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Abstract
In this paper, we study the problem of minimumtime, and minimum-energy speed profile
optimization along a given path, which is a key step for solving the optimal path tracking
problems for a particular class of dynamical systems. We focus on characterizing the optimal
switching structure between extremal controls using optimal control theory, and present semi-
analytical solutions to both problems. It is shown that the optimal solutions of these two
problems are closely related.
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Speed Profile Optimization for Optimal Path Tracking

Yiming Zhao and Panagiotis Tsiotras

_ Abstract—In this paper, we study the problem of minimum- ~ where s is the path coordinate with € [so,s7] C R,
time, and minimum-energy speed profile optimization along a and v is the speed at which the system moves along the
given path, which is a key step for solving the optimal path path, whereas? : R? — R is a function representing

tracking problems for a particular class of dynamical systens. . .
We focus on characterizing the optimal switching structure the accelerations (e.g., drag) affecting the speed aloeg th

between extremal controls using optimal control theory, ad  Path. The system is subject to position-dependent speed
present semi-analytical solutions to both problems. It islsown  constraintsO > Umin(8) < v < wvmax(s), and control
that the optimal solutions of these two problems are closely constraintsumi,(s) < u(s) < umax(s). We would like to
related. . . . find « that minimizes a certain cost function while keeping
Index Terms—Optimal control, path tracking, minimum I traint tisfied. D ite its simple f ta

energy, minimum time all constraints satisfied. Despite its simple form, sys n (

is suitable for many industrial and transportation systems

I. INTRODUCTION including those mentioned in the Introduction.

The minimum-time path-tracking problem for robotic ma- BY letting ' = v?/2 and by using the path length as
nipulators, ground vehicles, and aircraft has been studidg® new independent variable, then (1) reduces to a single
in [8], [6], [7], [9], [11]. The optimal solution to these differential equation along the path
problems can help improve plant productivity [8], [6], [7],
racing car performance [9], or achieve faster aircraft liagd

in case of an emergency [11], [14]. These solutions IT]aX'm'Zv(\e/here(-)’ denotes the derivative with respect4oWe will

pointwise the speed along the path, and do not contain an - — o .
singular arcs. When tracking time is not of primary concern‘fj\gsurne thaiD(E, s) = d(V2E,s) satisfies the following

it is often desirable to minimize the energy or the fuel Conassumptio.ns.l. F | B 9 9 42 5 d
sumption of the system. Along this direction, the minimum- .ssumptmnh y I(I)r al v € d[?}znin(sz]/ I(’jvmax(s)/ . an
work problem has been studied in [1], [5], [3]. Unlike the® € [50: 571 the following conditions ho

solution to the minimum-time problem, minimum-work or i) D(E,s) is at least twice differentiable with respect to

E'(s) = —D(E,s) + u, (2)

minimum-energy solutions usually contain singular cointro E, andD(E,s), 9D/OE and9*D/0E? are continu-
arcs, in addition to the bang-bang control arcs. It is olesrv ous with respect ta.

that for all the dynamical systems mentioned above, the — 92p(E s) 3 OD(E,s)

optimal path tracking problem can be simplified to a speed ) T 9EZ " 2E  9E > 0.

profile optimization problem subject to speed and control

constraints and boundary conditions. After the optimakspe ] ) N ]

is obtained, the other state and control variables can beASsumption 1 is a necessary condition for the main

obtained using inverse dynamics. In this paper, we analy3@eoretical results later in this paper. In particular, digon

the basic speed optimization problem showing up in thegé) implies thatv>dd(v, s)/dv is monotonically increasing

different applications. with respect tov. _Th|s assumption _holds in many cases, for
The main contributions of this paper include: a) The iden€Xa@mple, whenl is the aerodynamic drag force.

