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Abstract

We study here the problem of robust ”soft-landing” control for electromagnetic actuators. The
soft landing requires accurate control of the actuators moving element between two desired po-
sitions. We present here two nonlinear adaptive controllers to solve the problem of robust trajec-
tory tracking for the moving element. The first controller is based on classical nonlinear adaptive
technique. We show that this controller ensures bounded tracking errors of the reference trajec-
tories and bounded estimation error of the uncertain parameters. Second, we present a controller
based on the so-called Input-to-State Stability (ISS), merged with gradient descent estimation
filters to estimate the uncertain parameters. We show that it ensures bounded tracking errors
for bounded estimation errors, furthermore, due to the ISS results we conclude that the tracking
errors bounds decrease as function of the estimation errors. We demonstrate the effectiveness of
these controllers on a simulation example.
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Actuators
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Abstract

We study here the problem of robust ‘soft-landing’ con-
trol for electromagnetic actuators. The soft landing
requires accurate control of the actuators moving ele-
ment between two desired positions. We present here
two nonlinear adaptive controllers to solve the problem
of robust trajectory tracking for the moving element.
The first controller is based on classical nonlinear adap-
tive technique. We show that this controller ensures
bounded tracking errors of the reference trajectories and
bounded estimation error of the uncertain parameters.
Second, we present a controller based on the so-called
Input-to-State Stability (ISS), merged with gradient de-
scent estimation filters to estimate the uncertain pa-
rameters. We show that it ensures bounded tracking
errors for bounded estimation errors, furthermore, due
to the ISS results we conclude that the tracking errors
bounds decrease as function of the estimation errors.
We demonstrate the effectiveness of these controllers on
a simulation example.

1 Introduction

In many practical applications such us valves of com-
bustion engines or artificial hearts, electromagnetic
actuators are preferred to other type of actuators.
In this work we concentrate on a particular control
problem of nonlinear electromagnetic actuator called
‘soft landing’ problem. The soft landing requires
accurate control of the moving element of the actuator
between two desired positions. This ‘soft-landing’
performance has to be guaranteed over long period of
time during which the actuator components may age.
The main objective is to attain small contact velocity,
which in turn ensures low component-wear operation
of the actuator. Due to these practical constraints we
have developed a robust control algorithm that aims
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for a zero impact velocity, and adapts to the actuator
aging parts. We present here the results of this study.

Many papers have been dedicated to the soft-
landing problem for electromagnetic actuators, e.g.
[1, 2, 3, 4, 5, 6, 7, 8, 9]. Several controllers have been
developed in [1, 4, 5, 9] based on linear models of the
system. Linear models allow a relatively easy design
of the control but due to their linearity, are not valid
for a full operation range of the actuator. To control
the system over a larger operating state space, the
controller has to be based on more complex nonlinear
models of the actuators. Different nonlinear controllers
have been used in [2, 3, 6, 8, 10, 11]. For example
in [6], the authors proposed a nonlinear controller
to solve the problem of armature stabilization for an
electromechanical valve actuator. The authors proved
a global asymptotic stability result using Sontag’s
nonlinear controller. However, this approach did not
solve the problem of armature trajectory tracking
and did not consider robustness of the controller
with respect to system’s uncertainties and changes in
parameters over time. In [2], the authors studied the
problem of electromagnetic valve actuator control in
an internal combustion engine. The solution proposed
by the author is based on iteratively solving a con-
strained nonlinear optimal problem using Nelder-Mead
algorithm. The robustness of this feedforward-based
approach has neither been proven nor tested. In [11],
the authors designed a backstepping based controller
for electromagnetic actuators position regulation.
However, robustness w.r.t. uncertainties in parameters
of the system are not considered in this paper. In [8], a
nonlinear sliding mode approach was used to solve the
problem of trajectory tracking for an electromagnetic
valve actuator. The authors used a nonlinear model
to design the sliding mode control. The reported
results showed good tracking performances, however,
this sliding mode controller does not ensure robust-
ness with respect to model uncertainties. In [3], the
authors used a single parameter extremum seeking
learning method to solve the problem of soft landing
for an electromechanical valve actuator. In [12] a
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multiparameter extremum seeking-based control was
presented. The authors first designed a nonlinear
controller based on Lyapunov redesign technique
and then added a multiparameter extremum seeking
algorithm to tune the feedback gains for the controller.
Although the learning algorithms in [3, 12] were not
directly tailored to ensure robustness of the controller
to model uncertainties or parameters drift over time,
one could argue that this robustness is intrinsic due
the iterative nature of the learning process. In [13],
the authors designed a backstepping based controller
for electromagnetic actuators which was robustified by
an extremum seeking algorithm to estimation some
uncertain parameters of the system. The effectiveness
of the proposed scheme was illustrated numerically,
however, no rigorous analysis was present concerning
the stability of the combined model-based nominal
controller and the model-free learning algorithm.
In this work we first use a nonlinear model of the
electromagnetic actuator to design a nonlinear adaptive
backstepping controller, based on classical adaptive
technique. This first controller is proven to ensure
bounded trajectory tracking errors as well as bounded
uncertain parameters estimation errors. Next, we
use the so-called Input-to-State (ISS) theory to de-
velop a nonlinear ISS-adaptive controller, merged
with gradient-descent estimation filters. This second
controller ensures bounded tracking errors as well as
bounded estimation errors, furthermore, due to the ISS
result, we conclude that the tracking errors decrease
with the estimation errors.

