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Abstract

The recently introduced second CHiME challenge is a difficult two- microphone speech recogni-
tion task with non-stationary interference. Current approaches in the source-separation commu-
nity have focused on the front-end problem of estimating the clean signal given the noisy signals.
Here we pursue a different approach, focusing on state-of-the-art ASR techniques such as dis-
criminative training and various feature transformations, in addition to simple noise suppression
methods based on prior-based binary masking with estimated angle of arrival. In addition, we
propose an augmented discriminative feature transformation that can introduce arbitrary features
to a discriminative feature transform, an efficient combination method of Discriminative Lan-
guage Modeling (DLM) and Minimum Bayes Risk (MBR) decoding in an ASR post-processing
stage, and preliminarily investigate the effectiveness of deep neural networks for reverberated
and noisy speech recognition. Using these techniques we present a benchmark on the middle-
vocabulary subtask of CHiME challenge, showing their effectiveness for this task. Promising
results were also obtained for the proposed augmented feature transformation and combination
of DLM and MBR decoding. A part of the training code has been released as an advanced ASR
baseline, using the Kaldi speech recognition toolkit.
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ABSTRACT Recent advances in Automatic Speech Recognition (ASR) [2],
) ) ) . have greatly improved the accuracy of speech recognition systems.
The recently introduced second CHIME challenge is a difficultgyer the past ten years model training techniques have migrated
two-microphone speech recognition task with non-stationary intergom pMaximum Likelihood (ML) estimation to discriminative train-
ference. Current approaches in the source-separation communifyy 13 4]. In addition, various types of feature transformations have
have focused on the front-end problem of estimating the clean &gn@leen proposed and showed effectiveness [5, 6, 7, 8, 9, 10]. Although
given the noisy signals. Here we pursue a different approach, focUgy j5 \ell known that the state-of-the-art ASR techniques are very
ing on state-of-the-art ASR techniques such as discriminative trainsge tive in clean speech conditions, we need further investigation of
ing and various feature transformations, in addition to simple noisg,er effectiveness in challenging conditions such as environmental

suppression methods based on prior-based binary masking Wit erheration and noise. In this paper we focus on discriminative

estimated angle of arrival. In addition, we propose an augmenteflyining and feature transformations for tH&! ZHIME challenge.

discriminative feature transformation that can introduce arbitraryrhis paper deals with several feature transformation approaches

features to a discriminative feature transform, an efficient Comb'Which convert original features to new features based on linear

nation method of Discriminative Language Modeling (DLM) and ¢ansformations (Linear Discriminant Analysis (LDA) [5], Maxi-
Minimum Bayes Risk (MBR) decoding in an ASR post-processingn, m | jkelihood Linear Transformation (MLLT) [6, 7], Speaker
stage, and preliminarily investigate the effectiveness of deep ”eurﬁ\'daptive Training (SAT) [8]), and discriminative non-linear feature
networks for reverberated and noisy speech recognition. Using the$g,nstormation [9]. LDA uses long context by context expansion
techniques we present a benchmark on the middle-vocabulary Suhé.g., contiguous 9 frames) to exploit feature dynamics, which
task of CHIME challenge, showing their effectiveness for this task,oq,ces the influence of non-stationary noises. MLLT finds a lin-

Promising results were also obtained for the proposed augmenteg, yransformation of features to reduce state-conditional feature
feature transformation and combination of DLM and MBR decod-corejations. SAT and feature-space Maximum Likelihood Linear

ing. A part of the training code has been released as an advancgghgression (fMLLR) improve the recognition accuracy by adapting
ASR baseline, using the Kaldi speech recognition toolkit. to unknown and changing noise conditions.

Index Terms— CHIME challenge, Noise robust ASR, Discrim- Discriminative non-linear feature transformations can provide
inative methods, Feature transformation, Prior-based binary maskinggt further gains in performance, because the transformation is op-
timized to reduce the error rate in the context of the decoder (e.g.,
[11]). Some of the popular non-linear transforms provide an ap-
proximately piece-wise linear transform by the inclusion of “region-

d . . . . based” features based on Gaussian posterior probabilities. We pro-
The 2'“ CHIME challenge is a recently introduced task for n0|se-Eose to extend this basic approach by augmenting the set of region-

1. INTRODUCTION

robust speech processing [1]. The Scenario |nvo|ves_recogn|zm ased features to include additional non-linear features that may be
speech from a single target speaker binaurally recorded in a domes Slevant in noisy conditions. We call this method augmented dis-

enV|tro_nment. (;Jnllke theb’lICHltMEkphangnE?r,] the sect?ndtel((jltlofn criminative feature transformation. As an alternative discriminative
contains a medium vocabu'ary taskin which the Speech IS taken Irofly, , jinear feature transformation, this paper also preliminarily in-

the Wall Street Journal (WSJO0) 5k vocabulary read speech Corpu%stigates the effectiveness of Deep Neural Networks (DNN) [10]
and convolved with binaural room impulse responses before mixing In addition to testing the above methods in isolation, we coﬁ-

W'th binaural regqrdlngs of & noisy domestlclgnwror.lment..Thls taSksider some minimal signal processing in the front end to take ad-
is much more difficult from a speech recognition point of view.

