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Abstract—The performance of cognitive spectrum sharing
systems with opportunistic relay selection over Nakagami-m
fading is analyzed in the presence of multiple primary users
(PUs). In particular, we derive an exact closed-form expression
for the outage probability (OP) of the considered cognitive relay
systems under the joint impact of maximal transmit power Pt

at secondary transmitter and peak interference power Ip at
the primary user. Our general formulas cover several specific
practical scenarios, e.g., where the maximal transmit power
can be neglected compared to the peak interference power.
In addition, a tractable expression for the asymptotic OP is
also derived and reveals important insights into the system
performance. We show that the number of PUs only affects the
coding gain but not the diversity gain.

I. INTRODUCTION

The concept of relay networks has been well exploited as
an efficient means to enhance the performance of wireless
communications over error-prone wireless channels. Oppor-
tunistic relay selection is a breakthrough technique in wireless
networks to achieve the full diversity gain in a distributed
fashion with low implementation complexity [1]. As a result,
the performance of opportunistic relay networks has been
investigated extensively [2]–[6]. In particular, the performance
of opportunistic relay selection has been derived for Rayleigh
and Nakagami-m fading channels in [3] and [4], respectively.
It has been shown in [5] and [6] that the opportunistic amplify-
and-forward (AF)/decode-and-forward (DF) relaying offers the
global outage optimum for all possible relaying transmission
schemes under an aggregate transmit power constraint.

Recently, cognitive radio technology has been proposed
to alleviate inefficient usage of radio frequency spectrum in
wireless networks [7]. In particular, under spectrum-sharing
environments, the secondary user (SU) is allowed to access
the radio frequency band as long as its transmit power is
managed below a given threshold [8]. This value is the peak
interference power constraint imposed by the primary user
(PU). Extensions of opportunistic relay selection to cognitive
networks have attracted great interest [9]–[11]. Specifically,
the closed-form expressions of outage probability (OP), sym-
bol error probability and ergodic capacity for opportunistic
AF relaying over non identical Rayleigh fading channels
have been presented in [9]. An asymptotic expression for
opportunistic relaying under spectrum-sharing approach has
been derived [10], which shows that the diversity gain is
equal to the number of cognitive relays. Very recently, the
performance of cognitive opportunistic relaying networks over

frequency selective fading channels has been reported in [11].
However, all of the aforementioned works, i.e., [9]–[11], only
considered Rayleigh fading channels and a single PU.

In this work, we take a step further to investigate the
performance of the cognitive opportunistic relay selection
scheme under spectrum-sharing environment in the presence
of multiple PUs1. We derive an exact OP expression for
the cognitive opportunistic relay system over Nakagami-m
fading channels. Under the assumption of clustering nodes
and integer fading severity parameter m, our analysis is valid
for independent and identically distributed (i.i.d.) Nakagami-
m fading channels. It is important to note that due to the
channel gain of the link from a secondary source to the i-
th PU, |hSQi |2, the individual signal-to-noise ratio (SNR) of
each relaying link contains the same random variable (RV).
As such, the opportunistic relay selection for cognitive radio
networks is the maximal selection of multiple statistically
dependent RVs, which is cumbersome for the analysis. To
overcome this difficulty, we first consider the conditional
statistics on |hSQi |2 and utilizing the statistical independence
of the remaining RVs, which allows us to readily obtain
the exact OP of the considered cognitive networks. This is
the main difference in opportunistic relay selection between
cognitive radio and non-cognitive radio networks. We show
that when the peak interference power constraint Ip imposed
by the PU is proportional to the maximal transmit power Pt

at the SU, the diversity gain of the cognitive opportunistic
relaying scheme solely depends on the secondary network’s
parameters: i) the number of cognitive relays and ii) the fading
severity of the two hops in cognitive networks. Finally, the
number of PUs only determines the coding gain but not the
diversity gain.

