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Abstract

We study targeted energy transfer (TET) mechanisms by applying a nonlinear energy sink (NES)
to suppress regenerative instabilities in a 2-DOF planar machine tool model. With the help of
a numerical continuation tool, DDEBIFTOOL, we show that the tool instability is generated
through a subcritical Hopf bifurcation in this simplified tool model. Studying modal energy
exchanges reveals that only one of the DOFs is predominant, which may lead to the standard
single-DOF machine tool model. Then, we apply an ungrounded NES to the 2-DOF tool model
such that the NES interacts only with the dominant mode, which turns out to be more efficient
than applying the NES to the other insignificant mode. Simple numerical simulations and bifur-
cation analysis demonstrate that the three typical TET mechanisms can be identified - That is,
recurrent burst outs and suppression, and partial and complete suppression of tool instability.
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ABSTRACT 
We study targeted energy transfer (TET) mechanisms by 

applying a nonlinear energy sink (NES) to suppress 

regenerative instabilities in a 2-DOF planar machine tool 

model. With the help of a numerical continuation tool, 

DDEBIFTOOL, we show that the tool instability is generated 

through a subcritical Hopf bifurcation in this simplified tool 

model. Studying modal energy exchanges reveals that only one 

of the DOFs is predominant, which may lead to the standard 

single-DOF machine tool model. Then, we apply an 

ungrounded NES to the 2-DOF tool model such that the NES 

interacts only with the dominant mode, which turns out to be 

more efficient than applying the NES to the other insignificant 

mode. Simple numerical simulations and bifurcation analysis 

demonstrate that the three typical TET mechanisms can be 

identified - That is, recurrent burstouts and suppression, and 

partial and complete suppression of tool instability.  

 

INTRODUCTION   

Regenerative effects in machining arises from the fact that 

the cutting force exerted on a tool is influenced not only by the 

current position but also by that in the previous revolution. 

Hence, the equation of motion for the tool appears as a delay 

differential equation, which renders even an SDOF dynamical 

system to be infinite-dimensional (See, for example, 

Dombovari et al. [1] and Nayfeh and Nayfeh [2] for recent 

studies on machine tool dynamics). 

In practical machining process, regenerative LCOs would 

create adverse effects on machining quality, and various passive 

and active means have been considered to improve machining 

stability boundary (e.g., see [3–8]). In particular, direct use or 

variations of linear/nonlinear tuned mass damper (TMD [7, 8]) 

are probably the most popular approach to passive chatter 

suppression. However, even if the TMD is initially designed 

(tuned) to eliminate resonant responses near the eigenfrequency 

of a primary system, the mitigating performance may become 

less effective over time due to aging of the system, temperature 

or humidity variations and so forth, thus requiring additional 

adjustment or tuning of parameters.  

It is only recently that passively controlled spatial (hence 

dynamic) transfers of vibrational energy in coupled oscillators 

to a targeted point where the energy eventually localizes were 

studied by utilizing an NES (See Vakakis et al. [9] for the 

summary of up-to-date developments); and this phenomenon is 

simply called targeted energy transfer (TET). The NES is 

basically a device that interacts with a primary structure over 

broad frequency bands; indeed, since the NES possesses 

essential stiffness non-linearity, it may engage in (transient) 

resonance capture [10] with any mode of the primary system. It 

follows that an NES can be designed to extract broadband 

vibration energy from a primary system, engaging in transient 

resonance with a set of most energetic modes. Targeted energy 

transfers were utilized for suppressing regenerative instabilities 

in a single-degree-of-freedom (SDOF) machine tool model by 

coupling an ungrounded nonlinear energy sink (NES) in [11]. 

In this work we extend the previous study on TETs for 

chatter suppression in an SDOF tool model to those in a 2-DOF 

machining process. To properly understand the suppression 

mechanisms that appear similar to those in the previous 

aeroelastic applications [9], numerical bifurcation analysis are 

performed by utilizing DDEBIFTOOL [12]. The 

complexification-averaging technique is utilized to explore 

analytical TET mechanisms, which is extended to study 

domains of attraction by means of the asymptotic analysis. 

SYSTEM DESCRIPTIONS 
We consider the dynamics of the 2-DOF machine tool 

model depicted in Fig. 1. Following the derivations 

summarized in [13], we can write down the equations of motion 

,    x x x y y ymx c x k x F my c y k y F+ + = + + =&& & && &  (1) 

where the forcing terms can be expressed as 

,    sin cos cos sinx C T y C TF F F F F Fη η η η= − + = − −  (2) 
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FIGURE 1. 2-DOF MACHINE TOOL MODEL [13] 

 

And, η  is the angle between the x axis and the normal to the 

wavy surface (Fig. 1) so that ( )1
tan / ( )x V yη −= +& & . TF  and 

CF  are the thrust and cutting forces, respectively, and they can 

be expressed as 
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where, w  and 0s  are chip width and nominal chip thickness 

respectively. Moreover, sτ  is the shear stress in a plane called 

shear plane along AB line in Fig. 1. The regenerative effect of 

the machine tool is presented in ( )x x tτ τ= − . For any given 

workpiece and tool materials, an empirical relation between the 

shear angle φ  and the friction angle λ  through 

experimentation can be established as 2 Kφ λ α+ − = where K 

is a constant depending on the cutting condition of the 

continuous chip formation process and  α   is rake angle. 

Assuming small motions and performing 

nondimensionalization [13], the equations of motion in (1) can 

be simply written as 
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where /y xϖ ω ω=  is the frequency ratio, and  
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In this study we adopt the system parameters from [13] as

0 1 2 016.879, 54.110, 500.28, 9.514,x xp p p R= = = = −

1 2 1 236.984, 216.06, 9.1725, 7.674,
xx y yR R p p= − = − = − =

1 2117.06, 2.8983, 2.219, 64.109xy y y xyp R R R= − = = − =  

The linearized stability analysis can be performed by 

solving the eigenvalue problem in the following. 