tification of optimal switching structures in the minimum- We consider optimal path tracking problems of the form

time and minimum-energy solutions; b) The characteriratio Problem 1 (Optimal Control for Path Tracking): Solve

of the relation between optimal solutions of minimum-time,

maximum-time, and minimum-energy problems. min - J(ty, B, u), 3)
Il. PROBLEM FORMULATION subject to E'(s) = —D(E, s) +u, 4)
. . . . 1
The system dynamics considered in this paper have the t'(s) = ———, (5)
following form V2E(s)
i g(s) < E(s) < g(s), (6)
. ’ Q) 2 2
0= —d(v,s) +u, E(so) =vg/2, E(sf) =v3/2, (7)
. . . - . . umin(s) S U(S S umax(s)7 (8)
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Broadway, Cambridge, MA, 02139. Phone: (617) 621-7500, iEma t(so) =0, t(sy)="ty, 9)
yzhao@rer| . com whereg(s) = v2,.(s)/2 andg(s) = vZ;,(s)/2 are bounds

P. Tsiotras is with School of Aerospace Engineering, Geotgstitute o . .
of Technology, Atlanta GA 30332-0150. Phone: (404) 894€Q52mail: on the specific kinetic energl. It is assumed thay andﬁ

tsi otras@at ech. edu. are piecewise differentiable dry, s/].



I1l. MINIMUM -TIME PATH TRACKING Proposition 3: Assumeg(s) # g(s) andu;(s) < tmax(s)

The cost function for the minimum-time problem is for all s € [so,s4]. Let E*(s) be the optimal kinetic energy
solution to the min-time problem. Then the ¢&ét does not

J(ts, Byu) =t; = / ! i contain any nontrivial interval.
so V/2E(s) The proofs of Proposition 2 and Proposition 3 can be
When the state constraints (6) are not active, the Hamétoni found in [10].
of the optimal control Problem 1 is Corollary 1: The time optimal controlu* can be con-
1 structed as a combination @f,.«, %min andu,,.
H=——M+1)+Ag(—D(E,s) + u), Based on the theoretical results in this section, an efficien
V2E algorithm has been proposed in [14] to solve Problem 1. This

where\; and A are the costate variables for theand ' algorithm can be modified to also provide the maximtym
dynamics, respectively. The costate dynamics are given bylong a given geometric path. The details are omitted due to

, OH the page limitations. As will be shown later in this papee th
A=——> =0, (10)  maximum time solution, although not very useful in practice
OH 1 OD(E is important for constructing minimum energy solutions.
g = = —E32N+ 1)+ e ( ’S). (11)

COE 22 OF
It follows that X, is constant, Sincé; is free, A\ = 0

according to the transversality condition. The switching N€Xt, we consider the minimization of the energy con-
function is sumed for tracking the path:

OH _ Ap Problem 2 (Minimum-energy path tracking):
ou

ty sf
According to the Pontryagin’s Maximum Principle (PMP), in  min J(ts,v,u) :/ v(t)u(t)dt :/ u(s)ds (15)
general, the optimal contrel* may contain bang-bang con- 0
trol, singular control, and control arcs associated wittivac gypject to the same constraints as in Problem 1.

state constraints, as described by the following exprassio \pjithout loss of generality, we assume thatis fixed. Note
Umin,  TOF Mg > 0, € [s0, 5]\ KC, thatv(t)u(t) represents the power input to the system.
u(s), for Ag =0,s¢€ [so,s7]\ K,
u*(8) = { Umax, TOr Ag <0,s € [so,sf]\ K, (12)
uy(s), fors e Ky,
w(s), forse K.

IV. MINIMUM -ENERGY PATH TRACKING

S0

A. Optimality Conditions

Consider first the case when the state constraints (6) are
not active. Then the Hamiltonian is