II. SYSTEM AND CHANNEL MODELS

Consider a dual-hop cooperative spectrum sharing system
consisting of one SU source S, N SU relays Rk (k =
1, . . . , N ), one SU destination D, and L PU receivers Qi, for
i ∈ {1, . . . , L}, as shown in Fig. 1. All terminals are single-
antenna devices and operate in a half-duplex mode. In the
first-hop transmission, the SU source transmits its signal x to
N relays under a transmit power constraint which guarantees
that the interference on the PU receiver Qi does not exceed a

1The performance of cognitive relay networks with multiple primary users
(PUs) has been reported in [12], [13]. However, these works only considered
a single relay at the secondary network.
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Fig. 1. Cognitive radio system with opportunistic relay selection.

threshold Ip. In addition, the maximal transmit power at the
secondary transmitters, i.e., Rk and S, is limited as Pt. As a
result, the transmit power at S is given by

PS = min
(
Pt,

Ip

max
i=1,...,L

|hSQi |2
)

(1)

where hSQi denotes the channel coefficient of the link S →
Qi. In the second-hop transmission, Rk forwards the received
signal from S to D. Similarly, the transmit power at Rk is
defined as

PRk
= min

(
Pt,

Ip

max
i=1,...,L

|hkQi |2
)

(2)

where hkQi represents the channel coefficient of the link Rk →
Qi. Thus, the instantaneous end-to-end SNR of the link S →
Rk → D can be written as

γk = min
(
γ1k, γ2k

)
(3)

where γ1k and γ2k are, respectively, written as

γ1k
�
=|hSk|2 min

(
γ̄,

γ̄p

max
i=1,...,L

|hSQi |2
)

,

γ2k
�
=|hkD|2 min

(
γ̄,

γ̄p

max
i=1,...,L

|hkQi |2
)

, (4)

where hSk and hkD are the channel coefficients of the links
S → Rk and Rk → D, respectively. Here, the average SNR
for the secondary network γ̄ is given as γ̄ = Pt/N0 with N0

being the noise variance; and γ̄p = Ip/N0.
The instantaneous SNR at D can be given by [2]

γD = max
k=1,2,...,N

(
min

(
γ1k, γ2k

))
(5)

In this paper, we assume that the fading channels experience
i.i.d. Nakagami-m fading. As such, the corresponding channel
power gains |hSQi |2, |hSk|2, |hkD|2, and |hkQi |2 follow the
gamma distribution, with mean powers Ωsq, Ωsr, Ωrd, and
Ωrq, respectively. In other words, the cumulative distribution
function (CDF) and probability density function (PDF) of RV
X , where X ∈ {|hSQi |2, |hSk|2, |hkD|2, |hkQi |2}, are given as
follows:

FX (x) = 1 − Γ (mX , mXx/ΩX)
Γ(mX)

(6)

fX (x) =
xmX−1

Γ(mX)
λmX

X e−λXx (7)

where mX ∈ {msq, msr, mrd, mrq} represents the correspond-
ing fading severity parameter m, λX = mX

ΩX
, and Γ(·, ·) is the

incomplete gamma function [14, Eq. (8.350.2)].

III. EXACT PERFORMANCE ANALYSIS

For notational simplicity, let us denote the following terms
X1k = |hSk|2, X2k = |hkD|2, X3 = max

i=1,...,L
|hSQi |2, and

X4k = max
i=1,...,L

|hkQi |2. Now the end-to-end SNR at D can be

rewritten as

γD = max
k=1,...,N

min
(
γ1k, γ2k

)
(8)

where γ1k
�
=X1k min

(
γ̄,

γ̄p

X3

)
and γ2k

�
=X2k min

(
γ̄,

γ̄p

X4k

)
.

Corollary 1: Let Y ∈ {X3, X4k} be the maximum of L
i.i.d. gamma RVs Yi with parameters λY and mY , where λY ∈
{λsq, λrq} and mY ∈ {msq, mrq}. The CDF and PDF of the
RV Y are, respectively, given by [15]

FY (y) =
∑̂

L,u,w,mY ,λy

y l̃e−λY uy (9)

fY (y) =
∑̂

L−1,u,w,mY ,λy

LλmY

Y

Γ(mY )
ymY +l̃−1e−(u+1)λY y (10)

where
∑̂

L,u,w,mY ,λy

is a shorthand notation of

∑̂
L,u,w,mY ,λy

�
=

L∑
u=0

(
L

u

)
(−1)u

∑
l1,...,lmY

u!
l1!, . . . , lmY !

×
mY −1∏
w=0

(
λw

Y

w!

)lw+1

and l̃
�
=

∑mY −1
j=0 jlj+1.