This paper is organized as follows: We first present in
Section II some notations and preliminaries. In Section
III, we recall the nonlinear model of electromagnetic
actuators. Then, in Section IV, we report the adaptive
nonlinear controllers, with stability analysis. Numerical
validation of the proposed controller is given in Section
V, and finally, concluding remarks are stated in Section
VI.

2 Preliminaries

Throughout the paper we will use ‖.‖ to denote the

Euclidean norm; i.e., for x ∈ R
n we have ‖x‖ =

√
xT x.

Also, we will use the notations diag{m1, ...,mn} for n×n

diagonal matrix, and ˙(.) for the short notation of time
derivative. We denote by Ck functions that are k times
differentiable.

Let us now introduce some definitions that will be
used subsequently. For this purpose, we first consider
the general dynamical time-varying system definition.

Consider the nonlinear time-varying dynamical system

(2.1) ẋ(t) = f(t, x(t)), x(t0) = x0, t ≥ t0

where x(t) ∈ D ⊆ R
n such that 0 ∈ D, f : [t0, t1)×D →

R
n is such that f(·, ·) is jointly continuous in t and

x, and for every t ∈ [t0, t1), f(t, 0) = 0 and f(t, ·) is
locally Lipschitz in x uniformly in t for all t in compact
subsets of [0,∞). The above assumptions guarantee the
existence and uniqueness of the solution x(t) over the
interval [t0, t1). Without loss of generality, we assume
t0 = 0.

Definition 1. (LaSalle-Yoshizawa [14]) Consider
the time-varying system (2.1) and assume [0,∞) × D
is a positively invariant set with respect to (2.1) where
f(t, ·) is Lipschitz in x, uniformly in t. Assume there
exist a C1 function V : [0,∞) × D → R, continuous
positive definite functions W1(·) and W2(·) and a
continuous nonnegative function W (·), such that for all
(t, x) ∈ [0,∞) ×D,

W1(x) ≤ V (t, x) ≤ W2(x),

V̇ (t, x) ≤ −W (x)(2.2)

hold. Then there exists D0 ⊆ D such that for all
(t0, x0) ∈ [0,∞) ×D0, x(t) → R , {x ∈ D : W (x) = 0}
as t → ∞. If, in addition, D = R

n and W1(·) is
radially unbounded, then for all (t0, x0) ∈ [0,∞) × R

n,
x(t) → R , {x ∈ R

n : W (x) = 0} as t → ∞.

Definition 2. (K function [15]) A continuous
function α : [0, a) → [0,∞) is said to belong to class K
if it is strictly increasing and α(0) = 0. It is said to
belong to class K∞ if a = ∞ and α(r) → ∞ as r → ∞.

Definition 3. (KL function [15]) A continuous
function β : [0, a) × [0,∞) → [0,∞) is said to belong
to class KL if, for each fixed s, the mapping β(r, s)
belongs to class K with respect to r and, for each fixed
r, the mapping β(r, s) is decreasing with respect to s
and β(r, s) → 0 as s → ∞.

Definition 4. (Integral Input-to-State Stability [16])

Consider the system

(2.3) ẋ = f(t, x, u),

where x ∈ D ⊆ R
n such that 0 ∈ D,and f : [0,∞) ×

D × Du → R
n is piecewise continuous in t and locally

Lipschitz in x and u, uniformly in t. The inputs are
assumed to be measurable and locally essentially bounded
functions u : R≥0 → Du ⊆ R

m. Given any control
u ∈ Du and any ξ ∈ D0 ⊆ D, there is a unique maximal
solution of the initial value problem ẋ = f(t, x, u),
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x(t0) = ξ. Without loss of generality, assume t0 = 0.
The unique solution is defined on some maximal open
interval, and it is denoted by x(·, ξ, u). System (2.3)
is locally integral input-to-state stable (LiISS) if there
exist functions α, γ ∈ K and β ∈ KL such that, for all
ξ ∈ D0 and all u ∈ Du, the solution x(t, ξ, u) is defined
for all t ≥ 0 and

(2.4) α(‖x(t, ξ, u)‖) ≤ β(‖ξ‖, t) +

∫ t

0

γ(‖u(s)‖)ds

for all t ≥ 0. Equivalently, system (2.3) is LiISS if and
only if there exist functions β ∈ KL and γ1, γ2 ∈ K
such that

(2.5) ‖x(t, ξ, u)‖ ≤ β(‖ξ‖, t) + γ1

(
∫ t

0

γ2(‖u(s)‖)ds

)

for all t ≥ 0, all ξ ∈ D0 and all u ∈ Du.

Definition 5. (Weakly Zero-Detectability [17] )
Let an output for the system (2.3) be a continuous
map h : D → R

p, with h(0) = 0. For each initial state
ξ ∈ D0, and each input u ∈ Du, let y(t, ξ, u) be the corre-
sponding output function; i.e., y(t, ξ, u) = h(x(t, ξ, u)),
defined on some maximal interval [0, Tξ,u). The system
(2.3) with output h is said to be weakly zero-detectable
if, for each ξ such that Tξ,0 = ∞ and y(t, ξ, 0) ≡ 0, it
must be the case that x(t, ξ, 0) → 0 as t → ∞.