Whereas, in the*t CHIME challenge, participants have focused vantage of the binaural nature of the recordings. The method forms

more on source separation approaches, here we focus on state-of-t rpask'ing function using Fhe discrepancy between the instar!taneous
art ASR techniques such as discrimina'tive training and various fea- er-microphone phase dlff_erence and the expected pha_se difference
ture transformations, using only simple noise suppression methoigs)r the target speaker Iocatlo_n. In our .ASR post processing step, we
based on estimated 'time difference of arrival (TDOA) in the front- eal with an N-bgst re-ranking technique basgq on Dlscrlmlngtlve
Language Modeling (DLM) [12, 13, 14], and Minimum Bayes Risk

end. The goal is to understand how much can be gained from thﬁleR) decoding [15, 16, 17] We propose an efficient combination

dlscrlr_mnatlve trr?u_nlng ASR approach, as well as to Improve themgthod of DLM and MBR decoding, which further improves ASR
baseline recognition systems used to test source-separation-base

approaches, in order to allow researchers who may not be experts INote that[17] performs DLM with the MBR criterion, while we combine
in ASR to better evaluate the benefit of these methods. DLM and MBR decodingin a cascade form.
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Fig. 1. Schematic diagram of the proposed system.

performance. 250Hz 1kHz
In summary, the goal of this paper is to evaluate the effectiveness g _ 0.06 —

of the discriminative training and feature transformation for rever- £ 0.04 —

berated and noisy speech fdi*2CHIME challenge Track 2. In ad- 3 0.02—

dition we aim to build a CHIME challenge benchmark using public 0 —

tools that can be shared with the community. We use a Kaldi toolkit - 0 T -T 0 b

[18] to provide an advanced ASR back-end and compare with the de- Phase difference Phase difference

fault HTK [19] based ML baseline associated with the CHIME chal-

lenge. In addition we also experiment with augmented discrimina- Fig. 2. Histogram of phase differences for two frequency bins.

tive feature transformations, combination of DLM and MBR decod-

ing, and angle-of-arrival-based processing, all of which show somgpgwed worse word error rate (WER) than the baseline. As in [22],

Normalized

promising improvements to recognition performance. a statistical model is needed. To consider the offset and variance of
the phase difference from the anechoic value, a prior-based binary
2. SYSTEM OVERVIEW masking is proposed. The phase differefice at frequency binu

and time frame is calculated for each time-frequency bin as
Fig. 1 shows a schematic diagram of the proposed system, which
consists of three components. First is a noise suppression step,

described in Section 3). It consists in a prior-based binary maslg;vherej is the imaginary unitA.. is a positive real number, and
ing, which suppresses directional interferences. Second is a featukeL 44 2 are the short-time Fourier spectrum for the left and
transformation step, including feature-level transformation (LDA'right channels, respectively. In classical binary masking, a rifisk
MLLT, fMLLR) and discriminative feature transformation (feature- is designed by,using the following thresholding: '

space techniques, presented in Section 4.2)[20]. Third is a decoding

step. ASR decoding uses a discriminative acoustic model with mar- { € if [Ou,

X5/ XE = Awe?®, @)

> 0,

Wot =0 1 if |0u] < 6. 2)

gin (MMI and boosted MMI, presented in Section 4.1). Results are .

re-ranked using discriminative language model in Section 4.3 and

minimum Bayes risk decoding (MBR) is performed based on latticevheree is a very small constant artdd is a threshold determined in

using re-ranked 1-best as a reference in Section 4.4. advance. In our prior-based binary masking, the miaSkis deter-
mined using a frequency-dependent pigr here obtained from a