It is important to note that due to the existence of X3 in all RVs
γk for k = 1, . . . , N , γD is the maximum of N dependent RVs,
which is troublesome for analysis. To get around this obstacle,
we first apply the conditional statistics on X3. Thanks to the
independence of the remaining RVs, i.e., X1k, X2k, and X4k,
we have

FγD
(γ|X3) =

N∏
k=1

[1 − (1 − Fγ1k
(γ|X3)) (1 − Fγ2k

(γ|X3))] .

(11)

We first aim at deriving the conditional CDFs Fγ1k
(γ|X3) and

Fγ2k
(γ|X3), which will be shown in the following.

Theorem 1: The conditional CDF of γ1k is given by

Fγ1k
(γ|X3) =

⎧⎨⎩ FX1k

(
γ
γ̄

)
, for X3 < ε

FX1k

(
γX3
γ̄p

)
, for X3 ≥ ε

(12)

where ε
�
= γ̄p

γ̄ .



Proof: The proof is immediately followed from the fact
that γ1k = X1k min

(
γ̄,

γ̄p

X3

)
.

Theorem 2: The conditional CDF of γ2k is given by

Fγ2k
(γ|X3) = 1 − Ξ(γ) (13)

where Ξ(γ), a function of γ and independent of X3, is given
by

Ξ(γ) =
[
1 − Γ (mrq, λrqε)

Γ(mrq)

]L Γ (mrd, λrdγ/γ̄)
Γ(mrd)

+
∑̂

L−1,u,l,mrq,λrq

Lλ
mrq
rq

Γ(mrq)

mrd−1∑
i=0

1
i!

(
λrdγ

γ̄p

)i

×
Γ

(
mrq + l̃ + i, ε((u + 1)λrq + λrdγ

γ̄p
)
)

[
(u + 1)λrq + λrdγ

γ̄p

](mrq+l̃+i)
. (14)

Proof: The proof is given in Appendix A.
Utilizing Theorem 1 and Theorem 2, we can obtain the OP

Pout
�
=FγD

(γth), where γth is the outage threshold and FγD
(·)

is derived in the following theorem.
Theorem 3: The CDF of the end-to-end SNR at D

is shown as (15) at the top of the next page, where

θ
�
=

(
(u + 1)λsq + λsrkγ

γ̄p

)
.

Proof: The proof is given in Appendix B.

IV. ASYMPTOTIC PERFORMANCE ANALYSIS

We next derive the asymptotic OP to reveal the diversity and
coding gains of the considered system. In this case, we assume
that the peak interference power constraint Ip is proportional
to the maximal transmit power Pt. In other words, the ratio
between these two powers, ε, is a fixed constant.

Lemma 1: The conditional CDF of γ1k can be asymptoti-
cally approximated as

Fγ1k
(γ|X3)

γ̄→∞≈
(

γ

γ̄

)msr
{

λmsr
sr

Γ(msr+1) , for X3 < ε
(λsrX3)msr

Γ(msr+1)εmsr , for X3 ≥ ε.

(16)

Proof: We start our proof by utilizing the well-known fact
that the CDF of X given in (6) can be approximated as

FX (x)
x→0≈ 1

Γ(mX + 1)

(
mXx

ΩX

)mX

. (17)

Then, substituting (17) into (12), we can easily conclude the
proof.

Lemma 2: The conditional CDF of γ2k can be asymptoti-
cally approximated as

Fγ2k
(γ|X3)

γ̄→∞≈ B
(

γ

γ̄

)mrd

(18)

where B�
=B1 + B2, and B1, B2 are, respectively, shown as

B1
�
=

∑̂
L−1,k,n,mrq,λrq

Lλmrd

rd λ
mrq
rq [(k + 1)λrq]

−(mrd+mrq+ñ)

Γ(mrd + 1)Γ(mrq)εmrd

× Γ (mrd + mrq + ñ, ε(k + 1)λrq) and

B2
�
=

[
1 − Γ (mrq, λrqε)

Γ(mrq)

]L
λmrd

rd

Γ(mrd + 1)εmrd
. (19)

Proof: The proof is given in Appendix C.
By utilizing Lemma 1 and 2, the asymptotic OP can be readily
obtained through the following theorem.

Theorem 4: The asymptotic expression for the CDF of γD is

shown as (20) at the top of the next page, where A1
�
= λmsr

sr

Γ(msr+1) ,

A2
�
= λmsr

sr

Γ(msr+1)εmsr .
Proof: The proof is given in Appendix D.

