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Abstract
We demonstrate that the phase of complex linear measurements of signals preserves significant
information about the angles between those signals. We provide stable angle embedding
guarantees, akin to the restricted isometry property in classical compressive sensing, that
characterize how well the angle information is preserved. They also suggest that a number
of measurements linear in the sparsity and logarithmic in the dimensionality of the signal
contains sufficient information to acquire and reconstruct a sparse signal within a positive
scalar factor.We further show that the reconstruction can be formulated and solved using
standard convex and greedy algorithms taken directly from the CS literature. Even though
the theoretical results only provide approximate reconstruction guarantees, our experiments
suggest that exact reconstruction is possible.
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Abstract—We demonstrate that the phase of complex linear
measurements of signals preserves significant information about
the angles between those signals. We provide stable angle
embedding guarantees, akin to the restricted isometry property
in classical compressive sensing, that characterize how well the
angle information is preserved. They also suggest that a number
of measurements linear in the sparsity and logarithmic in the
dimensionality of the signal contains sufficient information to
acquire and reconstruct a sparse signal within a positive scalar
factor. We further show that the reconstruction can be formulated
and solved using standard convex and greedy algorithms taken
directly from the CS literature. Even though the theoretical
results only provide approximate reconstruction guarantees, our
experiments suggest that exact reconstruction is possible.

I. INTRODUCTION

The advent of compressive sensing (CS) has significantly
improved our ability to sense a variety of signals. Classical
CS theory reveals that it is possible to acquire signals at a
rate dictated by the complexity of the signal model, rather
than the signal dimensionality [1]–[3]. The acquisition is
performed using incoherent measurements that preserve all the
information in the signal. The signal is recovered from those
measurements by exploiting a signal model such as sparsity.
Computation—increasingly available thanks to Moore’s law—
plays an important role in this recovery. Thus it is possible
to simplify sensing systems in a number of applications and
substitute inexpensive computational complexity in place of
frequently expensive sampling complexity.

In this paper we explore how compressive sensing can be
used to reconstruct signals from phase-only measurements.
Specifically, we demonstrate that the phase of linear complex
measurements preserves information about angles of signals.
This information can be sufficient to reconstruct the signal
within a positive scaling factor. We further show that the
measurements contain sufficient information to formulate a
convex program or a greedy algorithm to recover the signal.

In many ways, this paper extends earlier work on 1-bit CS,
in which a signal is acquired by quantizing the measurements
to 1-bit per measurement, i.e. only preserving their signs [4]–
[6]. Similar to phase measurements, this operation preserves
the angles of signals but not amplitude information. Thus, the
signal can only be reconstructed within a scaling factor and
only approximated since the measurements are quantized. This
paper extends 1-bit CS in the same way that phase/magnitude

representations of complex numbers extend sign/magnitude
representations of a real numbers.

This work also extends earlier results on the importance
of phase information in recovering signals, with a number of
practical applications [7]–[10]. In summary, the phase of a
fully sampled Fourier transform of a signal contains, under a
variety of conditions, sufficient information to uniquely specify
the signal and enable its reconstruction within a scaling factor.
Our results exploit sparse signal models to reduce the number
of phase measurements required. In that sense they transfer
classical CS results to phase measurements. While we establish
the results using random matrices with i.i.d. normal entries, we
conjecture that a large variety of distributions could be used,
including subsampled Fourier transforms. Note that quantizing
the phase, explored in [11], provides an alternative quantized
representation to quantizing the linear measurements.

In the next section we provide a brief background on CS
and 1-bit CS, which also partly serves to establish notation.
Section III describes the problem, discusses the embedding
properties of phase-only measurements and explores how to
reconstruct the measured signal. Section IV provides exper-
imental results, validating our approach. Finally, Section V
provides some discussion and concludes.

II. BACKGROUND

A. Compressive Sensing

Classical, by now, results in CS have established that it
is possible to measure and successfully reconstruct a signal
sparse in some basis using a number of linear measurements
which is approximately proportional to the small number of
non-zero components of the signal in that basis [1]–[3]. This
acquisition can be expressed as the linear system

y = Ax, (1)

where x ∈ RN denotes the sparse signal, y ∈ RM denotes the
measured data, A ∈ RM×N denotes the measurement matrix
representing the linear system, and M and N denote the di-
mensionality of the data and the acquired signal, respectively.
The sparsity of x, i.e., the number of non-zero coefficients, is
denoted using K. We assume, without loss of generality, that
the signal is sparse in the canonical basis.