3. PRIOR-BASED BINARY MASKING phase difference histogram, as

. . . W/ _ € if Qw(aw,t)/qw < {e, 3
In the CHIME challenge, two-channel recordings are provided and wit = 0 )% if g.(0 7. > ®)
\ ; e prov (90 (0u,t)/0) 90 (00,t) /0w 2 e,

the target speaker is assumed to be in a frontal position with respect
to the microphones. As binary masking based on the TDOA hawhereg., = maxy q.,(0), g. is a threshold probability, and is a
been shown [21] to be more effective than beamforming for speectvarping coefficient.
recognition with a small number of microphones, we investigate here
its usage in our system. In Fhe frontal position setting, without re- 4. BACK-END PROCESSING BASED ON
verberation, the TDOA for sngnals_comlng from th(_e target speaker DISCRIMINATIVE METHODS
should be equal to zero. Hence, time-frequency bins for which the
inter-microphone phase difference is not close to zero are less likely 1 pjscriminative training
to contain energy of the target speaker. However, with reverberation, S _ o _ o
the phase differences for a source from a frontal position may ndiscriminative training is a supervised training algorithm that mini-
be zero. Fig. 2 shows the phase difference histograms for 250 H#izes the Baye§ risk of posteriors for correct labeling and recogni-
and 1 kHz in “reverberated” speech. For 250 Hz, the histogram i§on results. This paper uses boosted MMI (bMMI) [23], where a
almost symmetrical and variance is small but for 1 kHz, the mean i§00sting facto> > 0 is used to introduce a weight depending on
drifted and variance is large. The extent to which the phase differPhoneme accuracies. The objective function is given as
ence is affected by noises and reverberation is significantly different
for each frequency. Thus, a simple binary mask only using physi- F

. . . . L. . bMMI
cal information will not work, and indeed, preliminary experiments

R
Xt }r|Hs, )" pr(sr
= ;log > pxp(/\{gt}r}\?ls)ﬁ;gL é)((e—b)f““’sr)’ )



whereR is the number of training utterances afw; }, is ther® 4.4. Minimum Bayes risk decoding for discriminative language
utterance’s feature sequence. The acoustic model parametees modeling

optimized by the extended Baum-WeldH,,. and#, are the HMM
sequences of a correct labgl and a recognition result, respec-
tively; px is the acoustic model likelihood is the acoustic scale,
andpy, is the language model likelihoodi(s, s,) is the phoneme

Minimum Bayes Risk (MBR) decoding finds the hypothesis that ap-
proximately minimizes the Bayes risk with respect to the word error
rate based on the lattice representation. To efficiently combine DLM
accuracy ofs for a reference,.. In this paper, we compare the per- based on t_he N-best re-scoring framewark gnd MBR decodi_ng based
formances of MMI (corresponding # — 0) and bMMI to that of on the lattice framework, we use the algorithm of [16]. This algo-
ML. rithm forms a consensus by choosing a word sequence that has the
minimum expected edit distance to each sequence in the lattice:

4.2. Discriminative feature transforms with augmented features Hs = arg min Zp* ({yi}Hs)" pr(s)L(Hs, Hy),  (8)

- . .. . .. . seEL
In addition to discriminative training, feature transformation based €

on the discriminative training criterion can be used. This method isvhere L(#,, #/) is the edit distance between a hypothesis in the
referred to as feature-space discriminative training [9]. It estimates gttice #, and that of the argument of the minimizatid, .
matrix M that projects rich high-dimensional features down to low-  The edit distance is approximately computed based on the prob-

dimensional transformed features, as follows: ability v(g, u) of which symbol (including the epsilon symbal)is
aligned at the position in the word sequencH ;. The approximate
yt = X¢ + Mhy, (5)  objective is iteratively updated, conventionally starting at the cur-

rent 1-best hypothesis from the lattice, and forming alignments with

wherex; are the original -dimensional featured, are.J-dimensional the lattice sequences. Our approach improves upon the initializa-
features which depend on with J >> I, andy: are the transformed  tion point by starting with 1-best result in an N-best list re-scored by
features, andMl is anI x J matrix. In this study, we validate the DLM, rather than the conventional 1-best resul{g, u) is approx-
effectiveness of feature-space MMI (f-MMI) and its extension,imately computed by using the original (non-rescaled) arc scores of
feature-space boosted MMI (f-bMMI). the DLM 1-best resuft Thus, we efficiently combine DLM-based

In addition, as it is often effective to use different types of fea-N-best re-scoring and minimum Bayes risk decoding.
tures for noisy speech recognition, such as in the tandem approach,
we propose a method that obtains new transformed feagtjréy
adding featureh; to h; as 5. EXPERIMENTAL SETUP
h;

5.1. Task description
)

¥i = %0 + [M M] [ 6)

