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Nonlinear Backstepping Learning-based Adaptive Control of
Electromagnetic Actuators with Proof of Stability

Gökhan M. Atınç and Mouhacine Benosman

Abstract— In this paper we present a learning-based adaptive
method to solve the problem of robust trajectory tracking for
electromagnetic actuators. We propose a learning-based adap-
tive controller; we merge together a nonlinear backstepping
controller that ensures bounded input/bounded states stability,
with a model-free multiparameter extremum seeking to estimate
online the uncertain parameters of the system. We present a
proof of stability of this learning-based nonlinear controller. We
show the efficiency of this approach on a numerical example.

I. INTRODUCTION

This work deals with the “soft landing” problem of elec-
tromagnetic actuators. Soft landing requires accurate control
of the moving element of the actuator between two desired
positions. It refers to attaining small contact velocity, in turn
ensuring a low-noise low-component-wear operation of the
actuator. Furthermore, an actuator must achieve soft landing
over long periods of time during which the components may
age. To overcome these practical constraints, we developed
a robust control algorithm that 1) aims for a virtually zero
impact velocity, hence achieving soft landing, and 2) adapts
to the system aging via a learning-based algorithm.

Many papers have been dedicated to the soft landing
problem for electromagnetic actuators, e.g. [1], [2], [3] and
[4]. Linear controllers have been proposed for example in
[1]. Linear controllers are usually designed to operate in a
small neighborhood of linearization points. To control the
system over a larger operation space, in this paper, we
consider the nonlinear dynamics of the system for control
design. Various nonlinear controllers have been used in [2],
[3] and [4]. In [3], the authors proposed a nonlinear control
based on Sontag’s feedback to solve the problem of armature
stabilization for an electromechanical valve actuator. How-
ever, this approach does not solve the problem of trajectory
tracking and does not consider robustness of the controller
with respect to system uncertainties. In [5], authors designed
a backstepping based controller for electromagnetic actuators
. However, changes in system parameters are not considered
in this paper. In [4], a nonlinear sliding mode approach
was used to solve the problem of trajectory tracking for an
electromagnetic valve actuator. Reported results show good
tracking performance; however, robustness with respect to
parametric uncertainties is not guaranteed. In [2], authors
used a single parameter extremum seeking (ES) learning
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method to tune a scalar gain of the control online along with
a nonlinear controller to solve the armature trajectory track-
ing problem for an electromechanical valve actuator. Due
to the iterative nature of the learning process, the controller
is intrinsically robust to model uncertainties and parameter
drift over time. However, an explicit proof of robustness
with respect to model uncertainties or system’s aging is
not provided. In [6], authors proposed a nonlinear controller
based on Lyapunov redesign techniques for electromagnetic
actuators. The controller is complemented by a multiparame-
ter extremum seeking (MES) control for tuning the feedback
gains in order to provide robustness. In [7], authors designed
a backstepping based controller which was robustified by an
ES algorithm to estimate uncertain parameters. In [6] and
[7], the effectiveness of the proposed schemes was illustrated
numerically; however, no rigorous stability analysis was
presented. In this work we use a nonlinear model of the
electromagnetic actuator to design a backstepping controller
that ensures asymptotic trajectory tracking for the nominal
system, i.e., with no model uncertainties. Subsequently, the
controller is robustified by a MES algorithm that is used to
identify the model’s uncertain parameters online, including
parameters that drift slowly over time due to aging. Notice
that contrary to [2], [6], we use a MES approach to learn a
vector of parameters, and not the gains of the controller. In
this sense, we are proposing a new learning-based adaptive
control. Furthermore, we present a stability analysis of the
overall control system.

This paper is organized as follows: We first recall some
useful definitions in Section II. Next, we present in Section
III, a nonlinear model of electromagnetic actuators. Then, in
Section IV, we report the main result of this work, namely,
the learning-based adaptive nonlinear controller along with
the stability analysis. Numerical validation of the proposed
controller is given in Section V, and finally, concluding
remarks are stated in Section VI.

II. PRELIMINARIES

Throughout the paper we use ‖.‖ to denote the Eu-
clidean norm. We denote an n × n diagonal matrix by
diag{m1, ...,mn} and k times differentiable functions by
Ck. We now review some definitions that we will use later.