3 System modelling

Following [11, 10, 3], we consider the nonlinear electro-
magnetic actuator model

(3.6)
md2x

dt2
= k(x0 − x) + η dx

dt
− ai2

2(b+x)2 + fd

u = Ri + a
b+x

di
dt

− ai
(b+x)2

dx
dt

, 0 ≤ x ≤ xf ,

where, x represents the armature position physically
constrained between the initial position of the armature
0, and the maximal position of the armature xf , dx

dt

represents the armature velocity, m is the armature
mass, k the spring constant, x0 is the initial length
of the spring, η the damping coefficient (assumed to

be constant), ai2

2(b+x)2 represents the electromagnetic

force (EMF) generated by the coil, a, b being constant
parameters of the coil, fd a constant term modelling
disturbance forces, e.g. static friction, R the resistance
of the coil, L = a

b+x
the coil inductance (assumed to

be armature-position dependent), ai
(b+x)2

dx
dt

represents

the back EMF. Finally, i denotes the coil current, di
dt

its time derivative and u represents the control voltage
applied to the coil. In this model we do not consider
the saturation region of the flux linkage in the magnetic
field generated by the coil, since we assume a current
and armature motion ranges within the linear region of
the flux.

4 Adaptive Nonlinear Backstepping Control

4.1 Classical Backstepping Adaptive Con-

troller Consider the dynamical system (3.6). Defining
the state vector z := [z1 z2 z3]

T = [x ẋ i]T , the ob-
jective of the control is to make the variables (z1, z2)
track a sufficiently smooth (at least C2) time-varying

position and velocity trajectories zref
1 (t), zref

2 (t) =
dz

ref
1 (t)
dt

that satisfy the following constraints:

(4.7)

zref
1 (t0) = z1int

, zref
1 (tf ) = z1f

,

żref
1 (t0) = żref

1 (tf ) = 0,

z̈ref
1 (t0) = z̈ref

1 (tf ) = 0,

where t0 is the starting time of the trajectory, tf is the
ending time, z1int

is the initial position and z1f
is the

final position. To start, let us first write the system
(3.6) in the following way:

(4.8)

ż1 = z2

ż2 = k
m

(x0 − z1) + η
m

z2 − a
2m(b+z1)2

z2
3 + fd

m

ż3 = − R
a

b+z1

z3 + z3

b+z1
z2 + u

a
b+z1

.

Consider the system in (4.8) with constant uncertainty
in spring constant k, damping coefficient η and additive
disturbance fd. Since the parameters are unknown,
we will use the certainty equivalence [18] and define
the virtual input ũ where the parameters k, η, fd are
replaced by their estimates k̂, η̂ and f̂d:

(4.9)
ũ = 2m(b+z1)

2

a
( k̂

m
(x0 − z1) + η̂

m
z2 + f̂d

m
− żref

2

+c3(z1 − zref
1 ) + c1(z2 − zref

2 )).

Together with the control input
(4.10)
u = a

b+z1
(

R(b+z1)
a

z3−
z2z3
b+z1

+ 1
2z3

(−c2(z
2
3−ũ)+ a

2m(b+z1)2
(z2−z

ref
2 )))

−m(b+z1)
z3

k̂
m

z2+
2mz2

z3
( k̂

m
(x0−z1)+

η̂
m

z2+
f̂d
m

−ż
ref
2 +c1(z2−z

ref
2 )

+c3(z1−z
ref
1 ))+(

m(b+z1)
z3

)(
˙̂
k
m

(x0−z1)+
˙̂η

m
z2+

˙̂
fd
m

+ η̂
m

( k̂
m

(x0−z1)

+ η̂
m

z2−
pz2

3
mz2

1
+

f̂d
m

))+(
m(b+z1)

z3
)(c1(

k̂
m

(x0−z1)+
η̂
m

z2−
pz2

3
mz2

1
+

f̂d
m

−ż
ref
2 )−z̈

ref
2 +c3(z2−z

ref
2 )).

In addition, we will make use of the following
equations for the parameter estimation dynamics:

(4.11)

˙̂
k = σ1(x0−z1)((z2−z

ref
2 )−(η̂+mc1)(

z2
1(z2

3−ũ)

p
))

˙̂η = σ2z2((z2−z
ref
2 )−(η̂+mc1)(

z2
1(z2

3−ũ)

p
))

˙̂
fd = σ3((z2−z

ref
2 )−(η̂+mc1)(

z2
1(z2

3−ũ)

p
)),

with σ1, σ2, σ3 > 0 design parameters. The controller
(4.9), (4.10) and (4.11) is obtained by the constructive
proof of the next lemma.

Lemma 4.1. Consider the closed-loop dynamics given
by (4.8), (4.9), (4.10) and the parameter update laws
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given by (4.11). Then, there exist positive gains ci, σi,

i = 1, 2, 3 such that z1(t), z2(t), z3(t), k̂(t), η̂(t), f̂d(t)

are globally bounded, and satisfy lim
t→∞

z2(t) = zref
2 (t),

limt→∞ z2
3(t) = ũref (t).