We validated the effectiveness of our proposed approach for re-
verberated and noisy speech on Track 2 of thé @HIME chal-
The concatenated matrich4 andM’ are optimized by maximizing lenge [1]. Track 2 is a medium-vocabulary task in reverberant

the following objective function: and noisy environment, whose utterances are taken from the Wall
Street Journal database (WSJO0). The training data setgsicon-
R o ({723 M ) pi(50) tains 7138 utterances by 83 speakers (si84), the evaluation data set
Fatvnr ([MM']) = Z log Hr el ST (T) (si_et.05) contains 330 utterances by 12 speakers (Nov’'92), and the
r=1 22 px ({yideHa)" pr(s) development set (sit.05) contains 409 utterances by 10 speak-

. L o ers. Acoustic models were trained usingtrsé and some of the
By augmenting discriminative feature transforms in this way we Carparameters (e.g., language model weights) were tuned based on the

consider a wider class of transforms depending upon the chos&fygRs of sidt 05. The language model size was 5 k (basic). This
auxiliary features. One could consider alternative region-based fegptabase simulates a realistic environment. There are two types of
tures, features deriving from source-separation considerations sugfita: “reverberated,” created by convolving clean speech with bin-
as signal-to-noise ratios, masking values, or any other set of alterngyra| room impulse responses corresponding to a frontal position at
tive features. a distance of 2 m from the microphones in a family living room, and
“isolated,” created by adding real-world noises recorded in the same
4.3. Discriminative language modeling room to “re\_/erberz_ated" and selecting the noise excerpts to obtain
signal-to-noise ratio (SNR) ranges e, —3, 0, 3, 6, and9 dB
Discriminative Language Modeling (DLM) learns patterns of errorswithout rescaling. Noises are non-stationary such as other speakers’
in the hypotheses output by a speech recognizer, and adjusts scotggerances, home noises, or music.
of hypotheses to reduce the errors. The score can be simply obtained
by the inner product of a feature vectdf#.) (e.g., N-gram counts)
extracted from a hypothesis (recognition resgit) and a weight
vectorw. The weight vectors for each utterance are estimated baséffe describe the settings of acoustic feature and feature transforma-
on an on-line manner by using the following perceptron learningion. The baseline acoustic features are MFCC and PLP (1-13 order
rule, w = w + (¢(Hs,) — ¢(Hs)). Then, an aggregate weight MFCCs (PLPs) +A + AA). It is well known that LDA transforms
\{ector Is obtained by averaging the weight vectors for a!l utter.ance:, 2The accurate assignment probability can be obtained by converting the
(e, av_eraged perceptron). In our paper, the approach is realized l3¥timated DLM weights to arc weights in a lattice. However, the conversion
re-ranking the hypotheses, aid,. is selected from the lowest WER  ig 1o trivial since DLM would include unseen N-gram features or wide-span

(oracle) hypothesis in an N-best list computed from the correspondeatures, and the corresponding DLM weights cannot be converted to those
ing reference. of lattice arcs, straightforwardly.

5.2. Feature extraction and transformation




the features of a class to make them as discriminable as possiblable 1. WER[%] for isolated speechsi(dt_05) without

to those of the other classes. After concatenating 1-13 order statitoise suppression.  Tri-phone model, discriminative training
MFCCs in nine contiguous frames, a total of 117-dimensional feawith MFCC features (upper), MFCC+LDA+MLLT (middle),
tures are compressed into 40 dimensions by an LDA whose class MFCC+LDA+MLLT+SAT (lower).

a tri-phone HMM state (2500 states). Because the acoustic features —6dB —3dB 0dB 3dB 6dB 9dB | Avg.
are high dimensional, it is impossible to use full-covariance mod—ur 7420 66.57 5824 51.84 46.73 4068637
els (which consider correlations between dimensions), and, instead, pami 73.40 65.60 56.88 51.17 4540 41.8561
diagonal-covariance models are widely used. This simplificationder pyvi | 72.78 6471 55.69 50.83 44.00 40.034.71
creases the model’'s performance. Several methods for transformingf_MM' 69.94 6250 5451 48.74 42.73 38.382.79
a feature space so as to decrease correlations between features havgvm) | 68.64 6156 53.11 47.65 41.73 36.981.61
thus been proposed, among which MLLT is a widely used exams—u- 70.95 6267 5398 4737 4027 3488167
ple. Moreover, large variations among speakers degrade the acousticMMI 68.55 61.12 5341 46.32 3952 34.850.54

models. To address this problem, SAT is typically used: in SAT, bMMI | 68.74 60.98 51.95 4586 38.16 32.889.76
training is conducted after having transformed the training speech ¢\ 66:19 58:24 49:23 43:58 36:89 31:357:58

into a canonical space so as to reduce the variances across SpeaF-bMMI 66.65 57.46 48.25 42.99 3571 31.027.02
ers. In this study, we validated the effectiveness of LDA, MLLT, and —y- 68I36 58I30 48.80 40'73 35'09 28.546.64