Definition 1 (Integral Input-to-State Stability [8]):
Consider the system

ẋ = f(t, x, u), (1)

where x ∈ D ⊆ Rn such that 0 ∈ D, and f : [0,∞)×D ×
Du → Rn is piecewise continuous in t and locally Lipschitz
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in x and u, uniformly in t. The inputs are assumed to be
measurable and locally bounded functions u : R≥0 → Du ⊆
Rm. Given any control u ∈ Du and any ξ ∈ D0 ⊆ D, there
is a unique maximal solution of the initial value problem ẋ =
f(t, x, u), x(t0) = ξ. Without loss of generality, assume t0 =
0. The unique solution is defined on some maximal open
interval, and it is denoted by x(·, ξ, u). System (1) is locally
integral input-to-state stable (LiISS) if there exist functions
α, γ ∈ K and β ∈ KL such that, for all ξ ∈ D0 and all
u ∈ Du, the solution x(t, ξ, u) is defined for all t ≥ 0 and

α(‖x(t, ξ, u)‖) ≤ β(‖ξ‖, t) +

∫ t

0

γ(‖u(s)‖)ds (2)

for all t ≥ 0. Equivalently, system (1) is LiISS if and only
if there exist functions β ∈ KL and γ1, γ2 ∈ K such that

‖x(t, ξ, u)‖ ≤ β(‖ξ‖, t) + γ1

(∫ t

0

γ2(‖u(s)‖)ds
)

(3)

for all t ≥ 0, all ξ ∈ D0 and all u ∈ Du.
Definition 2 (iISS-Lyapunov [8], [9]): A C1 function

V : D → R is called an iISS-Lyapunov function for system
(1) if there exist functions α1, α2, σ ∈ K, and a continuous
positive definite function α3, such that

α1(‖x‖) ≤ V (‖x‖) ≤ α2(‖x‖) (4)

for all x ∈ D and

V̇ ≤ −α3(‖x‖) + σ(‖u‖) (5)

for all x ∈ D and all u ∈ Du.
Definition 3 (Weakly Zero-Detectability [9]): Let

h : D → Rp with with h(0) = 0 be the output for the
system (1). For each initial state ξ ∈ D0, and each input
u ∈ Du, let y(t, ξ, u) = h(x(t, ξ, u)) be the corresponding
output function defined on some maximal interval [0, Tξ,u).
The system (1) with output h is said to be weakly zero-
detectable if, for each ξ such that Tξ,0 =∞ and y(t, ξ, 0) ≡
0, it must be the case that x(t, ξ, 0)→ 0 as t→∞.

Definition 4 (Smooth Dissipativity [9]): The system (1)
with output h is dissipative if there exists a C1, proper and
positive definite function V , together with a σ ∈ K and a
continuous positive definite function α4, such that

V̇ ≤ −α4(‖h(x(t, ξ, u))‖) + σ(‖u‖) (6)

for all x ∈ D and all u ∈ Du. If this property holds with a
V that is also smooth, system (1) with output h is said to be
smoothly dissipative. Finally, if (6) holds with h ≡ 0, i.e., if
there exists a smooth proper and positive definite V , and a
σ ∈ K, so that

V̇ ≤ σ(‖u‖) (7)

holds for all x ∈ D and all u ∈ Du, the system (1) is said
to be zero-output smoothly dissipative.

III. SYSTEM MODELLING

We recall below a nonlinear model of the electromagnetic
actuator presented in [2]:

md2x
dt2 = k(x0 − x)− η dxdt − ai2

2(b+x)2 + fd
u = Ri+ a

b+x
di
dt − ai

(b+x)2
dx
dt , 0 ≤ x ≤ xf

(8)

where, x represents the armature position physically con-
strained between the initial position of the armature 0, and
the maximal position of the armature xf , dx

dt represents the
armature velocity, m is the armature mass, k the spring
constant, x0 the initial spring length, η the damping co-
efficient (assumed to be constant), ai2

2(b+x)2 represents the
electromagnetic force (EMF) generated by the coil, a, b being
constant parameters of the coil, fd a constant term modelling
unknown disturbance force, e.g. static friction, R the resis-
tance of the coil, L = a

b+x the coil inductance (assumed
to be armature-position dependent), and ai

(b+x)2
dx
dt represents

the back EMF. Finally, i denotes the coil current, didt its time
derivative and u represents the control voltage applied to
the coil. In this model we do not consider the saturation
region of the flux linkage in the magnetic field generated
by the coil, since we assume a current and armature motion
ranges within the linear region of the flux. Based on this well
known nonlinear model of the electromagnetic actuator we
will develop a backstepping nonlinear control and then we
extend it to an adaptive version based on a MES algorithm.