At

wheret is the singular controliCyy = {s € [so, s7]|E*(s) = H=p+1ut 2B ApD(E, 5).
9(s)} Ko = {s € [s0,5/][E"(s) = g(s)}, and K = :
Ku U Kr. At those points whergj (respectively,g) is ~The costate dynamics are
differentiable
' 1 OD(E, s)
N, =0, = ——E3P N+ A p—2 (16
u(s) =7(9) + D). 9 as " Pl g (19
and Therefore, the costatk, is constant. The switching function
w(s) = g'(s) + D(g(s), s). (14) is Ag + 1. By PMP, the extremal control is given by
At the points whereg (respectively,g) is discontinuous Umax, 14+ Ag <0,
and/or non-differentiable, the left and right limits of and u = 1, 1+ X =0, (17)

u; can be defined similarly.
Proposition 1: The time-optimal control solution does not _ _ )
contain any singular control. where 4 is the singular control. Suppose that the optimal
Proof: It is sufficient to show that there does not exisSPecific kinetic energye™ contains a singular arc represented
any sub-intervalls,, s,] C [so,s] on which Ag(s) = 0 by E, i.e,, E*(s) = E(s) on some subinterval ofso, s].
and g,(s) < E(s) < g,(s) (strict inequalities) for all For notational convenience, let us denote
s € [sq, sp|. Suppose, ad absurdum, th\a;(g) =MNa(s) =0 _ O*D(E,s) oD
for all s € [s,, sp], and the state constraints are not active 9EF — 9EF’
on [sq, sp|. It follows that on|[s,, sp], equation (11) yields
0 = E~%/2/2/2 > 0, which is impossible. Hence\y ~ and let)\; be the optimal costate value. Since the switch-
cannot remain constantly zero on any interval, and the protifg function is identically zero along the singular arc, its
is complete. m derivative must also vanish, which yieldsg = —1)
Proposition 2: The optimal controlu*(s) is bang-bang, -
and does not contain any switch fromy, t0 uy,ax ON i (6_H> — _8_D + 1
[s0,sf] \ K. ds \ ou OF = 22

Umin, 1+ AE > 07

k=12,

E=3/2), =0, (18)



from which the singular specific kinetic energy profile carBy eliminating A} from (23), and by using equation (19),
be computed. For notational convenience, equation (18) éxuation (23) can be written as:
rewritten as

) o [d® (oH\]  0*D 3 0D -
P(E(s),s) = A (19) Bu [d— (a—u)} =9 2ponr
where, for anyE' > 0, which is negative by Assumption 1. Hence, along the singular
oD arcs, the generalized Legendre-Clebsch condition isfigatis
P(E,s) = 2V2E%*— . (20) when Assumption 1 is valid, in which case these arcs can
OF (E(s),s) be part of the optimal trajectory.

Proposition 4: Let E*(s) be the optimal specific kinetic C. Optimal Switching Structure Involving Singular Arcs
energy profile for the energy-optimal problem with corre-

sponding optimal costate valug. Let the functionf be When solving an optimal control problem, it is a common
defined as in (19). Then, for all, P(E*(s),s) > Af if and practice to assume a certain fixed switching structure. This

only if B*(s) > E(s), and P(E*(s), s) < Af if and only if approach, although convenient, may lead to a suboptimal

E*(s) < B(s). solution. According to the following theorem, we can actu-
Proof: Note that ally identify the optimal switching structure for the engrg
optimal path tracking problem.
0 <E3/26_D) _ g3/ (aQ_D ia_D) >0 Theorem 1: Let E*(s) be the energy-optimal specific ki-
oF ok OF?  2EOF ' netic energy profile, let\; be the optimal costate value,

which is positive according to Assumption 1. Therefore@nd let £ : [so,s;] — R, be the function defined by
E3/2(0D/9E) increases monotonically with respect 5 (E(s),s) = Aj. Consider a subintervak,, s;) C [so, 5]
for any fixeds € [so,ss]. The following expression holds Such thatg(s) < E*(s) < g(s) for all s € (sa,s0)-
from the definition of P and \;: If E*(s) < E(s) (respectively, E*(s) > E(s)) for all
. s € (Sassp) C [s0,s7], then the corresponding optimal
P(E(s),5) — Af = 23 (E*?,/z OD(E™,s) E3/28_D> control u*(s) does not contain any switching fromy, to
’ OF OF |’ Umax (respectivelypimax t0 Umin) ON (84, 5p)-
Proof: Assume thatt* (s) < E(s) for all s € (s4, s3),
and assume*(s) = umin ON (84, 7) @andu*(s) = umax ON
(7, s5), Wherer € (sq, sp) is the switching point fromu,
to umax. Because the state constraints are not saturated on
(sas sp), the optimal costate\}; is continuous on(s,, ss).
a(s) :E’(s)+D(E(s),s). (21) Since u*(s) = Umin ON (54,7) , and u*(s) = Umax ON
(7,sp), it follows that 1 + Aj(s) > 0 on (s,,7) and
1+ X5 (s) < 0on(r,sp) according to (17), andy; (1) = —1
by the continuity of\},.
According to equation (16), the derivative of the costate