SAT. MMI 65.13 55.27 45.89 39.64 33.12 27.2894.39
bMMI | 64.60 55.10 45.82 39.05 32.72 26.864.03
5.3. Discriminative methods -MMI | 63.09 52.62 42.44 36.29 31.01 25.521.83
f-bMMI | 62.43 52.23 42.17 35.31 29.84 24.[21.12

In discriminative feature transformation (Section 4.2)0 Gaus-
sians were used and offset features were calculated for each of the 40

MFCC dimensions with context expansion (9 frames). The dimenére 56.29% (A=n,T=n), 56.37% (A=y,T=n), and 56.98% (A=y,T=y)
sion of the feature vectdr, was400 x 40 x 9. Features withthetop .4 performance’ of th,e (Azy.T=y) n,10dely A rier 1o that ,of A

2 posteriors were selected and all other features were ignored. F@f - 1 odels. The performances of (A=n.T=n) and (A=v T=n) are
the DNN, we used a CPU version of neural network training imple- X P (A=n, T=n) (A=y.T=n)

I t ivalent; the (A=y,T= | li l.
mented in Kaldi with 3 hidden layers and 500,000 parameters. Tha most equivalent; we use the (A=y, I'=n) model as a baseline mode

initial | . i 001 and d d 10 0.001 at th jscriminative training and feature transformation were carried out
Qltlgin?re:gr]nmg rate was 0.01 and was decreased to 0. at the en ing this model as the initial model.

) 6.2. Discriminative training and feature transformation
5.4. Experimental procedure
First, with regard to the MFCC features, the improvement of the

We summarize the experimental procedure based on the above sefgfiER by discriminative training from the ML baseline is shown in
as follows: First, a clean acoustic model was trained. The numTable 1 (upper). The mixture of speech and noise increases the
ber of mono-phones was 40, including silence (“sil”). In the tri- |ikelihood of detecting erroneous phonemes and leads to incorrect
phone model, the number of states was 2500 and the total numbgscognition. These errors could be modified by discriminative train-
of Gaussians was 15000. Second, using their alignments and thg. The boosted model improves the WER by 1% relative to the
phone tree structures, reverberated acoustic models were trained wgm-boosted one, whereas the feature space technique improves the
ing the “reverberated” dataset. Third, noisy acoustic models WeryeR by 3%. We believe that the feature space is adapted for a target
trained multi-conditionally using the “isolated” dataset without any speaker to improve the WER and that this effect reduces the influ-
pre-processing such as blind source separation. Finally, using thighce of other noises. In these tables, the boosting factor is set to 0.1.
ML model, we validated the effectiveness of the discriminative train-The preliminary experiments show that the performance does not
ing and feature transformation for the “isolated” dataset. The paramheavily depend on the boosting factors and that the optimized val-
eters used in our experiments were set as those in the WSJ tutorigés of the boosting factor are approximately 0.1-0.2. Denominator

attached to the Kaldi toolkit. lattices for discriminative training are generated using ML model.
Second, the MFCC features are transformed using LDA and
6. RESULTS AND DISCUSSION MLLT. Table 1 (middle) shows the WER, whereas LDA by itself

achieves 54.37% (ML). This shows that features that are highly dis-
criminable from other phonemes can be obtained by LDA. These
significant improvements are partly a result of the characteristics
We retrained the initial tri-phone model (trained on clean data) usin@f the CHIME database. As mentioned in the Introduction, LDA
reverberated and noisy data. Reverberation and noises cause errargl MLLT improve the model performance in ordinary noise con-

in the alignment and reconstruction of tree structures. We considetitions. Additionally, the CHIME database’s noises include many
whether alignment (A) and tree structures (T) are reconstructed (yutterances by other people. These types of noises are best suited to
i.e., retrained on noisy data, or not (n), i.e., the same to those dfe handled by LDA, because if two or more phonemes exist in the
clean model. There are three conditions: (A=n,T=n), (A=y,T=n),same frame when sources are mixed, the model can possibly dis-
and (A=y,T=y). From now on, we evaluate the WER on the develcriminates between these phonemes separately, as if it were a source
opment set (stlt.05). For the “reverberated” case, the WERSs of theseparation problem. It is also effective to use context to reduce the
tri-phone models (ML) are 12.69% (A=n,T=n), 12.05% (A=y,T=n), influence of non-stationary noises. Furthermore, although noises in-
12.35% (A=y,T=y). Using an alignment by the (A=y,T=n) model crease the correlations between MFCC coefficients in each dimen-
(the model that achieves the best performance), we retrained modion, MLLT reduces the correlations and improves the WER. De-
els on the “isolated” dataset. The averages of these ML modelsominator lattices for discriminative training are re-generated using