IV. LEARNING-BASED ADAPTIVE NONLINEAR CONTROL

A. Backstepping Controller with Guaranteed Integral Input-
to-State Stability

Consider the dynamical system (8). We define the state
vector z := [z1 z2 z3]T = [x ẋ i]T . The objective
of the control is to make the variables (z1, z2) track a
sufficiently smooth (at least C2) time-varying position and
velocity trajectories zref1 (t), zref2 (t) =

dzref1 (t)
dt that satisfy

the following constraints: zref1 (t0) = z1int , zref1 (tf ) =

z1f , ż
ref
1 (t0) = żref1 (tf ) = 0, z̈ref1 (t0) = z̈ref1 (tf ) = 0,

where t0 is the starting time of the trajectory, tf is the final
time, z1int is the initial position and z1f is the final position.

Let us first write the system (8) in the following form:

ż1 = z2

ż2 = k
m (x0−z1)− η

m z2−
a

2m(b+z1)2
z2
3+

fd
m

ż3 = − R
a

b+z1

z3+
z3
b+z1

z2+ u
a

b+z1

. (9)

In this section, we will first state a result discussed in [9]
for autonomous systems, and then show that the sufficiency
part of these results also hold for non-autonomous systems.
Subsequently, we will make use of these results to discuss
the stability of the overall control system.

Theorem 1 (Equivalent Characterizations of iISS [9]):
Consider the autonomous system

ẋ = f(x, u) (10)

where x ∈ Rn, f : Rn × Rm → Rn is locally Lipschitz
and inputs are measurable and locally bounded functions u :
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R≥0 → Rm. The unique solution of the initial value problem
ẋ = f(x, u) with x(0) = ξ defined on some maximal open
interval is denoted by x(·, ξ, u). The following properties
are equivalent for the system (10): [1] The system is iISS.
[2] The system admits a smooth iISS-Lyapunov function.
[3] There exists an output that makes the system smoothly
dissipative and weakly zero-detectable. [4] The system is 0-
GAS and zero-output smoothly dissipative.

Now we propose the following lemma.
Lemma 1: (Result 1) Consider the non-autonomous sys-

tem (1). If there is some output that makes the system dis-
sipative and weakly zero-detectable locally, then the system
is LiISS.

Remark 1: Note that we will analyze the local stability
properties of the electromagnetic actuator system, hence we
do not require conditions that give global iISS properties. To
this purpose, we will modify the 0-GAS condition to 0-LUAS
for the non-autonomous system. Moreover, we only need
sufficiency, hence smoothness of iISS Lyapunov functions is
not required. Thus, we modify properties 1− 4 of Theorem
1 to the following ones for the non-autonomous system
(1): [1a] The system is LiISS. [2a] The system admits
a continuously differentiable iISS-Lyapunov function. [3a]
There is some output that makes the system dissipative and
weakly zero-detectable locally. [4a] The system is 0-LUAS
and zero-output dissipative.

Remark 2: If we interpret Lemma 1 in terms of the
modified conditions of Remark 1, then Lemma 1 states that
for non-autonomous systems, if 3a holds, then 1a is true. To
prove this lemma, we will first show that 3a =⇒ 4a; then,
we will show 4a =⇒ 2a, and finally we will prove that
2a =⇒ 1a.
Now we proceed with the proof of Lemma 1.