Proof. Primarily, we consider the mechanical subsys-
tem, described by the dynamics (4.8), with the virtual
control input ũ := z2

3 . Consider the Lyapunov function
Vsubad

=
c3
2 (z1−z

ref
1 )2+ 1

2 (z2−z
ref
2 )2+ 1

2mσ1
(k−k̂)2+ 1

2mσ2
(η−η̂)2

+ 1
2mσ3

(fd−f̂d)2, where zref
1 and zref

2 are known Ck func-
tions, c3, σ1, σ2, σ3 > 0 are design parameters, and
k̂, η̂, f̂d are estimates of the actual parameters k, η and
fd. Taking the derivative of Vsubad

along the first two
equations of (4.8), we get
(4.12)

V̇subad
=(z2−z

ref
2 )[c3(z1−z

ref
1 )+ k

m
(x0−z1)+

η
m

z2+
fd
m

−

a

2m(b+z1)2
ũ−ż

ref
2 ]− 1

mσ1
(k−k̂)(

˙̂
k)− 1

mσ2
(η−η̂)( ˙̂η)− 1

mσ3
(fd−f̂d)(

˙̂
fd).

Substituting (4.9) into (4.12) , and defining ek :=

k − k̂, eη := η − η̂, efd
:= fd − f̂d we have

(4.13)

V̇subad
= −c1(z2−z

ref
2 )2+ek

 

(x0−z1)(z2−z
ref
2 )

m
−

˙̂
k

mσ1

)

︸ ︷︷ ︸

∆1

+eη

 

z2(z2−z
ref
2 )

m
−

˙̂η
mσ2

)

︸ ︷︷ ︸

∆2

+efd

 

(z2−z
ref
2 )

m
−

˙̂
fd

mσ3

)

︸ ︷︷ ︸

∆3

.

Next, we define the augmented Lyapunov function for

the full system, Vaugad
= Vsubad

+ e2

2 with e := z2
3 − ũ.

Taking the derivative along the trajectories of the whole
system and utilizing (4.9), we obtain
(4.14)

V̇augad
=(z2−z

ref
2 )[c3(z1−z

ref
1 )+ k

m
(x0−z1)+

η
m

z2+
fd
m

−

a

2m(b+z1)2
z2
3−ż

ref
2 ]− 1

mσ1
(k−k̂)(

˙̂
k)− 1

mσ2
(η−η̂)( ˙̂η)− 1

mσ3
(fd−f̂d)(

˙̂
fd)

+(z2
3−ũ)

 

2z3

(

−
R(b+z1)

a
z3+

z2z3
(b+z1)

+
b+z1

a
u

)

− ˙̃u

)

= −c1(z2−z
ref
2 )2+ek∆1+eη∆2+efd

∆3

+e
"

a

2m(b+z1)2
(z2−z

ref
2 )−2z3

(

−
R(b+z1)

a
z3+

z2z3
(b+z1)

+
b+z1

a
u
)

− ˙̃u
"

,

(4.15)
˙̃u =

"

4m(b+z1)z2
a

"

( k̂
m

(x0−z1)+
η̂
m

z2+
f̂d
m

−ż
ref
2 +c1(z2−z

ref
2 )+

c3(z1−z
ref
1 ))+

"

2m(b+z1)2

a

"

"

− k̂
m

z2

"

+

"

2m(b+z1)2

a

"

(

˙̂
k
m

(x0−z1)+
˙̂η

m
z2+

˙̂
fd
m

+ η̂
m

(

ek+k̂

m
(x0−z1)+

eη+η̂

m
z2+

efd
+f̂d

m
− a

2m(b+z1)2
z2
3

))

+

"

2m(b+z1)2

a

"

(

c1

(

ek+k̂

m
(x0−z1)+

eη+η̂

m
z2+

efd
+f̂d

m
−

a

2m(b+z1)2
z2
3−ż

ref
2

)

−z̈
ref
2 +c3(z2−z

ref
2 )

)

.

Rewriting (4.14) by grouping the terms involving ek, eη

and efd
, we get the following inequality:

(4.16)

V̇augad
=−c1(z2−z

ref
2 )2+ek(∆1−(

2m(b+z1)2

a
)(z2

3−ũ)(
x0−z1

m
)

( η̂
m

+ c1))+eη(∆2−(
2m(b+z1)2

a
)(z2

3−ũ)(
z2
m

)( η̂
m

+c1))

+efd
(∆3−(

2m(b+z1)2

a
)(z2

3−ũ)( 1
m

)( η̂
m

+c1))+(z2
3−ũ)(T ),

with ∆i, i = 1, 2, 3 defined as given in (4.13) and
(4.17)
T =− a

2m(b+z1)2
(z2−z

ref
2 )+2z3(−

R(b+z1)
a

z3+
z2z3

(b+z1)
+

b+z1
a

u)+

(
2m(b+z1)2

a
)( k̂

m
z2)−(

4m(b+z1)z2
a

)( k̂
m

(x0−z1)+
η̂
m

z2+
f̂d
m

−ż
ref
2 +

c1(z2−z
ref
2 )+c3(z1−z

ref
1 ))−(

2m(b+z1)2

a
)(

˙̂
k
m

(x0−z1)+
˙̂η

m
z2+

˙̂
fd
m

+

η̂
m

( k̂
m

(x0−z1)+
η̂
m

z2−
a

2m(b+z1)2
z2
3+

f̂d
m

))−(
2m(b+z1)2

a
)

(c1(
k̂
m

(x0−z1)+
η̂
m

z2−
a

2m(b+z1)2
z2
3+

f̂d
m

−ż
ref
2 )−z̈

ref
2 +c3(z2−z

ref
2 )).