6.1. Maximum likelihood baseline



Table 2. WER[%] for isolated speeclsi(dt_05) without noise sup- Table 4. WER][%] for isolated speechsi(et.05) without noise
pression. Tri-phone model, discriminative feature transformatiorsuppression. The baseline is ML (MFCC), whereas on top of

with PLP (P) features. MFCC+LDA+MLLT+SAT, “Best 1" is ML and “Best 2" is feature-
—6dB —3dB 0dB 3dB 6dB 9dB | Avg. space boosted MMI.
ML(M) | 74.20 66.57 5824 51.84 46.73 40.686.37 —6dB —3dB 0dB 3dB 6dB 9dB | Avg.
ML(P) | 7457 67.50 59.76 53.02 47.00 42.p87.35 Baseline| 69.79 62.71 55.86 46.89 42.07 37.452.47
f-MMI | 69.94 62.50 54.51 48.7442.73 38.34|52.79 Best1l | 60.83 52.14 4351 34.28 29.22 23.820.63
(+P) | 69.52 62.31 54.48 48.5942.94 37.90| 52.62 Best2 | 54.70 45.11 35.98 28.64 24.38 21.395.04

Table 3. WER[%] for isolated speechsi(dt_05) with noise sup-
pression by prior-based binary masking. Tri-phone model, discrim

inative training with MFCC features (upper), MFCC+LDA+MLLT Table 3 also provides the WER of a DNN based on ML baseline with

(middle), MFCC+LDA+MLLT+SAT (lower). MFCC+LDA+MLLT (middle) after the noise suppression step. The
—6dB_—3dB 0dB 3dB 6dB 9dB | Avg. DNN result outperformed bMMI and f-bMMI results by 2.8% at the
ML | 66.82 57.87 48.86 42.29 38.18 31.887.65|  mostandwas comparable to the SAT system (lower). This shows the
(+MBR) | 66.16 57.09 48.15 41.47 37.16 31p86.88| pgtential effectiveness of DNN for reverberated noisy speech recog-
bMMI | 65.73 56.98 46.95 4157 36.27 31.026.42| pition, Although DNN is not embedded to our total system currently,

f-bMMI | 63.40 54.05 44.28 38.87 33.72 29.084.04 the integration of DNN and our system is likely to further improve
ML 64.64 54.24 46.35 37.91 32.75 28.064.14 ASR performance.

bMMI | 63.39 5254 4456 35.60 30.98 28.182.53
f-bMMI | 60.92 50.41 41.76 33.59 29.56 25.980.36
DNN | 57.21 45.85 36.21 30.61 26.36 23.336.59
ML 59.94 4793 39.83 33.01 28.00 23.438.70
bMMI | 56.90 45.79 37.60 30.31 26.15 21.736.42
f-bMMI | 52.93 42.62 34.59 27.63 24.27 20.33.71
(+DLM) | 53.16 42.93 34.36 27.26 23.729.47| 33.48
(+MBR) | 52.65 42.04 33.75 27.05 23.74 19.9133.19
(both) | 52.54 42.09 33.72 27.02 23.6619.66| 33.11

6.5. Deep neural network

6.6. Discriminative language modeling and minimum Bayes
risk decoding

Weightsw of a discriminative language model are learned on the
training data set using 100-best recognition candidates, where the
weight wo associated with the original score is set to 20. Using
these weights, results are re-ranked, with set to 13. Weights

are obtained by averaged perceptron at three iterations. Features are
counts of uni-grams, bi-grams, and tri-grams. DLM improves WER
ML (MECC+LDA+MLLT) model. by 0.23% on average, especially for 9dB with a 0.77% improvement.

Third, we added SAT and fMLLR to the model described in theDLM is not always effective because, while error tendencies are de-

second step. Table 1 (lower) shows the WER. As the amount 0r?endent on SNR, training is performed on the whole training set,

O . - o . which includes all SNRs. This leads to a mismatch between training
training data is very limited, transformation into a canonical space " ;
and recognition, damaging performance.

which leads to an increase in the effective amount of training data, ?

has a strong impact on the estimation accuracy of the acoustic mod- MBR improves the WER by 0.77% for ML (MFCC) and 0.52%

els. Additionally, fMLLR adaptation for a target speaker reduces thdor -bMMI (MFCC+LDA+MLLT+SAT). The performance of MBR

influence of noises. Denominator lattices for discriminative training'S Stable with respect to SNR. Combination of DLM and MBR as

are re-generated using ML model. mer_ltl_o_ned in Section 4.4 improves the WER beca_use_ DLM refines
the initial 1-best result and adapts to error tendencies inherent to the
decoder.