Proof: 3a =⇒ 4a: Assume that there is some output
h(·) that makes the system weakly-zero detectable locally,
and there exist a C1 positive definite function V , functions
α1, α2 ∈ K, σ ∈ K and a continuous positive definite
function α4 such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (11)
V̇ ≤ −α4(‖h(x)‖) + σ(‖u‖) (12)

hold for all x ∈ D and all u ∈ Du. With u = 0, we
have V̇ ≤ −α4(‖h(ξ)‖), and since the system is weakly-
zero detectable, by LaSalle-Yoshizawa Theorem [10], we
conclude that the system (10) is 0-LUAS. Also, we have
V̇ ≤ σ(‖u‖) from (12), implying, by Definition 4, that
system is zero-output dissipative.

4a =⇒ 2a: Assume 4a holds, and let V and σ be so
that (7) holds. Since the system is 0-LUAS, by a converse
Lyapunov theorem (e.g., [10]), there exists a C1 function V0

for the system (1) such that

α1(x) ≤ V0(x) ≤ α2(x) (13)
∂V0

∂t + ∂V0

∂x f(t, x, 0) ≤ −α0(‖x‖), ∀x ∈ D (14)

holds for some continuous positive definite functions α1, α2,
α0 ∈ K. If we take the derivative of V0 along the trajectories

of the whole system (1), we have
∂V0
∂t +

∂V0
∂x f(t,x,u)=

∂V0
∂t +

∂V0
∂x f(t,x,0)+

∂V0
∂x [f(t,x,u)−f(t,x,0)]. (15)

Since V0 is continuously differentiable and we consider x
in a compact subset D, there exists a positive constant KV0

such that ∥∥∥∂V0

∂x

∥∥∥ ≤ KV0
, ∀x ∈ D. (16)

Moreover, system (1) is locally Lipschitz in x and u, uni-
formly in t. This implies that there exists a positive constant
Lu(x) such that∥∥∥f(t, x, u)− f(t, x, 0)

∥∥∥ ≤ Lu(x)‖u‖, (17)

∀x ∈ D, ∀u ∈ Du, ∀t ≥ 0. Since x ∈ D, where D is
compact, Lumax := maxx∈D Lu(x) exists. Thus, using the
inequality (14), and the definitions for KV0

and Lumax , we
have

∂V0

∂t + ∂V0

∂x f(t, x, 0) + ∂V0

∂x [f(t, x, u)− f(t, x, 0)]
≤ −α0(‖x‖) +KV0

Lumax‖u‖.
(18)

After defining the K-function σ0(s) = KV0Lumaxs for s ∈
R≥0, we rewrite (18) as

V̇0 ≤ −α0(‖x‖) + σ0(‖u‖). (19)

Thus, by Definition 2, V0 is an iISS Lyapunov function for
the system (1).

2a =⇒ 1a: Consider the iISS Lyapunov function V0

for system (1) satisfying (13) and (17). Then, by sufficiency
discussion in [8] and [9], system (1) is LiISS.

We now address the control problem of the dynamic sys-
tem with uncertain parameters. Uncertain parameters of the
system (8) are the spring constant k , the damping coefficient
η, and the additive disturbance fd. To take into account the
uncertainty, the backstepping controller is defined as

u= a
b+z1

(
R(b+z1)

a z3− z2z3
(b+z1)

+ 1
2z3

(
a

2m(b+z1)2
(z2−zref2 )−c2(z2

3−ũ)
))

+
2mz2
z3

(
k̂
m (x0−z1)− η̂

m z2+
f̂d
m +c3(z1−zref1 )+c1(z2−zref2 )−żref2

+κ1(z2−zref2 )‖ψ‖22

)
+
m(b+z1)

z3

((
k̂
m (x0−z1)− η̂

m z2+
f̂d
m −

a
2m(b+z1)2

z2
3

−żref2

)
(c1+κ1‖ψ‖22−

η̂
m )− η̂

m ż
ref
2

)
+
m(b+z1)

z3
(2κ1(z2−zref2 )(

(x0−z1)(−z2)

m2 +

z2

(
k̂
m

(x0−z1)− η̂
m
z2+

f̂d
m
−

az23
2m(b+z1)2

)
m2

)
−κ2(z

2
3−ũ)
∣∣m(b+z1)

z3

∣∣2[∣∣c1+κ1‖ψ‖22−
η̂
m

∣∣2+∣∣2κ1(z2−zref2 )
∣∣2∣∣ z2

m2

∣∣2]‖ψ‖22
−κ3(z

2
3−ũ)