and the claim of this proposition follows from the mono-
tonicity of E3/2(0D(E, s)/0F) with respect toF.

With E*(s), A and E(s) as in Proposition 4, the singular
controlw can be obtained by

According to the PMP, when, is free, we have\; = 0
following the transversality condition ag. Whent is fixed,
we need to first calculate the optimal value Jf.

B. Optimality of the Singular Arcs at7 is given by
An admissible singular control(s), in addition to the wlin _x OD(E",T) L m3/2, \yx
constraintuy,i, < (s) < umax, Must satisfy the generalized B (1) = Ap(7) oF * 2\/§E (M)A
Legendre-Clebsch condition [2] 1 o\—3/2 . .
) =———=(E")"5(r) (P(E™(1),7) = AY)
Ou | ds? \ Ou - where (19) and (20) are used for the derivation. Following

- s . LoV
if it is to be part of the optimal trajectory. Along the singal PToposition 4,A5,(r) > 0 since the above expression is

arc, differentiating the Hamiltonian with respect 4o one POSitive whenE™(r) < E(r). SincedD/JE is continuous
obtains with respect tos, \3;'(s) is also continuous with respect to

_ _ s. Hence\3'(s) > 0 in a neighborhood of. However, this
a (3_H) V2 D 3 _ps/2y« | fr. implies thatgiveri+-Aj(s) > 0 on(s,, 7), there exists > 0
ds2 \ou ) ~ "FOE PO T 12 ©] 7" such thatl + X% (s) > 0 for all s € (,¢) C (7, ), which
. ) is a contradiction to the fact that+ A\, (s) < 0 on (7, sp).
Using (4) and the fact that; = —1 along the singular arc, Therefore, if E*(s) < E(s) the optimgl thrust contains no
it follows that ~ switch fromu iy t0 umax ON (g, sp). The proof for the case
0 [d* (0H\] 9D 3 F5/2)x og)  E(s)> E(s) is similar, and hence it is omitted. [
ou |ds2 \ou )|~ OE% 42 o (23 Theorem 1 narrows down the possible switching com-
binations of the optimal contral* for the energy-optimal
problem. The valid switching structures are illustrated in

. an OD Fig. 1(a). In contrast, the switching structures in Fig.)1(b
A= 2\/§E3/28—E, (24)  are not optimal.

Since E(s) satisfies (19), it follows that



than a constrained one, a constraint is, in general, not
active unless it is violated by the optimal solution of the
unconstrained probler This property is stated formally by
the next lemma.

Lemma 1: If the optimal solution of Problem 3 does not
violate constraints (6), then it is also an optimal solution
Problem 2.

(a) Optimal switchings. (b) Non-optimal switchings.

E. The Optimal Switching Structure Involving Sate-
Constrained Arcs

For an arbitrary geometric path, the energy-optimal cdntro
D. Sate Constraints and the Relaxed Problem u* for the minimum energy path tracking problem is com-

When either the upper or lower bound of the state corR0Sed of bang-bang contral,i, andwum.x, singular control
straint (6) is active along a certain part of the optimall- @nd state constrained contro} andw; arcs.
specific kinetic energy solutiors*, this part of E* we Lemma 2. Let Ep(s) be the minimum-time path-
have astate constrained arc. For the correspondingtate following specific kinetic energy profile with flight timfg,n,
constrained control it is necessary to identify the intervals @nd 18tE7 (s) be the maximum-time path-following specific

on which state constraints (6) are active, which is usuall§inetic energy profile with time ..., subject to the same
not straightforward. oundary conditions and state constraints as in (4)-(8). Le