A sufficient condition to recover the signal from the mea-
surements, is the Restricted Isometry Property (RIP). The



matrix A satisfies the RIP of order K, with RIP constant δK
if for all K-sparse vectors x:

(1− δK)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δK)‖x‖2, (2)

i.e., approximately preserves the norm of all K-sparse vectors.
Thus, a matrix satisfying the RIP of order 2K describes an
embedding of K-sparse vectors in N dimensions into an M -
dimensional space. This embedding preserves the `2 distance.

If the RIP of order 2K holds with a small RIP constant, the
signal can be exactly recovered using the convex program

x̂ = argmin
x
‖x‖1 s.t. y = Ax, (3)

or one of many available greedy algorithms [1], [12]–[16].
Variations of this program, as well as the recovery guarantees
have also been developed for a variety of measurement noise
conditions and relaxations of the strict sparsity requirement.

The RIP has been established for a variety of matrix
classes. With high probability, a properly scaled random matrix
with entries generated from an i.i.d. normal or subgaussian
distribution satisfies the RIP as long as M = O(K logN).
Similar results have been shown for other matrices, such as
ones generated by randomly selecting rows of a DFT matrix.

B. 1-bit Compressive Sensing

Practical acquisition systems quantize their measurements.
1-bit CS examines extreme quantization to one bit per mea-
surement, i.e., preserving only the sign of each measurement:

y = sign(Ax), (4)

where sign(·) is applied element-wise to its argument. Since
sign(Ax) = sign(Acx) for all c > 0, 1-bit CS acquisition
eliminates amplitude information about the signal. Thus, we
can only hope to recover the signal within a scaling factor.
Furthermore, the solution of an `1 minimization program
similar to (3) degenerates to a zero x. Some way to enforce a
norm constrain is necessary [4].

The constraint proposed originally, ‖x‖2 = 1, leads to non-
convex program, difficult to analyze and provide guarantees
for. More recently, [17] showed that a convex program can be
formulated if we exploit the fact that the sign measurements of
the signal reveal the hyperoctant in which the measurements
lie. Thus a linear constraint can be used to enforce a non-trivial
solution, resulting to the convex program

x̂ = argmin
x
‖x‖1 s.t. y = sign(Ax) and yT (Ax) = 1. (5)

This program enforces an `1 norm constraint by exploiting the
fact that yT (Ax) = ‖Ax‖1 at the correct solution.

In the context of 1-bit CS, a condition similar to the RIP
can be established, the Binary ε-Stable Embedding (BeSE) [6].
The BeSE guarantees the correctness of a sign-consistent
reconstruction and characterizes the reconstruction error. The
BeSE is in fact an angle embedding, which preserves the
angles between signals, defined as

d∠(x,x
′) =

1

π
arc cos

〈x,x′〉
‖x‖2‖x′‖2

(6)

for two signals x and x′. The angle is preserved in the
normalized Hamming distance between the measurements,
defined as dH(y,y′) = (

∑
i yi ⊕ y′i)/M , according to

d∠(x,x
′)− ε ≤ dH(y,y′) ≤ d∠(x,x′) + ε. (7)

Thus, if a signal with consistent measurements is found, i.e.,
dH = 0, it will be within angle ε of the measured signal.
Similar to the RIP, the BeSE holds for measurement matri-
ces with i.i.d. normal entries, although not in more general
ensembles. Furthermore, successful signal recovery from 1-
bit measurements with more general ensembles and without
requiring the BeSE has also been shown in [18].

III. PHASE-ONLY COMPRESSIVE SENSING

A. Phase-Only Signal Acquisition

In this paper we consider the following acquisition model

z = Ax, y = ∠(z), (8)

where x ∈ RN is a real signal, A ∈ CM×N , z represents
the linear measurement, ∠(·) denotes the principal angle
of a complex number, applied element-wise to each vector
coefficient, and y represents the final phase measurements.
We also use am to denote the mth row of A.

Obviously, ∠(Ax) = ∠(Acx) for any c > 0. Thus, angle
measurements are similar to sign measurements in 1-bit CS
and eliminate any norm information on x. Furthermore, if
the acquisition matrix A only contains real elements, the
information in y is essentially the sign of the measurement—
0 and π for positive and negative measurements, respectively.
In that case, the problem reverts to 1-bit CS. While complex
signals x can also be considered in this formulation, we defer
development of the theory to subsequent work.

B. Stable Angle Embedding

Similar to sign measurements, phase measurements also
provide stable embeddings. If two signals x,x′ in a finite set
W of size L are measured with a random Gaussian vector, the
expected value of the measured phase difference is equal to

E

{∣∣∣∣∠(zmz′m
)∣∣∣∣} = E

{∣∣∣∠(ei(ym−y′m)
)∣∣∣} = πd∠(x,x

′).