∣∣m(b+z1)
z3

∣∣2‖ψ‖22+m(b+z1)
z3

(
− k̂m z2−z̈

ref
2 +c3(z2−zref2 )

)
,

(20)
with

ũ=
2m(b+z1)2

a

(
k̂
m (x0−z1)− η̂

m z2+
f̂d
m +c3(z1−zref1 )

+c1(z2−zref2 )−żref2

)
+

2m(b+z1)2

a

(
κ1(z2−zref2 )‖ψ‖22

)
,

(21)

where k̂, η̂, f̂d are the system parameter estimates, and
ψ ,

[
x0−z1
m

z2
m

1
m

]T
. We can now state the following

lemma.
Lemma 2: (Result 2) Consider the closed-loop dynamics

given by (9), (20) and (21), with constant unknown pa-
rameters k, η, fd and consider the parameter error vector
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∆ ,
[
k − k̂ η − η̂ fd − f̂d

]T
. Then, there exist pos-

itive gains c1, c2, c3, κ1, κ2 and κ3 such that (z1(t), z2(t))
are uniformly bounded and the system (9) is locally integral
input-to state stable (LiISS) with respect to (∆, ∆̇).

Proof: Consider the full mechanical subsystem that
consists of only the first two equations with the virtual
control input ũ := z2

3 :

ż1 = z2

ż2 = k
m (x0 − z1)− η

mz2 + fd
m − a

2m(b+z1)2 ũ.
(22)

Defining the Lyapunov function Vsub = c3
2 (z1 − zref1 )2 +

1
2 (z2 − zref2 )2, with c3 > 0, we would like to design ũ so
that V̇sub = −c1(z2 − zref2 )2 along the trajectories of (22),
but since the system parameters k, η and fd are unknown, we
design the virtual input to be ũ given by (21). Substituting
ũ into V̇sub, leads to

V̇sub =−c1(z2−zref2 )2+(z2−zref2 )

(
(k−k̂)(x0−z1)

m − (η−η̂)z2
m +

fd−f̂d
m

)
−κ1(z2−zref2 )2‖ψ‖22 (23)

Using the definitions of ψ and ∆, we can show the following:

V̇sub ≤ −c1(z2−zref2 )2−κ1

[
|z2−zref2 |‖ψ‖2− ‖∆‖22κ1

]2
+
‖∆‖22
4κ1

≤ −c1(z2−zref2 )2+
‖∆‖22
4κ1

. (24)

Note that we have made use of the nonlinear damping term
−κ1(z2−zref2 )2‖ψ‖22 ([12]) to attain a negative quadratic term of
ψ and ∆

(
i.e.,−κ1

[
|z2−zref2 |‖ψ‖2− ‖∆‖22κ1

]2) and a positive term

that is function of ∆ only
(
‖∆‖22
4κ1

)
, hence rendering Vsub an

iISS-Lyapunov function for the mechanical subsystem. Since
we cannot directly control z2

3 , we use backstepping to design
the control input u(t) so that z2

3 converges to ũ, which in turn
will render the mechanical subsystem LiISS. Unfortunately,
because of the uncertainty in system parameters, the best
that can be done is to have z2

3 follow ũ with an error that
is function of the uncertainty vector ∆; i.e., achieving input-
to-state stability. To this purpose, we define the Lyapunov
function for the full system: Vaug = Vsub +

(z2
3−ũ)2

2 . Taking
the derivative of Vaug along the trajectories of the full
system, leads to the following inequality:

V̇aug ≤ −c1(z2−zref2 )2+
‖∆‖22
4κ1

+(z2
3−ũ)

(
− a(z2−z

ref
2 )

2m(b+z1)2
− ˙̃u

)
+(z2

3−ũ)

(
2z3

(
−R(b+z1)

a z3+
z2z3

(b+z1)
+
b+z1
a u

))
, (25)

where ˙̃u is the time derivative of (21). By substituting
the control input (20) into (25), using the aforementioned
definitions of ψ and ∆ (note that ∆̇=