In this section, we formulate a relaxed version of ProbE” () be the optimal specific kinetic energy profile for the
lem 2 by partially relaxing the state constraints (6) onaiert Minimum-energy path-following problem with fixed timg.
intervals. The optimal solution to this relaxed problem cad hen the following inequalities hold
be determined in a semi-a_nalytic way, and will be used in tuin <t < tmaxs  EL(s) < E*(s) < B (s), 27)
the proof regarding the optimal solution to Problem 2. '

Before introducing the relaxed problem, some additiondPr all s € [so, sy].

Fig. 1. Possible switching structures.

notation needs to be presented first. ForC [so, s¢], define Proof: See [10]. L]
According to Lemma 2, the fixed-time, energy-optimal
Gr. () = { 9(s), selu, specific kinetic energye* is bounded by the minimum-time
v M, s €lso, 8]\ Tw, solution E;; and the maximum-time solutio®’; . Further-
more, based on Theorem 1, it can be shown thiats) =

where M > 0 is a number large enough such thags) <
M is always satisfied orisg, s;] by any feasible specific
kinetic energy profileE(s). By choosing a subsef; of
interest and enforcing the state constralitts) < gr,, (s)
for all s € [sg,sy], it can be ensured that the optimal
solution E* satisfiesE*(s) < g(s) on 'y, while remaining
unconstrained offisg, s7] \ I'y. Similarly, also define

Ef(s) or E*(s) = Ej(s) on certain subintervals. This

property of E* is characterized by the following Lemma.
Lemma 3: Let £*(s) be the optimal specific kinetic en-

ergy solution to Problem 2 and Iéf be defined orisy, s/]

by P(E(s),s) = Af, where\? is the corresponding optimal

costate value. LeEy; (s) and £} (s) be the optimal specific

kinetic energy solutions to the minimum-time and maximum-

(s) = g(s), selyp, time path-tracking problems, respectively. Furthermée,
Ir,\% 7 o, s € [so,sf,]\I'L. . -

. _ _ Iy = {s|E{(s) < E(s), s € [so0, 7]} (28)
By enforcing the constrainE(s) > QFL(S) instead of the Ty = {(s|EL(s) > E(s), s € [0, 5/]} (29)

constraintE(s) > g(s), the later constraint is relaxed on

[s0,5¢] \ T. Next, a modified version for Problem 2 isand suppose thal*(s) > g(s) for all s € [so,s]\T'r, and
introduced by relaxing the original state constraints (6) o£*(s) < g(s) forall s € [sg,s;]\I'y. ThenE*(s) = Ep;(s)
certain subintervals. forall s € Ty, and E*(s) = EZ(S) forall seI'y.

Problem 3 (Relaxed Min-Energy Path Tracking Problem): Proof: First, it will be shown thatt* (s) = E7;(s) for
LetTy, Tz C [s0, 5¢]- Minimize the energy cost (15) subjectall s € I'y. Letuy; andu™ be the thrust control associated
to constraints (4), (5), (7), (8), (9), and the state bounds Wwith E; andE™*, respectively. From Lemma 2, it follows that

E*(s) < E};(s) forall s € [so, s¢]. Assume, on the contrary,
E(s) =gr,(s) <0, gp (s) — E(s) <0. (26)  that there exists € I';y such thatE* (1) < Ej; (7). Then by
the definition ofl'y;, E*(7) < E(7). Letq = inf{s|E*(s) =
dEﬁ(s),s € [r,s¢]}. Since E*(sf) = Ej(sy), q is well-
defined. Similarly, letp = sup{s|E*(s) = Ej(s),s €
S0, 7|} and sinceE*(sg) = Ef;(so), p is also well-defined.
ote thatE*(s) < Ej(s) for all s € (p,q) by the fact
(1) < E}; (1), the definitions ofp, ¢, and the continuity

for all s € [so, sf].