(9)

Hoeffding’s inequality bounds the probability that the average
of M random variables |∠(ei(ym−y′m))| deviates from (9). Us-
ing the union bound on L2 point pairs, a property reminiscent
of Johnson-Lindenstrauss (JL) embeddings [19] follows.

Theorem 3.1: Consider a finite set W ⊂ RN of L points
measured using (8), with A ∈ CM×N consisting of i.i.d ele-
ments drawn from the standard complex normal distribution.
With probability greater than 1−2e2 logL−2ε2M the following
holds for all x,x′ ∈ S and corresponding measurements
y,y′ ∈ RM .∣∣∣∣∣ 1M ∑

m

∣∣∣∣ 1π∠(ei(ym−y′m)
)∣∣∣∣− d∠(x,x′)

∣∣∣∣∣ ≤ ε (10)



Furthermore, the absolute value of the phase difference∣∣∣∠(ei(ym−y′m)
)∣∣∣ is Lipschitz continuous with Lipschitz con-

stant equal to 1. Thus, an argument similar to [12] provides
a continuous version of the embedding guarantees, similar to
the BeSE and the RIP, which is appropriate for sparse signals.

Theorem 3.2: Consider the set SK ⊂ RN of all K-sparse
signals in RN , measured as in Thm. 3.1. Eq. (10) holds
with probability greater than 1− 2e2K log( 12e

ε
N
K )−

ε2M
2 , for all

x,x′ ∈ SK and corresponding measurements y,y′ ∈ RM
These theorems demonstrate that if the mean phase differ-

ence between the embedding of two signals is small, then the
angle between these signals is also very small. Their nature
is similar to the JL lemma, the RIP and the BeSE. They
suggest that, similar to classical CS, M = O(K log(N/K))
measurements are sufficient to acquire and reconstruct a signal.
The embedding guarantees can be extended to other structured
signal sets, such as unions of subspaces or manifolds, using
the Kolmogorov complexity of the set in a manner similar
to [20].

Unfortunately, the additive form of (10) does not guarantee
exact reconstruction. Even if we manage to determine a sparse
signal estimate x̂ that has the same embedding as the measured
signal x, Thm. 3.2 can only guarantee that we have identified
the signal within an angle ε from x, i.e., |d∠(x, x̂)| ≤ ε. This
behavior is similar to quantized embeddings, such as the BeSE,
rather than continuous embeddings such as the RIP. Our ex-
perimental results suggest that exact reconstruction guarantees
should be possible to derive—not necessarily provided in the
form of a stable embedding. However, we do not attempt a
proof in this paper.

C. Reconstruction

As discussed above, acquiring a signal using (8) eliminates
all information on the total magnitude of the signal. Thus,
a reconstruction algorithm, especially one based on `1-norm
minimization, should use a norm constraint to avoid trivial
solutions. The original 1-bit CS formulation uses ‖x‖2 = 1,
which seems like a natural constraint but leads to a non-
convex problem [4]. Instead, we use an approach inspired by
the convex formulation in [17].

Specifically, we use the phase of each measurement to rotate
that measurement to a positive real number. To do so, we
define a vector of unit-magnitude complex coefficients whose
phase is equal to the phase of the measurements. Abusing
notation, we denote it using eiy, i.e., (eiy)m = eiym . Since
e−iymzm = |zm|, it follows that (eiy)Hz = ‖z‖1, where (·)H
denotes the Hermitian (conjugate) transpose. Thus, the convex
constraint (eiy)HAx = 1 can be used as a norm constraint to
prevent degenerate solutions.

In addition to the norm constraint, the phase measurements
of a solution should be the same as the original phase
measurements. This means that when the linear measurements
are properly rotated they should produce positive real numbers:
<{e−iymzm} ≥ 0 and ={e−iymzm} = 0, where <{·} and
={·} denotes the real and the imaginary part, respectively.

Combining all constraints we obtain the following program:

x̂ = argmin
x
‖x‖0 (11)

s.t. (eiy)HAx = 1,

<
{
e−iym〈am,x〉

}
≥ 0

and =
{
e−iym〈am,x〉

}
= 0.

Of course, this `0 minimization can exhibit combinatorial
complexity. Thus, (11) can be relaxed to the convex program:

x̂ = argmin
x
‖x‖1 (12)

s.t. (eiy)HAx = 1,

<
{
e−iym〈am,x〉

}
≥ 0

and =
{
e−iym〈am,x〉

}
= 0.