[
− ˙̂
k − ˙̂η − ˙̂

fd

]T )
and by making use of the quadratic damping terms, e.g.
−κ1(z2 − zref2 )2‖ψ‖22, we can show that V̇aug satisfies the
following inequality:

V̇aug ≤−c1(z2−zref2 )2+
‖∆‖22
4κ1
−c2(z2

3−ũ)2

−κ2

[∣∣z2
3−ũ
∣∣∣∣m(b+z1)

z3

∣∣∣∣c1+κ1‖ψ‖22−
η̂
m

∣∣‖ψ‖2− ‖∆‖22κ2

]2

+
‖∆‖22
4κ2
−κ2

[∣∣z2
3−ũ
∣∣∣∣2κ1(z2−zref2 )

∣∣∣∣ z2(b+z1)
mz3

∣∣‖ψ‖2− ‖∆‖22κ2

]2

+
‖∆‖22
4κ2
−κ3

[∣∣z2
3−ũ
∣∣∣∣m(b+z1)

z3

∣∣‖ψ‖2− ‖∆̇‖22κ3

]2

+
‖∆̇‖22
4κ3

. (26)

Finally, from (26), we deduce

V̇aug≤−c1(z2−zref2 )2−c2(z2
3−ũ)2+

(
1

4κ1
+ 1

2κ2

)
‖∆‖22+

‖∆̇‖22
2κ3

. (27)

We now express the uncertain system in the following
nonlinear time-varying form:

ė = f(t, e, ∆̃), (28)

with e ∈ De, ∆̃ ∈ D∆̃, where e := [z1 − zref1 z2 −
zref2 z2

3 − ũ]T and ∆̃ =
[
∆T ∆̇T

]T
. By considering the

output defined by h = [z2 − zref2 z2
3 − ũ]T , we can show

that the system (28) with h is weakly zero-detectable (i.e.
by analyzing the zero-dynamics of (28) with h ≡ ∆̃ ≡
0). Furthermore, inequality (27) satisfies (6), meaning that
property 3a holds for (28). By the virtue of Lemma 1, we
conclude that system (28) is LiISS with respect to the input
∆̃, implying that there exist functions α ∈ K, β ∈ KL and
γ ∈ K, such that, for all e(0) ∈ De and ∆̃ ∈ D∆̃, and

‖e(t)‖ ≤ β(‖e(0)‖, t) + α(

∫ t

0

γ(‖∆̃‖))ds (29)

for all t ≥ 0.
Remark 3: In the rest of this paper, we will refer to the

controller of Section IV-A as the ISS-backstepping controller.
Remark 4: In this work, we assume that the unknown

parameters k, η, fd are constant. This is a realistic as-
sumption since we are targeting the problem of aging in
real applications, and usually aging happens very slowly over
long period of time. Hence, the slowly varying parameters
can be approximated by constant uncertain parameters.
The analysis of the dynamical behavior of estimated param-
eters is done via MES theory [13]. The obtained controller
is described in the next section.

B. Robustification of the ISS-backstepping Controller

We now discuss how MES scheme is utilized along with
ISS-backstepping controller to render the control system
robust to uncertainties in system parameters. To this purpose
we make the following assumptions.

Assumption 1: Consider the cost function Q=q1(z1(tf )−

z1(tf )ref )2+q2(z2(tf )−zref2 (tf ))2, q1,q2>0 for the dynamical sys-
tem (9). Q has a local minimum at θ∗ =

[
k η fd

]T
.

Assumption 2: The initial error ∆(t0) is sufficiently small,
i.e., the original parameter estimates vector θ =

[
k̂ η̂ f̂d

]T
is close enough to θ∗.

Assumption 3: Q is analytic and its variation with respect
to the uncertain variables is bounded in the neighborhood of
θ∗, i.e., ‖∂Q∂θ (θ̃)‖ ≤ ξ2, ξ2 > 0, ∀θ̃ ∈ V(θ∗), where V(θ∗)
denotes a compact neighborhood of θ∗.

Remark 5: Assumption 2 implies that our result will be
of local nature, meaning that our analysis holds in a small
neighborhood of the actual values of system parameters.