In order to render V̇augad
equal to −c1(z2 − zref

2 )2 −
c2(z

2
3 − ũ)2, we have to eliminate the terms multiplying

the estimation errors ek, eη and efd
and set T equal to

−c2(z
2
3 − ũ). We achieve this by using the parameter

dynamics (4.11) and the control input (4.10). Based on
the negativeness of V̇augad

and the definitions of Vaugad
,

Vsubad
, we conclude about the global boundedness of

z1, z2, e, k̂, η̂ and f̂d. Finally, LaSalle-Yoshizawa Theo-
rem implies the regulation of z2 to zref

2 and z2
3 to ũ.

Remark 1. Notice that k̂, η̂ and f̂d do not necessarily
converge to k, η and fd when the control scheme dis-
cussed in Lemma 4.1 is utilized. This prevents us from
proving convergence of z1 to zref

1 by analyzing the zero
dynamics of the mechanical subsystem. Hence, by an-
alyzing the zero dynamics of (4.8), (4.9), (4.10) and

(4.11) with the output (z2 − zref
2 , z2

3 − ũ), we can only

conclude about the boundedness of ‖z1 − zref
1 ‖.

4.2 ISS Adaptive Backstepping Controller We
now address the control problem of the adaptive trajec-
tory tracking with asymptotic convergence of the esti-
mation errors ek, eη and efd

. First, the backstepping
controller is modified as follows:
(4.18)

u= a
b+z1

(
R(b+z1)

a
z3−

z2z3
(b+z1)

+ 1
2z3

( a

2m(b+z1)2
(z2−z

ref
2 )

−c2(z
2
3−ũ)))

2mz2
z3

( k̂
m

(x0−z1)+
η̂
m

z2+
f̂d
m

+c3(z1−z
ref
1 )

+c1(z2−z
ref
2 )+κ1(z2−z

ref
2 )‖ψ‖2

2−ż
ref
2 )

+
m(b+z1)

z3
(( k̂

m
(x0−z1)+

η̂
m

z2+
f̂d
m

− a

2m(b+z1)2
z2
3−ż

ref
2 )

(c1+κ1‖ψ‖2
2+

η̂
m

)+ η̂
m

ż
ref
2 )

+
m(b+z1)

z3
(2κ1(z2−z

ref
2 )(

(x0−z1)(−z2)

m2 +

z2( k̂
m

(x0−z1)+
η̂
m

z2+
f̂d
m

−
az2

3
2m(b+z1)2

)

m2 ))

−κ2(z
2
3−ũ)

∣

∣

m(b+z1)
z3

∣

∣

2
[
∣

∣c1+κ1‖ψ‖2
2+

η̂
m

∣

∣

2

+
∣

∣2κ1(z2−z
ref
2 )

∣

∣

2∣
∣

z2
m2

∣

∣

2
]‖ψ‖2

2−κ3(z
2
3−ũ)

∣

∣

m(b+z1)
z3

∣

∣

2
‖ψ‖2

2

+
m(b+z1)

z3
(− k̂

m
z2−z̈

ref
2 +c3(z2−z

ref
2 )),

(4.19)
ũ=

2m(b+z1)2

a
( k̂

m
(x0−z1)+

η̂
m

z2+
f̂d
m

+c3(z1−z
ref
1 )

+c1(z2−z
ref
2 )−ż

ref
2 )+

2m(b+z1)2

a
(κ1(z2−z

ref
2 )‖ψ‖2

2),
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where the uncertain parameters k, η, fd have been
replaced by their estimated parameters k̂, η̂, f̂d, with

ψ ,
[

x0−z1

m
z2

m
1
m

]T
. We can now state the following

lemma.

Lemma 4.2. Consider the closed-loop dynamics given
by (4.8), (4.18) and (4.19), with constant but unknown
parameters k, η, fd and the parameter error vector ∆ ,
[

k − k̂ η − η̂ fd − f̂d

]T
. Then, there exist positive

gains c1, c2, c3, κ1, κ2 and κ3 such that (z1(t), z2(t))
are uniformly bounded and the system (4.8) is locally
integral input-to state stable (LiISS) with respect to
(∆, ∆̇).

Proof. Consider the full mechanical subsystem that
consists of only the first two equations with the virtual
control input ũ := z2

3 :

(4.20)
ż1 = z2

ż2 = k
m

(x0 − z1) + η
m

z2 + fd

m
− a

2m(b+z1)2
ũ.