As can be observed from (20), the diversity order of oppor-
tunistic relaying for cognitive relay networks is the product
between the number of cognitive relays N and the minimum
fading severity among the two hops. An important result
inferred from the asymptotic derivation is that the number
of PUs has no impact on the diversity gain, only affects the
coding gain.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical results are provided to illustrate
the impact of primary networks on the cognitive radio systems’
performance. Here, we consider the clustering networks for the
cognitive relays and PUs. The outage threshold is selected as
γth = 3 dB. For the network topology, we consider a 2-D plane
with co-linear topology for all nodes in cognitive networks.
In addition, the pathloss of each channel is assumed to
undergo an exponentially decaying model, where the channel
mean power of the link from node A to node B, ΩAB, is
inversely proportional to their distance dAB. More specifically,
ΩAB ∝ d−μ

AB , where μ is selected as four corresponding to the
free-space propagation with non line-of-sight.

Without loss of generality, we assume that the secondary
source is located at the origin with coordinates [0,0], whereas
the secondary relays and secondary destinations are at [0, 1

2 ]
and [0, 1], respectively. With this setup, we obtain Ωsr = Ωrd =
16 under the normalization of the direct link. The channel
mean power for the link to PU can be determined by Ωsq =(√

d2
xq + d2

yq

)−4

, where [dxq, dyq] are the coordinates of the
PUs. In all numerical results, the maximum interference power
constraint Ip is assumed to be equal to the maximum transmit
power at the secondary transmitters Pt, and the fading severity
parameters for the link to PUs are set as msq = 1 and mrq = 2.
In the four figures, the analysis and asymptotic curves are
plotted from (15) and (20), respectively.

Fig. 2 illustrates the impact of fading severity of the
secondary networks on the outage performance. Here, both
the number of relays N and number of PUs L are two. The
fading severity parameters msr and mrd are chosen according
to the three cases in (20) as: i) Case 1: The first hop is less
severe than the second hop (msr = 2, mrd = 1), ii) Case 2: The
fading severity in the two hops are equal (msr = mrd = 2),
and iii) Case 3: The first hop is more rigorous than the second
hop (msr = mrd = 2). The plots in Fig. 2 confirm our result
that given the fixed number of relays, the diversity order of
the cognitive relay networks depends on the minimum fading
severity parameter among the two hops. In comparison, the
worst outage performance happens for Case 1 with the value
of min(msr, mrd) being one whereas the two Cases 2 and 3
exhibit the same diversity gain since min(msr, mrd) = 2.



FγD
(γ) =

[
1 − Γ (msr, λsrγ/γ̄) Ξ(γ)

Γ(msr)

]N [
1 − Γ (msq, λsqε)

Γ(msq)

]L

+
∑̂

N,k,n,msr,λsr

∑̂
L−1,u,l,msp,λsq

Lλ
msq
sq Ξk(γ)Γ

(
msq + ñ + l̃, εθ

)
γñ

Γ(msq)θmsq+ñ+l̃γ̄ñ
p

.

(15)

FγD
(γ)

γ̄→∞≈
(

γ

γ̄

)N min(msr,mrd)

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
AN

1

(
1 − Γ(msq,λsqε)

Γ(msq)

)L

+ AN
2

∑̂
L−1,u,l,msq,λsq

Lλ
msq
sq

Γ(msq)

Γ(msrN+msq+l̃,ε(u+1)λsq)
[(u+1)λsq]

msrN+msq+l̃
, for msr < mrd

BN , for msr > mrd

(A1 + B)N
(
1 − Γ(msq,λsqε)

Γ(msq)

)L

+
N∑

k=0

(
N
k

)Ak
2BN−k

∑̂
L−1,u,l,msq,λsq

Lλ
msq
sq

Γ(msq)

Γ(msrk+msq+l̃,ε(u+1)λsq)
[(u+1)λsq]

msrk+msq+l̃
, for msr = mrd.

(20)

Fig. 2. OP of cognitive opportunistic relay networks in spectrum sharing
condition: Varying the fading severity parameters of cognitive networks.

In Fig. 3, we investigate the effect of the number of
secondary relays on the outage performance. In this scenario,
the number of PUs is fixed as L = 2, the fading severity
parameters of the cognitive networks are selected as msr = 3
and mrd = 2 while the number of relays N is varied from one
to three. As expected, the outage performance increases with
the number of relays, which confirms (20).