6.3. Augmented discriminative feature transformation

6.7. Evaluati t
Table 2 shows the WER of ML and f-MMI whose auxiliary features valuation se

h; in Eq. (6) are PLP (13 dimensions each), respectively. In therapie 4 shows the WERs on the evaluation set using the models
ML model, we observe that the performance of PLP is worse tharthned using the development set. The baseline is ML (MFCC),
that of MFCC by about 1% absolute. However, addlng PLP to thQNhereas on tOp of MFCC+LDA+MLLT+SAT, “Best 1" is ML and
discriminative feature transformation improves the WER. Thus, it isﬂBest 2" is f-bMMI. Using both discriminative training and feature
eﬁectivg to obtgin new features that contain information that cannofansformation (“Best 2”) achieves 33.22% error reduction relative
be obtained using the featurks. to the baseline. Thus, we show the effectiveness of both discrimina-

tive training and feature transformation for reverberated and noisy

speech. The WERs after noise suppression are shown in Table 5,
6.4. Noise suppression which represents a 37.9% error reduction.

The HTK baseline results for sit.05 and siet 05 using our
Table 3 shows the WER with noise suppression by prior-based bfront end are shown in Table 6 as a reference. “Denoised” are the
nary masking. Binary masking improves the WER in all cases byesults obtained with HMMs retrained on denoised data. “Noisy”
7% to 9% absolute. We tried severalanda = 0.25 achieved the  are the results obtained with the original HMMs trained on the noisy
best WER. Directional noise is suppressed to some extent but diffata. Performance is lower than that of Kaldi, but the settings are
fused noises such as music still remain. different and only limited tuning was performed for HTK.



Table 5. WER[%] for isolated speechsiet05) with noise
suppression. The baseline is ML (MFCC), whereas on top of
MFCC+LDA+MLLT+SAT, “Best 1" is ML and “Best 2" is feature-
space boosted MMI.

[9]

[10]

—6dB —3dB 0dB 3dB 6dB 9dB | Avg.

Baseline| 60.58 52.87 45.60 37.70 33.38 29.243.23
Best1l | 50.91 41.64 33.89 26.30 21.61 18.882.20 [11]

Best2 | 44.54 3591 29.24 2231 17.77 15.887.61

(+DLM) | 44.27 35.48 28.75 21.6117.34 15.37|27.14
(+MBR) | 4451 35.42 28.81 21.46 17.41 14.9827.10 [12]

(both) | 44.12 35.46 28.12 21.20 17.43 14.83| 26.86
Table 6. WER[%] for isolated speech with noise suppression[13]

by prior-based binary masking (tri-phone model) using HTK with
MFCC features.

si_dt_05 [14]
—6dB —3dB 0dB 3dB 6dB 9dB | Avg.
denoised 72.18 66.16 57.95 53.99 48.36 43.587.04
noisy | 74.67 68.08 61.12 56.61 51.33 47.659.91 [15]
si_.et 05
—6dB —3dB 0dB 3dB 6dB 9dB | Avg.
denoised 68.56 61.97 56.34 48.76 43.51 40.583.29 [16]
noisy | 72.00 65.27 59.05 52.34 48.57 44.186.90

[17]
7. CONCLUSIONS

We developed a state-of-the-art recognition system following a simy1g;
ple prior-based binary masking for realistic reverberated and noisy
environments and validated the effectiveness of both feature trans-
formation and discriminative methods. Combination of MBR and
DLM improves the WER by considering error tendencies, which are[19]
inherent to the decoder. Experiments show that these techniques are
effective for non-stationary interference and reverberation.

8. REFERENCES [20]

[1] E.Vincent, J. Barker, S. Watanabe, J. Le Roux, F. Nesta, and M. Matas-
soni, “The 2nd ‘CHIME’ speech separation and recognition challenge:[21]
Datasets, tasks and baselines,Pioc. ICASSP2013.

J.M. Baker, L. Deng, J. Glass, S. Khudanpur, C.H. Lee, N. Morgan, and

D. O’'Shaughnessy, “Research developments and directions in speech
recognition and understanding part 1lEEE Signal Process. Mag.  [22]
vol. 26, pp. 75-80, May 2009.

D. Povey and P.C. Woodland, “Minimum phone error and I-smoothing
forimproved discriminative training,” iRroc. ICASSP2002, pp. 105—
108.