Defining the Lyapunov function Vsub = c3

2 (z1−zref
1 )2 +

1
2 (z2 − zref

2 )2, with c3 > 0, we would like to design ũ

so that V̇sub = −c1(z2 − zref
2 )2 along the trajectories of

(4.20), but since the system parameters k, η and fd are
unknown, we design the virtual input to be ũ given by
(4.19). Inserting ũ from (4.19) into V̇sub, we have the
following derivation:

(4.21)

V̇sub=c3(z1−z
ref
1 )(ż1−ż

ref
1 )+(z2−z

ref
2 )(ż2−ż

ref
2 )

=(z2−z
ref
2 )(c3(z1−z

ref
1 )+ k

m
(x0−z1)+

η
m

z2

−ż
ref
2 − a

2m(b+z1)2
ũ)

=−c1(z2−z
ref
2 )2+(z2−z

ref
2 )(

(k−k̂)(x0−z1)
m

+
(η−η̂)z2

m

+ fd−f̂d

m
) − κ1(z2 − zref

2 )2‖ψ‖2
2.

Using the definitions of the vectors ψ and ∆, we have

(4.22)

V̇sub≤c1(z2−z
ref
2 )2+|z2−z

ref
2 |‖ψT ‖2‖∆‖2

−κ1(z2 − zref
2 )2‖ψ‖2

2

≤−c1(z2−z
ref
2 )2−κ1

[

|z2−z
ref
2 |‖ψ‖2−

‖∆‖2
2κ1

]2
+

‖∆‖2
2

4κ1

≤−c1(z2−z
ref
2 )2+

‖∆‖2
2

4κ1
,

where ∆ =
[

k − k̂ η − η̂ fd − f̂d

]T
is the vec-

tor holding the discrepancy between actual system
parameters and estimated parameters. Note that
we have made use of the nonlinear damping term
−κ1(z2 − zref

2 )2‖ψ‖2
2 to attain a negative quadratic

term of ψ and ∆

(

i.e.,−κ1

[

|z2 − zref
2 |‖ψ‖2 − ‖∆‖2

2κ1

]2
)

and a positive term that is a function of ∆ only
(

‖∆‖2
2

4κ1

)

,

hence rendering Vsub an iISS-Lyapunov function for the
mechanical subsystem. Next, we define the Lyapunov

function for the full system:Vaug = Vsub +
(z2

3−ũ)2

2 . Tak-
ing the derivative of Vaug along the trajectories of the
full system, leads to the following inequality:

(4.23)

V̇aug≤−c1(z2−z
ref
2 )2+

‖∆‖2
2

4κ1
+(z2

3−ũ)
"

−
a(z2−z

ref
2 )

2m(b+z1)2
− ˙̃u

"

+(z2
3−ũ)(2z3(−

R(b+z1)
a

z3

+ z2z3

(b+z1)
+ b+z1

a
u)),

where ˙̃u writes as
(4.24)

˙̃u = 4m(b+z1)z2
a

( k̂
m

(x0−z1)+
η̂
m

z2+
f̂d
m

+c3(z1−z
ref
1 )

+c1(z2−z
ref
2 ))+

4m(b+z1)z2
a

(κ1(z2−z
ref
2 )‖ψ‖2

2−ż
ref
2 )

+
2m(b+z1)2

a
(

˙̂
k
m

(x0−z1)+
˙̂η

m
z2+

˙̂
fd
m

)+
2m(b+z1)2

a
(( k

m
(x0−z1)

+ η
m

z2+
fd
m

− a

2m(b+z1)2
z2
3−ż

ref
2 )(c1+κ1‖ψ‖2

2+
η̂
m

)+ η̂
m

ż
ref
2 )

+
2m(b+z1)2

a
(2κ1(z2−z

ref
2 )(

(x0−z1)−z2
m2

+
z2(

k
m

(x0−z1)+
η
m

z2+
fd
m

−
az2

3
2m(b+z1)2

)

m2 ))

+
2m(b+z1)2

a
(− k̂

m
z2−z̈

ref
2 +c3(z2−z

ref
2 )).

By substituting the control input given in (4.18) into
(4.23), we attain the following inequality:

(4.25)

V̇aug≤−c1(z2−z
ref
2 )2+

‖∆‖2
2

4κ1
−c2(z

2
3−ũ)2

−(z2
3−ũ)(

m(b+z1)
z3

(
(k−k̂)(x0−z1)

m
+

(η−η̂)z2
m

+
fd−f̂d

m
)

(c1+κ1‖ψ‖2
2+

η̂
m

))−(z2
3−ũ)(2κ1(z2−z

ref
2 )(

z2(b+z1)
mz3

)

(
(k−k̂)(x0−z1)

m
+

(η−η̂)z2
m

+
fd−f̂d

m
))

−(z2
3−ũ)(

m(b+z1)
z3

)(
˙̂
k
m

(x0−z1)+
˙̂η

m
z2+

˙̂
fd
m

)

−κ3(z
2
3−ũ)2

∣

∣

m(b+z1)
z3

∣

∣

2
‖ψ‖2

2−κ2(z
2
3−ũ)2

[
∣

∣

m(b+z1)
z3

∣

∣

2∣
∣c1

+κ1‖ψ‖2
2+

η̂
m

∣

∣

2
+
∣

∣2κ1(z2−z
ref
2 )

∣

∣

2∣
∣

z2(b+z1)
mz3

∣

∣

2
]‖ψ‖2

2.