In Fig. 4, we consider the impact of the number of PUs
on the OP of the opportunistic relaying in cognitive radio
networks. In this example, we fix the number of relays as
N = 2 and vary the number of PUs from one to three.
Fig. 4 shows that the OP increases with the number of PUs
as expected. Since as the number of PUs, L, increases, the
transmit power constraints PS and PRk

become more and more
stringent, which degrades the coding gain.

In Fig. 5, we investigate the impact of the primary network
on the outage performance by varying the position of PUs
from [0.4, 0.4], [0.6, 0.6], to [0.8, 0.8]. Intuitively, the outage
of the cognitive network will decrease as the PUs move away

Fig. 3. OP of cognitive opportunistic relay networks in spectrum sharing
condition: Varying the number of relays N .

from secondary nodes. Notably the three scenarios yield the
same diversity order, which serves as the confirmation of the
derived diversity gain, eq. (20). In addition, by comparing the
cases [0.8, 0.8] and [0.4, 0.4], when the PUs move away from
the cognitive network, an significant enhancement in coding
gain can be achieved.

VI. CONCLUSIONS

We have considered opportunistic relay selection for cog-
nitive radio networks with underlay spectrum sharing and
multiple PUs. Under such stringent limited interference power
constraint, we derived an exact closed-form expression for the
OP over Nakagami-m fading channels. Utilizing this result,
we can investigate the impact of primary network parameters
such as the number of PUs and the positions of PUs on
the cognitive network performance. In addition, to provide
additional insights into the outage performance, an asymptotic
OP as also obtained. We have concluded that the diversity gain
is solely determined by the minimum fading severity among



Fig. 4. OP of cognitive opportunistic relay networks in spectrum sharing
condition: Varying the number of primary users L.

Fig. 5. OP of cognitive opportunistic relay networks in spectrum sharing
condition: Varying the positions of PUs.

the two hops and the number of relays under the condition that
the peak interference power is proportional to the maximal
transmit power.

APPENDIX A: PROOF OF THEOREM 2

Since γ2k does not depend on X3, we can rewrite
Fγ2k

(γ|X3) in the form of

Fγ2k
(γ|X3) = Fγ2k

(γ) = Pr
(

X2k

X4k
<

γ

γ̄p
, X4k > ε

)
︸ ︷︷ ︸

I1

+ Pr
(

X2k <
γ

γ̄
, X4k ≤ ε

)
︸ ︷︷ ︸

I2

. (A.1)

The first summand in (A.1) can be calculated as

I1 =
∫ ∞

ε

fX4k
(x4)

∫ γx4
γ̄p

0

fX2k
(x2) dx2dx4. (A.2)

By substituting (6) into (A.2), we obtain

I1 = 1 − FX4k
(ε) −

∫ ∞

ε

Γ
(
mrd,

λrdγx4
γ̄p

)
Γ(mrd)

fX4k
(x4) dx4.

(A.3)

Using [14, Eq. (8.352.2)] to expand the incomplete Gamma
function in terms of a finite sum and substituting (10) into
(A.3), we get

I1 = 1 − FX4k
(ε) −

∑̂
L−1,u,l,mrq,λrq

Lλ
mrq
rq

Γ(mrq)

mrd−1∑
i=0

1
i!

(
λrdγ

γ̄p

)i

×
Γ

(
mrq + l̃ + i, ε((u + 1)λrq + λrdγ

γ̄p
)
)

[
(u + 1)λrq + λrdγ

γ̄p

](mrq+l̃+i)
(A.4)

after some manipulations. In addition, it is easy to see that

I2 = FX4k
(ε)FX2k

(
γ

γ̄

)
. (A.5)

By pulling (A.1), (A.4), and (A.5) together, yields (13), which
finalizes the proof.

APPENDIX B: PROOF OF THEOREM 3

The CDF of γD can be given by

FγD
(γ) =

∫ ε

0

FγD
(γ|X3) fX3 (x3) dx3︸ ︷︷ ︸

J1

+
∫ ∞

ε

FγD
(γ|X3) fX3 (x3) dx3︸ ︷︷ ︸

J2

(B.1)

where FγD
(γ|X3) is readily expressed as

FγD
(γ|X3) = [1 − (1 − Fγ1k

(γ|X3)) (1 − Fγ2k
(γ|X3))]

N
.