Alternatively we can use a greedy algorithm that attempts
to find a sparse vector satisfying the constraints. This is the
approach we follow in this work. We first define a rotated
matrix Ã such that ãm = e−iymam, i.e., such that if the
original signal was measured it would produce positive real
measurements. This means that the signal should be in the
nullspace of the imaginary part of Ã. Thus we can attempt to
use a greedy algorithm to solve the following optimization:

x̂ = argmin
x

∥∥∥∥∥∥
(e−iy)H A

=
{
Ã
} x−

[
1

0

]∥∥∥∥∥∥
2

2

(13)

s.t. ‖x‖0 ≤ K
and <

{
e−iym〈am,x〉

}
≥ 0.

This can be solved with straightforward modifications to
standard CS algorithms,such as CoSaMP [14], IHT [15], or
ALPS [16], to incorporate the positivity constraint on the
real part, in a manner similar to the constraints enforcing
quantization consistency in [4]–[6]. However, our experimental
results showed that the positivity constraint does not contribute
significantly to the performance of the system and can be
ignored. In this case, the program can be solved using the
existing algorithms without any modification. Since a number
of implementations of those algorithms expect real matrices
as inputs, the complex constraint (eiy)HAx = 1 can be
implemented as two real constraints <{(eiy)HA}x = 1 and
={(eiy)HA}x = 0. Similarly for the part of the cost function
enforcing that constraint in (13).

IV. EXPERIMENTAL RESULTS

To validate the theory we performed experiments in a range
of conditions. The results presented are for N = 1000 and a
variety of K and M , although different values of N exhibited
similar behavior. The experiments examined the correlation of
the recovered and the measured signals as well as the correct
support recovery. Using x and x̂ to denote the measured and
recovered signals, respectively, the correlation coefficient is

ρ =
〈x, x̂〉
‖x‖2‖x̂‖2

(14)



and is equal to 1 if and only if the signal is perfectly recovered.
Similarly, using T (·) to denote the support set, the support
recovery can be measured using the ratio

Ps =
|T (x) ∩ T (x̂)|
|T (x)|

. (15)

Note that although perfect signal recovery implies perfect
support recovery, the opposite is not true. The support could
be perfectly recovered without perfect signal recovery.

For reconstruction we used the very efficient ALPS al-
gorithm [16] to solve (13) without enforcing the positivity
constraint <

{
e−iym〈am,x〉

}
≥ 0. The acquisition matrix

A was generated randomly with coefficients drawn from
a standard complex normal distribution. The signal x was
generated by first selecting its support set uniformly from
the

(
N
K

)
possible sets and then drawing coefficients from a

standard normal distribution. The results are averaged over
1500 trials, each with different draw of matrix and signal.

The results are illustrated in Fig. 1. The left plot shows the
average correlation as a function of the number of measure-
ments for different values of K. Similarly, the right plot shows
the fraction of support recovered as a function of the number
of measurements. As evident from the results, the recovery
performance exhibits similar behavior to classical compressive
sensing. The recovery fails if there is an insufficient number
of measurements and the performance exhibits a rapid phase
transition as the number of measurements increase. Once a
sufficient number of measurements is obtained the signal is
perfectly recovered.

V. DISCUSSION AND CONCLUSION

In summary, we demonstrated that the phase of complex
measurements contains sufficient information to fully recon-
struct a sparse signal within a scaling factor. The theory
we present demonstrates that two sparse signals with similar
measurements also have very high correlation. Unfortunately,
the stable angle embeddings we establish do not guarantee
exact reconstruction, even if the phase measurements of the re-
constructed signal are identical to those of the measured signal.
The small error ε characterizes the worst-case reconstruction
ambiguity. However, the experimental results suggest that
Thm. 3.2 can be tightened to guarantee exact reconstruction

We should also note that the theorem does not guarantee
that reconstruction is computationally tractable. The program
in (11) will recover the signal if A provides a stable angle
embedding. However, a stable angle embedding does not
guarantee that the relaxations in (12) and (13) also recover
the correct signal. In that sense, a stable angle embedding is
not equivalent to the RIP. The latter has a dual role: In addition
to its function as an embedding, the RIP also guarantees
that `1 relaxation and greedy algorithms do provide an exact
solution, robust to noise and sparsity level. Whether stable
angle embeddings can provide such guarantees is still open.

REFERENCES

[1] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Comm. Pure and Appl. Math.,
vol. 59, no. 8, pp. 1207–1223, 2006.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Number of measurements M

R
ec

ov
er

ed
 s

ig
na

l c
or

re
la

tio
n

 

 

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Number of measurements M

R
ec

ov
er

ed
 s

up
po

rt 
ac

cu
ra

cy

 

 

K=10
K=20
K=30
K=40
K=50
K=60
K=70
K=80
K=90
K=100

K=10
K=20
K=30
K=40
K=50
K=60
K=70
K=80
K=90
K=100
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support recovery in the reconstruction.
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