Similarly, one can form the relaxed minimum-time an
the relaxed maximum-time path tracking problem with stat
constraints (26) instead of (6). For the sake of brevity, th
formal definitions for these problems are not presented he
since they are self-evident from the definition of Problem 3.

Since the unconstrained solution to an optimal control 1The only exception is the trivial case when along the unceirstd
problem has the same, or better, optimality charactesistieptimal solution certain constraints are active but notatém.



of E* and Ef; (see Fig. 2). Sinc&Z*(s) < Ef;(s) <7g,(s) Subsequently, the solution of the relaxed (non-constjine
for all s € (p, q), the upper bound of the state constraint (6problem can be used to construct the solution of the original
is inactive alongE™ for s € (p,q). Hence,u*(s) can only problem with state constraints.
take the values Ofimax, Umin, @(s), OF w,(s) on (p,q). Typically, the relaxation of constraints will affect the
Since E*(1) < E(7), it is true thatu*(7) # u(r). Also, optimal solution. However, as shown by the following
since E*(1) < E(7), it follows thatT ¢ I';, and therefore proposition, by choosing carefully where the constraimés a
E*(1) > g, (7), and it follows that either”(7) = umax Or  relaxed, the minimum-time and maximum-time solutions do
u* (1) = umin. Next, it will be shown that neither of these not change on certain subintervals after the relaxation of
two options is possible. constraints.
Proposition 5: Let £ be defined byP(E(s),s) = X\
B for a certain costate valug; such thati € [umin, Umax],
\{ ’ where @ is given by (21). Letl'y andI'; as in (28) and
(29), whereE};(s) and E; (s) are the specific kinetic energy
solutions to the minimum-time and maximum-time path-
tracking problems, respectively, with constraints (6).t Le
Ef; (s)andE} (s) be the specific kinetic energy solutions to
‘ Iy the relaxed minimum-time and maximum-time path-tracking
P T IRKEE problems, respectively, with constraints) < gr,, (s) and
E(s) > QFL(S) instead of (6). Therivj; (s) = Ey; (s) for all
se Ty, andEj(s) = £} (s) forall s € T'z.
First, consider the case*(7) = umin. It is claimed that Proof: See [10]. [ |
E*(s) < E(s) for all s € (7,q). To see this, assume that . e .
E*Es§ > E(i))for somes e((T, 3). It then follows from the The Optimal Specific Kinetic Energy Solution
fact E*(7) < E(T) and the continuity of£* and E that the In this section, the optimal solution to Problem 2 is
equationE*(y) = E(y) has at least one solution dm,q) given by Theorem 2 below. The proof of the theorem takes
(see Fig. 3). Lety = inf{s|E*(s) = E(S),S e (1,9)}. advantage of the optimal solution of the relaxed Problem 3
It follows that E*(v) = E(’Y), and E*(s) < E(S) for all givenin the previous section. First, the optimal solutiothte
s € (1,7). Therefore(r,) C [so, s;]\I'z, and it is true that relaxed Problem 3 is characterized with the state conssrain
E*(s) > g (s) for all s € (r,7). It follows that on(r,~), relaxed on some carefully selected subintervals. Then it is
u*(s) Caﬁwomy take the values of,,;, and um... Since Shown that this solution satisfies the state constraints in
E*(s) < E(s) for all s € (r,7), u*(s) cannot switch from Problem 2, hence is also the optimal solution to Problem 2.
Umin 10 Umax according to Theorem 1, and(s) = umin The optimal solution to Problem 2 is a combination of the
for all s € [r,~). The trajectoriesz*(s) and E(s) on (7, ) minimum-time solution, the maximum-time solution, and
can be computed starting frothi*(y) = E(y) ats = v  €nergy-saving singular arcs. The detailed proof of this fac
by integrating backwards (4) with*(s) = umi, and, re- IS rather involved, hence, is omitted. The interested neisde
spectively. Sinceumi, < @(s), a straightforward application referred to [10] for the proof.
of the Comparison Lemma [4] yields thé@t*(r) > E(7), Theorem 2: Suppose there exists a real numberand a
leading to a contradiction. HencE*(s) < E(s) for all ~function E' given by P(E(s),s) = A for all s € [so, sf],
s € (r,q), and thusu*(s) = umi, for all s € (7,q) such that the specific kinetic enerdy given by
according to Theorem 1. The last statement implies however Ei(s), sel
« « . L ) L,
that one carLcomputE _(_T) andEp (7) orl thelnteiva(n q) E*(s)={ E(s), s€l[s0.8]\ Ty UTy), (30)
starting ats = ¢ with initial conditionsE*(q) = E{;(¢) and E5(s), sely
integrating backwards (4) using*(s) = umin anduj(s), vy
respectively, for alk € (7, q). Sinceu;;(s) > umin = u*(s), satisfies the desired total tracking time, wherg =
an application of the Comparison Lemma as before yieldss|Ef;(s) < E(s), s € [so,s¢]}, andT', = {s|E}(s) >
that E*(r) > Ej(7), which contradicts the assumptionE£(s), s € [so,sf]}. Then E* is the optimal solution to
E*(1) < Ef (7). Problem 2.
Similarly, if ©u*(7) = umax, ONe can prove in a similar Proof: See [10]. [ |
manner that* (t) < Ej;(7) is also impossible. Hence, there  Despite the simple form of the energy-optimal solution in
does not exist- € I'y such thatE*(r) < Ej;(), and thus (30), one is not readily able to choose the correct value of