Using the aforementioned definitions of the vectors ψ

and ∆, and noting that ∆̇ =
[

− ˙̂
k − ˙̂η − ˙̂

fd

]T

, we can

further bound V̇aug in the following way:
(4.26)

V̇aug≤−c1(z2−z
ref
2 )2+

‖∆‖2
2

4κ1
−c2(z

2
3−ũ)2

+
∣

∣z2
3−ũ

∣

∣

∣

∣

m(b+z1)
z3

∣

∣

∣

∣c1+κ1‖ψ‖2
2+

η̂
m

∣

∣‖ψT ‖2‖∆‖2

+
∣

∣z2
3−ũ

∣

∣

∣

∣2κ1(z2−z
ref
2 )

∣

∣

∣

∣

z2(b+z1)
mz3

∣

∣‖ψT ‖2‖∆‖2

+
∣

∣z2
3−ũ

∣

∣

∣

∣

m(b+z1)
z3

∣

∣‖ψT ‖2‖∆̇‖2−κ3(z
2
3−ũ)2

∣

∣

m(b+z1)
z3

∣

∣

2
‖ψ‖2

2

−κ2(z
2
3−ũ)2

[

∣

∣

m(b+z1)
z3

∣

∣

2∣
∣c1+κ1‖ψ‖2

2+
η̂
m

∣

∣

2

+
∣

∣2κ1(z2−z
ref
2 )

∣

∣

2∣
∣

z2(b+z1)
mz3

∣

∣

2
]

‖ψ‖2
2.

By making use of the nonlinear damping terms the same
way as they have been utilized in deriving (4.22), we get

(4.27)

V̇aug≤−c1(z2−z
ref
2 )2+

‖∆‖2
2

4κ1
−c2(z

2
3−ũ)2

−κ2

[

∣

∣z2
3−ũ

∣

∣

∣

∣

m(b+z1)
z3

∣

∣

∣

∣c1+κ1‖ψ‖2
2+

η̂
m

∣

∣‖ψ‖2−
‖∆‖2
2κ2

]2

+
‖∆‖2

2
4κ2

−κ2

[

∣

∣z2
3−ũ

∣

∣

∣

∣2κ1(z2−z
ref
2 )

∣

∣

∣

∣

z2(b+z1)
mz3

∣

∣‖ψ‖2

−
‖∆‖2
2κ2

]2

+
‖∆‖2

2
4κ2

−κ3

[

∣

∣z2
3−ũ

∣

∣

∣

∣

m(b+z1)
z3

∣

∣‖ψ‖2−
‖∆̇‖2
2κ3

]

+
‖∆̇‖2

2

4κ3
.
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Finally, using the inequality (4.27), we have

(4.28)
V̇aug≤−c1(z2−z

ref
2 )2−c2(z

2
3−ũ)2+

"

1
4κ1

+ 1
2κ2

"

‖∆‖2
2

+
‖∆̇‖2

2
2κ3

.

It is easy to see that the uncertain system can be
expressed in the following nonlinear time-varying form:

(4.29) ė = f(t, e, ∆̃),

with e ∈ De, ∆̃ ∈ D∆̃, where e := [z1 − zref
1 z2 −

zref
2 z2

3 − ũ]T and ∆̃ = [∆ ∆̇]T . Then, by considering

the output map defined by h = [z2 − zref
2 z2

3 − ũ]T , we
can show that the system (4.29) with h is weakly zero-
detectable (i.e. using an analysis of the zero-dynamics of
(4.29) with h ≡ ∆̃ ≡ 0). Next, using the weakly-zero-
delectability property together with inequality (4.28),
we can conclude (via some additional steps, which are
not included here due to space limitations, but will be
included in a journal version of this work ) that system
(4.29) is LiISS with respect to the input ∆̃, implying
that there exist functions α ∈ K, β ∈ KL and γ ∈ K,
such that, for all e(0) ∈ De and ∆̃ ∈ D∆̃, e is defined
and

(4.30) ‖e(t)‖ ≤ β(‖e(0)‖, t) + α(

∫ t

0

γ(‖∆̃‖))ds

for all t ≥ 0.

4.2.1 Estimation Module The motivation behind
proving that the system is LISS with respect to (∆, ∆̇)
is, if by an estimation method, the vectors ‖∆‖2 and
‖∆̇‖2 can be taken to 0, then we can claim via (4.30)
that the system becomes stable. The advantage of using
this method is that it provides modularity in the sense
that the control law can be designed independently from
the estimation law. Thus, it would be sufficient to
design an estimation law that will take ‖∆‖2 and ‖∆̇‖2

to 0 sufficiently fast. To this purpose, we use a gradient
descent-based filters [18]. We have three parameters
that are varying over time k, η, fd. These parameters
enter the dynamics through the following equation:
(4.31)

ż2=f(z,u)+F (z,u)T θ:=−
pz2

3
mz2

1
+
[

x0−z1

m
z2

m
1
m

]T









k
η

fd









.

The main problem with estimation for the system at
hand is there is only a single equation through which the
uncertain parameters enter the dynamics (4.31). Hence,
using the x-Swapping Scheme given in [18], we can only
estimate one parameter at a time. To this purpose, we
state the following assumption:

Assumption 1. The uncertain parameters k, η and
fd vary slowly, and over a given period of time, only
a single parameter can change while the others stay
constant.