Following [14], [13], we propose the MES algorithm for
the system (9):

ẋp = apsin(ωpt+ π
2 )Q[xp + apsin(ωpt+ π

2 )]
θp = xp + apsin(ωpt+ π

2 ),
(30)
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where p = 1, 2, 3 corresponds to k, η and fd respectively.
In addition, ωp = ω0p, ω0 > 0, p = 1, 2, 3. Operation
of the scheme given in (30) is a multi-parameter analog
of the scheme proposed in [2]; here, the MES scheme is
implemented throughout the travel of the moving part of the
actuator, and at t = tf , Q is updated, and the whole cycle is
reiterated with the new measurements. The purpose of using
MES scheme along with ISS-backstepping controller is to
improve the performance of the ISS-backstepping controller
by better estimating the system parameters over many cycles,
hence decreasing the error in parameters over time to provide
better trajectory following for the actuator.

Now we can state the main result on the proposed MES-
based robust controller.

Lemma 3: (Result 3) Consider the dynamical system (9)
with the ISS-backstepping controller given by (20) and the
cycle-to-cycle MES algorithm given by (30) for estimation
of system parameters k, η, and fd under Assumptions 1, 2
and 3. Then, the following bound holds:

‖e(t)‖≤β(‖e(0)‖,t)+α
(∫ t

0
γ(β̃(‖∆(0)‖,t)+‖∆̃‖max)

)
ds, (31)

where e :=
[
z1−zref1 z2−zref2 z2

3−ũ
]T

, ‖∆̃‖max = ξ1
ω0

+

2
∑3
i=1

√
a2
i + maxi∈{1,2,3} 0.5ξ2a

2
i , ξ1, ξ2 > 0, e(0) ∈ De,

α ∈ K, β ∈ KL, β̃ ∈ KL and γ ∈ K.
Proof: Based on Lemma 2, we know that for the closed-

loop dynamics given by (9) and (20), there exist functions
α ∈ K, β ∈ KL and γ ∈ K, such that, for all e(0) ∈ De
and ∆̃ ∈ D∆̃, such that the following inequality holds for
all t ≥ 0:

‖e(t)‖ ≤ β(‖e(0)‖, t) + α(

∫ t

0

γ(‖∆̃‖))ds. (32)

Now, in order to evaluate the bound on the estimation vector
∆̃, we use the results presented in [14]. First, based on As-
sumption 3, the cost function is locally Lipschitz, i.e. ∃η1 >
0, s.t. |Q(θ1) − Q(θ2)| ≤ η1‖θ1 − θ2‖, ∀θ1, θ2 ∈ V(θ∗).
Moreover, since Q is analytic, it can be approximated locally
in V(θ∗) by a second order Taylor series. Defining d(t):=[
a1sin(ω1t+β1+π

2 ) a2sin(ω2t+β2+π
2 ) a3sin(ω3t+β3+π

2 )
]T , by the

virtues of Assumptions 1 and 2, we can then write the
following bound ([14]):

‖∆(t)‖−‖d(t)‖≤‖∆(t)−d(t)‖≤β̃(‖∆(0)‖,t)+ ξ1
ω0

⇒‖∆(t)‖≤β̃(‖∆(0)‖,t)+ ξ1
ω0

+‖d(t)‖≤β̃(‖∆(0)‖,t)+ ξ1
ω0

+
∑3
i=1

√
a2
i ,

with ξ1 > 0, for all t ≥ 0. Moreover, in [14], the MES
algorithm is shown to be a gradient-based algorithm, such
that the variation of θ is approximated by

θ̇ ' −R∂Q
∂θ

(θ) + ḋ(t),

with R = limT→∞
∫ T

0
‖d(s)‖2ds = 0.5 diag{a2

1, a
2
2, a

2
3}.

Using Assumption 3, we can write

‖θ̇‖ = ‖∆̇‖ ≤ 0.5 max
i∈{1,2,3}

a2
i ξ2 +

3∑
i=1

√
a2
i .

Finally, noting that ‖∆̃‖≤‖∆‖+‖∆̇‖, we have

‖∆̃‖≤β̃(‖∆(0)‖,t)+ ξ1
ω0

+2
∑3
i=1

√
a2
i+maxi∈{1,2,3} 0.5ξ2a

2
i , (33)

which together with (32) completes the proof.