E. McDermott, T.J. Hazen, J. Le Roux, A. Nakamura, and S. Katagiri,
“Discriminative training for large-vocabulary speech recognition using (23]
minimum classification error,JEEE Trans. Audio, Speech, Language
Process.vol. 15, pp. 203-223, Jan. 2007.

R. Haeb-Umbach and H. Ney, “Linear discriminant analysis for im-
proved large vocabulary continuous speech recognition,” Prioc.
ICASSR 1992, pp. 13-16.

R.A. Gopinath, “Maximum likelihood modeling with Gaussian distri-
butions for classification,” ifProc. ICASSP1998, pp. 661-664.

M.J.F. Gales, “Semi-tied covariance matrices for hidden Markov mod-
els,” IEEE Trans. Speech Audio Procesgol. 7, pp. 272-281, Jul.
1999.

T. Anastasakos, J. McDonough, R. Schwartz, and J. Makhoul, “A
Compact Model for Speaker-Adaptive Training,” Rroc. ICSLR
1996, pp. 1137-1140.

(2]

(3]

(4]

(5]

6]
(7]

(8]

D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau, and G. Zweig,
“fMPE: Discriminatively trained features for speech recognition,” in
Proc. ICASSP2005, pp. 961-964.

G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Se-
nior, V. Vanhoucke, P. Nguyen, and T. Sainath, and B. Kingsbury,
“Deep Neural Networks for Acoustic Modeling in Speech Recogni-
tion,” IEEE Signal Process. Magvol. 28, pp. 82-97, Nov. 2012.

S. Renals, T. Hain, and H. Bourlard, “Recognition and understanding
of meetings the AMI and AMIDA projects,” ifProc. ASRY 2007,
pp. 238-247.

B. Roark, M. Saraglar, M. Collins, and M. Johnson, “Discriminative
language modeling with conditional random fields and the perceptron
algorithm,” inProc. ACL, 2004, pp. 47-54.

T. Oba, T. Hori, A. Nakamura, and A. Ito, “Round-robin duel dis-
criminative language models/EEE Trans. Audio, Speech, Language
Process.vol. 20, pp. 1244-1255, May 2012.

E. Dikici, M. Semarci, M. Saraclar, and E. Alpaydin, “Classifi-
cation and ranking approaches to discriminative language modeling
for ASR,” IEEE Trans. Audio, Speech, Language Procegsl. 21,

pp. 291-300, Feb. 2013.

V. Goel and W.J. Byrne, “Minimum Bayes-risk automatic speech
recognition,” Computer Speech & Languageol. 14, pp. 115-135,
Apr. 2000.

H. Xu, D. Povey, L. Mangu, and J. Zhu, “An Improved Consensus-like
method for minimum Bayes risk decoding and lattice Combination,”
in Proc. ICASSP2010, pp. 4938-4941.

H. Kuo, L. Mangu, E. Arisoy, and G. Saon, “Minimum Bayes risk dis-
criminative language models for Arabic speech recognitionPrioc.
of ASRU 2011, pp. 208-213.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, M. Petr, Y. Qian, P. Schwarz, J. Silgy€k Stemmer,
and K. Vese}, “The Kaldi speech recognition toolkit,” iRroc. ASRY
2011, pp. 1-4.

S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and
P. Woodland, “The HTK Book (for HTK Version 3.4.1)

http://htk.eng.cam.ac.ukarch 2009.

Y. Tachioka, S. Watanabe, and J. R. Hershey, “Effectiveness of dis-
criminative training and feature transformation for reverberated and
noisy speech,” ifProc. ICASSP2013.

H. Sawada, S. Araki, and S. Makino, “Underdetermined convolutive
blind source separation via frequency bin-wise clustering and permu-
tation alignment,” IEEE Trans. Audio, Speech, Language Process.
vol. 19, pp. 516-527, Mar. 2011.

M. Delcroix, K. Kinoshita, T. Nakatani, S. Araki, A. Ogawa, T. Hori,

S. Watanabe, M. Fujimoto, T. Yoshioka, T. Oba, Y. Kubo, M. Souden,
S. Hahm, and A. Nakamura, “Speech recognition in the presence of
highly non-stationary noise based on spatial, spectral and temporal
speech/noise modeling combined with dynamic variance adaptation,”
in Proc. CHIME 2011, pp. 12-17.

D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon, and
K. Visweswariah, “Boosted MMI for model and feature-space discrim-
inative training,” inProc. ICASSP2008, pp. 4057-4060.



	Title Page
	Title Page
	page 2


	Discriminative Methods for Noise Robust Speech Reacognition: A CHiME Challenge Benchmark
	page 2
	page 3
	page 4
	page 5
	page 6


