the average WER forble; thus, dictionary learning would be an alternative method to re-
6 SNR conditions (-6dB, -3dB, 0dB, 3dB, 6dB, 9dB) was 72.6%.alize stereo-based feature enhancement. In addition, by combining
7,138 reverberaniX) and noisy ') speech utterances were used asSPLICE and dictionary learning, the performance was slightly but
parallel data in the stereo data feature enhancement techniques. Tdeadily improved for aimost all SNR conditions. These results con-
dictionary size ) was fixed at 1,024 throughout the experiments. firm the effectiveness of dictionary learning in stereo-based speech

enhancement techniques.

4.2. Experimental results

Figure 1 examines the proposed approach for changing the number 5. SUMMARY

of context lengthsd), as discussed in Section 3.5, and the numbe .
gthsd) : %he paper proposed a stereo-based feature enhancement technique

§ing dictionary learning as an alternative method for the Gaussian-
ased technique. The speech recognition experiments show im-
rovements in terms of WER; thus, we confirm the effectiveness of

in compressive sensing, and used sparse weight vectors directly
transformation features (i.efix,: = ws,:). The result showed that
there was a clearly improved WER from the baseline (72.6%) by, " | ina in this f K O in fut Kis 1
more than 5%, and the multistep iterations and long context featurddctionary learning in this framework. Our main future work is to
further improved WER by 2% at most. These results show the effec@Vercome the limitations using the MMSE criterion. For example,
tiveness of dictionary learning for speech enhancement, particularf{’€ framework requires noisy and clean parallel data, which is not a
ealistic situation in some cases. In addition, it is generally agreed

based on the multistep and long context extensions. , . .

Table 2 compares the results with OMP and Lasso in compre§-r;‘51t the r((ejductlt%n of thde L2 nor;n n tlrt]r? MFthﬁ d'(\)/ln;gg goes not
sive sensing, and sparse weight and posteriors=(1 in Eg. (9)) always reduce the word error rates, afthough the - domair 1S
used in the transformation estimation step. The number of contexXf'o'® effective than the spectrum dc_)maln. Therefore, dlscr!mlnatlve

criterion should be considered in this framework to further improve

3Because the official CHIME challenge does not allow the use of steredhe proposed approach, as represented by discriminative feature
data processing, this result does not satisfy the challenge regulation. transformation techniques [19-22].
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