E

Fig. 2. lllustration for the proof of Lemma 3

it must be true that™(s) = E};(s) onT'y. E(s) for eachs € [so, sf] in order to construct the optimal
The proof of the other statement, namély;(s) = £ (s)  specific kinetic energy according to (30) because the optima
for all s € 'y, is similar, hence, is omitted. B costate value\; is unknown.

Lemma 3, along with Lemma 1, is used to characterize the To identify the correch; value and the associated singular
state constrained arcs in the optimal specific kinetic gnera@rcs for a specific total tracking time, a numerical alganith
profile E*(s). Specifically, given the state constraints, onéas been introduced in Ref. [10]. This algorithm searches
needs first to compute the optimal solution of a certain reemong a family of extremals for the correct value Xjf.
laxed problem in order to identify the state constrained.arcThis allows the computation of the associated functi(s)



from (19) and, subsequently, the optimal solutioh(s) from
(30). It has been shown in Ref. [10] that such an algorithm

T T T T
— — — Energy-optimal method
Numerical optimization

t7 =1300s

is guaranteed to converge to the optimal solution. = 200¢
~— 150 1
V. NUMERICAL EXAMPLE
. . . 100 1
We computed energy-optimal speed profiles for a fixed- ‘ : : :
. . . . . . 0 50 100 150 200 250
wing aircraft tracking a landing path shown in Fig. 3.
A standard point mass aircraft model is used for all cal- 250 ‘ ‘ : =
. . . . — — — Energy-optimal method
culations [11]. The optimal speed profiles are shown in 20 b 14008 Numerical optimization |1

Fig. 4, which also illustrates the relation between minimum é
time, maximum-time, and minimum-energy solutions with =
differentt ;. The same problem was solved using a Nonlinear
Programming solver [12]. The comparison of the optimal o 50 100 150 200 250
speed profiles are shown in Fig. 5. It is clear from these s (km)

figures that the results are extremely close to the optimal ) ] ) o

ones. Furthermore, the Matlab implementation of the energ§'%; ti' _ Gomparison with numerical optimization solver fgr = 1300's
optimal path-tracking control algorithm found the optimal

solution in 3-6 seconds, while the Nonlinear Programming

solver took at least 5 minutes (and for some cases MUgRcatenation of the minimum-time solution, the maximum-

more) to find a converged optimal solution. See Ref. [13}ne solution, and singular arcs. Based on our analysis, an

for more details about this numerical example. efficient algorithm has been proposed for computing the
energy-optimal solution.
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energy solutions are analyzed based on optimal control
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