( , )τ τ= + +x Lx Rx f x x&  (6) 

where f  represents nonlinear part of the equations; 
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Assuming and substituting the solution of Eq. (6) to be 

( ) exp( )t tλ=x X , then we obtain the eigenvalue problem 

typical for a delay-differential system. 

( )e λτλ −− − =I L R X 0  (7) 

where I  is an identity matrix. For a nontrivial solution X , we 

derive the characteristic equation as ( )det 0e λτλ −− − =I L R . 

We substitute jλ ω= , 
2

1j = −  into the derived characteristic 

equation (7) and separate the results into the real and imaginary 

parts, respectively. Solving these two equations simultaneously 

for p  and Ω  as functions of ω , we obtain the stability chart 

depicted in Fig. 2, which looks similar to that for an SDOF tool 

model in [3]. 

 
FIGURE 2. STABILITY BOUNDARY FOR THE SYSTEM (4) 
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FIGURE 3. BIFURCATION DIAGRAM FOR THE SYSTEM (4) 

FOR 2Ω =   

 

In order to understand the LCOs behaviors generated at the 

stability boundary in Fig. 2 through a Hopf bifurcation, a 

numerical continuation technique is utilized (called 

DDEBIFTOOL [12]). For example, Fig. 3 depicts the 

bifurcation diagram for the trivial equilibrium and the LCOs 

that occur in the 2-DOF machine tool model (4) when the 

rotational speed of the workpiece 2Ω = . It turns out that the 

LCO is generated through a subcritical Hopf bifurcation in this 

simplified model with the x-mode being more dominant. This 

x-mode indeed is equivalent to the mode in the previous SDOF 

tool model. 

APPLICATION OF NES TO X-MODE 
Since we learned in the previous section that the x-mode is 

predominant, the NES is applied to target any energy flow fed 

into the x-mode, eventually eliminating the whole regenerative 

instability in the 2-DOF tool model (cf. Fig. 4). 

 
FIGURE 4. APPLICATION OF NES TO THE X-MODE 

 

Then, the nondimensional equations of motion can be 

obtained as 
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where nx  denotes the NES displacement occurring in parallel 

to the x-mode; and the forcing terms can be expressed as 
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FIGURE 5. BIFURCATION DIAGRAM WITH AN NES 

 

Now, as a counterpart to the bifurcation analysis in Fig. 3, 

we performed a numerical continuation with the NES 

parameters, .3, 0.3, 0.1nC ζ= = =ò , and 0.0109minp = . The 

corresponding bifurcation diagram is depicted in Fig. 5. The 

first thing one can notice is that the types of Hopf bifurcation 

changes by the application of the NES to the x-mode; that is, 

from subcritical to supercritical Hopf bifurcations. This implies 

that the LCOs generated at the Hopf point with the use of an 

NES are stable, unlike those from the original machine tool 

model without the NES. Furthermore, the occurrence of the 

Hopf bifurcation is delayed to a higher cutting depth. However, 

such impressive suppression behaviors cannot be observed 

when the NES is coupled to the y-mode only. As depicted in 

Fig. 6, the subcritical Hopf bifurcation is still maintained and 

there is insignificant delay of Hopf point.  
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FIGURE 6. BIFURCATION DIAGRAM WHEN THE NES IS 

APPLIED TO THE Y-MODE 

 

 
FIGURE 7. STABILITY CHART FOR THE 2-DOF TOOL 

MODEL WITH AND WITHOUT NES APPLIED TO X-MODE 

 

Finally, Fig. 7 depicts upward shift of the stability 

boundary when the NES is engaged directly into the x-mode, 

which can be expected from the numerical bifurcation analysis 

in Fig. 5 illustrating that Hopf bifurcation occurs at higher 

cutting depth values. 

As for the TET mechanisms for suppressing regenerative 

instabilities in this 2-DOF machine tool model, there are three 

distinct ones which are typically observed in many NES 

applications. Those mechanisms include partial (2
nd

) and 

complete (3
rd

) elimination, and recurrent burstouts and 

suppressions (1
st
) of tool chatter. The TET phenomena involve 

nonlinear modal interactions between the tool modes and the 

NES, and Fig. 8 depicts the time series and its wavelet 

transform spectra for the first and third TET mechanisms.  

(a)  

(b)  
FIGURE 8. TIME SERIES AND ITS WAVELET TRANSFORM 

SPECTRA FOR (a) 1
st
 AND (b) 3

rd
 TET MECHANISMS. 

CONCLUDING REMARKS 
We studied targeted energy transfer (TET) mechanisms by 

applying a nonlinear energy sink (NES) to suppress 

regenerative instabilities in a 2-DOF planar machine tool 

model. With the help of a numerical continuation tool, 

DDEBIFTOOL, we demonstrated that the tool instability is 

generated through a subcritical Hopf bifurcation in this 

simplified tool model. Studying modal energy exchanges 

reveals that only one of the DOFs (i.e., x-mode) is 

predominant, which may lead to the standard single-DOF 

machine tool model. Then, we applied an ungrounded NES to 

the 2-DOF tool model such that the NES interacts only with the 

dominant mode (x-mode), which turns out to be more efficient 

than applying the NES to the other insignificant mode (y-

mode). Simple numerical simulations and bifurcation analysis 

demonstrated that the three typical TET mechanisms can be 

identified - That is, recurrent burstouts and suppression, and 

partial and complete suppression of tool instability.  
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