V. SIMULATIONS

In this section, we illustrate our approach for the non-
linear electromagnetic actuator given by (8), with the sys-
tem parameters given by: m = 0.27 [kg], R = 6 [Ω],
η = 7.53 [kg/sec], x0 = 8 [mm], k = 158 [N/mm],
a = 14.96 × 10−6 [Nm2/A2], b = 4 × 10−5 [m]. The
reference trajectory is designed to be a 5th order polyno-
mial, xref (t) =

∑5
i=0 ai(

t
tf

)i where the coefficients ai
are selected such that the following conditions are satisfied:
xref (0) = 0.2, xref (0.5) = 0.7, ẋref (0) = 0, ẋref (0.5) =
0, ẍref (0) = 0, ẋref (0.5) = 0. Although several cases
have been tested to validate the performance of the proposed
approach, due to space constraints, we present here only
two cases. Case 1 [k, η]: We consider the uncertainty in the
mechanical parameters k and η. Uncertainties in k and η are
given by ∆k = −10 and ∆η = −1.2. We set the parameters
of the extremum seeking algorithm in the following way:
ak = 1, ωk = 7.5, aη = 0.2, ωη = 7.4, q1 = q2 = 50. The
results of this case are depicted in the figures 1, 2, 3 and 4.
As can be seen in Figures 1 and 2, without the robustification
of the backstepping control via extremum seeking, the errors
at t = tf are quite large; around 0.3 mm and 0.3 mm

s .
With the extremum seeking, the performance of the control
is significantly improved. It can be seen in Figure 3 that
after 5955 iterations, the cost decreases below a very small
value Qthreshold = 0.01. Moreover, the estimated parametric
uncertainties ∆k and ∆η converge to regions around the
actual uncertainty values; these regions are approximated by
the extremum seeking algorithm parameters ak and aη as
dictated by Lemma 3. The number of iterations for the cost
to decrease below the threshold level may appear to be high;
the reason is that the allowed uncertainties in the parameters
are relatively large, hence the extremum seeking scheme
requires a lot of iterations to improve performance. In real
life applications, the uncertainty in parameters accumulate
gradually over a long period of time, while the learning
algorithm keeps tracking these changes continuously. Thus,
the extremum seeking algorithm will be able to improve the
controller performance relatively quickly, meaning that it will
enhance the backstepping control in much fewer iterations.
In this paper, we intentionally report on challenging cases to
show the adaptive ability the proposed method.Case 2 [b]:
The simulations discussed here are designed to show that
our scheme works even for the situations where the system
is not linear with respect to the uncertain parameters. To this
purpose, we initially considered a case where the uncertainty
is in the nonlinear parameter b, and the uncertainty is given
by ∆b = 0.02. Note that the backstepping control has not
been explicitly designed to compensate for the uncertainty
in b, but we wanted to test numerically the challenging
case where the estimated parameters enters the model in
a nonlinear term. We set the parameters of the extremum
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seeking algorithm in the following way: ab = 0.0005, ωb =
7.6, q1 = q2 = 250. The results of this case are depicted
in the figures 5, 6, 7 and 8. It can be seen in Figures 5, 6
that the extremum seeking compensates for the uncertainty
and improves the performance of the backstepping control.
Without the estimation scheme, since the parameter b appears
nonlinearly in the model, the uncertainty in b deteriorates the
position and velocity tracking of the system significantly.
With the addition of the extremum seeking scheme to esti-
mate b, the performance is improved immensely. It can be
seen in Figure 7 that the cost starts at an initial value around
12, and after 6380 iterations, it decreases below the threshold
Qthreshold = 0.01. Moreover, the estimated uncertainty in b
is 0.0198 after 6380 iterations, which is in accordance with
the result of Lemma 3.
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VI. CONCLUSION

In this paper, we have proposed an adaptive controller
based on a nonlinear backstepping and a model-free MES
algorithm. We have proved the bounded input/bounded states
stability of backstepping control and the stability of the com-
bined backstepping and MES controller. Future work will
include taking explicitly into account nonlinear parameters
in the control law design and in the stability analysis, as well
as comparing the performance of this type of learning-based
adaptive controllers to classical adaptive control methods.
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