(B.2)

To compute the two above integrals in (B.1), we make use
of Theorems 1 and 2. For J1, it is observed from (12) that
Fγ1k

(γ|X3) is independent of X3, which leads to

J1 =
∫ ε

0

[
1 − Γ (msr, λsrγ/γ̄)

Γ(msr)
Ξ(γ)

]N

fX3 (x3) dx3

=
[
1 − Γ (msr, λsrγ/γ̄)

Γ(msr)
Ξ(γ)

]N [
1 − Γ (msq, λsqε)

msq

]L

.

(B.3)

Next, to computer J2, we substitute (12) into (B.2), which
results in

J2 =
∫ ∞

ε

[
1 − Γ (msr, λsrγx3/γ̄p)

Γ(msr)
Ξ(γ)

]N

fX3 (x3) dx3.

(B.4)

Then, plugging (10) into (B.5) and using [14, Eq. (8.352.2)]
together with the multinomial expansion, J2 is derived as

J2 =
∑̂

N,k,n,msr,λsr

∑̂
L−1,u,l,msq,λsq

Lλ
msq
sq Ξk(γ)
Γ(msq)

(
γ

γ̄p

)ñ

×
∫ ∞

ε

x
msq+ñ+l̃−1
3 exp

[
−

(
(u + 1)λsq +

λsrkγ

γ̄p

)
x3

]
dx3.

(B.5)



The integral in (B.5) can be solved by using [14,
Eq. (8.350.2)], which reaches (15).

APPENDIX C: PROOF OF LEMMA 2

We aim at deriving the asymptotic expressions for the two
integrals in (A.1). For I1, we can rewrite (A.2) as

I1
�
=

∫ ∞

ε

FX2k

(
γx4

εγ̄

)
fX4k

(x4) dx4. (C.1)

Then pulling (10), (17), and (C.1) together, we can get

I1 =
γ̄→∞≈ B1

(
γ

γ̄

)mrd

(C.2)

where (C.2) immediately follows from [14, Eq. (8.350.2)]. For
I2, by combining (17) and (A.5), it is straightforward to see
that

I2

γ̄→∞≈ B2

(
γ

γ̄

)mrd

. (C.3)

By adding (C.2) and (C.3) together, we can obtain (18).

APPENDIX D: PROOF OF THEOREM 4

From (B.2), we can obtain the following approximation after
neglecting the small terms

FγD
(γ|X3)

γ̄→∞≈ [Fγ1k
(γ|X3) + Fγ2k

(γ|X3)]
N . (D.1)

Combining Lemmas 1 and 2, we differentiate between two
cases as follows:

• For X3 < ε: In this case, Fγ1k
(γ|X3) is independent of

X3 as shown in (12), which yields

FγD
(γ|X3)

γ̄→∞≈ CN
1

(
γ

γ̄

)N min(msr,mrd)

(D.2)

where

C1 =

⎧⎨⎩
A1, for msr < mrd

B, for msr > mrd

A1 + B, for msr = mrd.
(D.3)

• For X3 ≥ ε: In this case, Fγ1k
(γ|X3) contains X3 as

shown in (12), which yields

FγD
(γ|X3)

γ̄→∞≈ CN
2

(
γ

γ̄

)N min(msr,mrd)

(D.4)

where

C2 =

⎧⎨⎩
A2X

msr
3 , for msr < mrd

B, for msr > mrd

A2X
msr
3 + B, for msr = mrd.

(D.5)

By pulling (D.2) and (D.4) together with the PDF of X3

given in (10), J1 and J2 in (B.1) can be approximated as,
respectively

J1

γ̄→∞≈ FX3 (ε)CN
1

(
γ

γ̄

)N min(msr,mrd)

(D.6)

and

J2

γ̄→∞≈
(

γ

γ̄

)N min(msr,mrd)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AN
2

∑̂
L−1,u,l,msq,λsq

Lλ
msq
sq

Γ(msq)

×Γ(msrN+msq+l̃,ε(u+1)λsq)
[(u+1)λsq]

msrN+msq+l̃
, for msr < mrd

BN (1 − FX3 (ε)) , for msr > mrd∑N
k=0

(
N
k

)Ak
2BN−k

× ∑̂
L−1,u,l,msq,λsq

Lλ
msq
sq

Γ(msq)

×Γ(msrk+msq+l̃,ε(u+1)λsq)
[(u+1)λsq]

msrk+msq+l̃
, for msr = mrd

(D.7)

Finally, the asymptotic CDF can be represented as (4), which
concludes the proof.
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