We use the following equations for the estimation filters
[18]:

(4.32)
Ω̇T =(A0−λF (z,u)T F (z,u)P )ΩT +F (z,u)T

Ω̇0=(A0−λF (z,u)T F (z,u)P )(Ω0−z)+f(z,u)

ǫ=z−Ω0−ΩT θ̂,

with the gradient law for updating estimated parame-
ters:

(4.33) ˙̂
θ=Γ Ωǫ

1+ν‖Ω‖2
F

, Γ=ΓT >0, ν≥0.

In the filter equations given in (4.32), A0, P = PT > 0
are constant,design matrices that satisfy the Lyapunov
equation, PA0 + A0P = −I, and λ is a design variable.
Since we estimate only one parameter at a time, the
equations become scalar for each parameter. The
following equations are used for estimating k, η and fd

separately:
- For the parameter k̂ :

(4.34)

Ω̇=(A0−λ
(x0−z1)2

m2 P )Ω+
(x0−z1)

m

Ω̇0=(A0−λ
(x0−z1)2

m2 P )(Ω0−z2)+
ηz2
m

+
fd
m

−
pz2

3
mz2

1

ǫ=z2−Ω0−Ωk̂

˙̂
k=Γ Ωǫ

1+ν‖Ω‖2
F

.

- For the parameter η̂ :

(4.35)

Ω̇=(A0−λ
z2
2

m2 P )Ω+
z2
m

Ω̇0=(A0−λ
z2
2

m2 P )(Ω0−z2)+
(x0−z1)

m
+

fd
m

−
pz2

3
mz2

1

ǫ=z2−Ω0−Ωη̂

˙̂η=Γ Ωǫ

1+ν‖Ω‖2
F

.

- For the parameter f̂d :

(4.36)

Ω̇=(A0−λ 1
m2 P )Ω+ 1

m

Ω̇0=(A0−λ 1
m2 P )(Ω0−z2)+

ηz2
m

+
(x0−z1)

m
−

pz2
3

mz2
1

ǫ=z2−Ω0−Ωf̂d

˙̂
fd=Γ Ωǫ

1+ν‖Ω‖2
F

.

Lemma 4.3. Consider the closed-loop dynamics given
by (4.8), (4.18) and (4.19), with an unknown parameter
k, η, or fd. Then, under Assumption 1, there exist
positive gains c1, c2, c3, κ1, κ2 and κ3 such that the
closed-loop dynamics given by (4.8), (4.18), (4.19) and
the filters (4.34), (4.35), (4.36) are stable, and that the
unknown parameter is asymptotically estimated.

Proof. The proof is straightforward from the result of
Lemma 4.2, and the known convergence properties of
the gradient descent-based filters [18].
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Parameter Value

m 0.27 [kg]
R 6 [Ω]
η −0.25 [kg/sec]
x0 8 [mm]
k 75 [N/mm]
a 14.96 × 10−6 [Nm2/A2]
b 4 × 10−5 [m]

Table 1: Numerical values of the mechanical parameters

5 Simulations

We show here the behavior of the proposed ap-
proach on the example of electromagnetic actuator pre-
sented in [11], where the model (3.6) is used with
the numerical values of Table 1. The desired trajec-
tory has been selected as the 5th order polynomial
xref (t) =

∑5
i=0 ai(t/tf )i, where the ais have been com-

puted to satisfy the boundary constraints xref (0) =
0.2, xref (tf ) = xf , ẋref (0) = ẋref (tf ) = 0, ẍref (0) =
ẍref (tf ) = 0, with tf = 0.5 sec, xf = 0.85 mm. Due to
space limitations, we only report hereafter the results
of the ISS adaptive backstepping controller. However,
we can underline here that the first adaptive controller
leads to numerical results in concordance with the theo-
retical analysis, i.e. convergence of the armature veloc-
ity to the desired velocity, with bounded position track-
ing error and bounded uncertain parameters estimation
errors. To test the ISS adaptive controller, we consid-
ered the following scenario: We considered uncertainties
in the model appearing sequentially over time. First, at
t = 0 sec, we considered that the parameter k has an
error of 16%. Next, we consider that at t = 38 sec,
the parameter η sustains an error of 50%, finally at
t = 75 sec, we assume a disturbance force fd of −50N
(static friction force). We simulated the controller (4.18)
and (4.19) with the gains c1 = 100, c2 = 100, c3 = 50,
κ1 = κ2 = κ3 = 1. For the filters (4.34), (4.35), (4.36),
we used the gains A0 = −0.5, P = 1, λ = 1, Γ = 100.
We underline here that, due to the structure of the
model, we could estimate only one parameter at the
time (see Section 4.2.1). We see clearly on Figures 1,
2, 3 that the numerical results are concordant with the
theoretical analysis, since the estimated parameters con-
verge all to their actual value. Furthermore, we see on
Figures 4, 5 that we achieve very good tracking of both
the desired position and the desired velocity trajecto-
ries.
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Figure 1: Estimation of k over time
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Figure 2: Estimation of η over time
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Figure 3: Estimation of fd over time
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6 Conclusion

We have studied in this paper the problem of adaptive
control for electromagnetic actuators. We have devel-
oped two trajectory tracking controller based on adap-
tive backstepping approaches. We have studied the sta-
bility properties of the proposed controller and shown
the performance on a numerical example.
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