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Abstract

Adaptive estimation of the state-of-charge (SoC) for batteries is increasingly appealing, thanks
to its ability to accommodate uncertain or time-varying model parameters. We propose
to improve the adaptive SoC estimation using multiple models in this study, developing a
unique algorithm called MM-AdaSoC. Specifically, two submodels in state-space form are
generated from a modified Nernst battery model. Both are shown to be locally observable
with admissible inputs. The iterated extended Kalman filter (IEKF) is then applied to each
submodel in parallel, estimating simultaneously the SoC variable and unknown parameters.
The SoC estimates obtained from the two separately implemented IEKFs are fused to yield
the final overall SoC estimates, which tend to have higher accuracy than those obtained from
a single-model. Its effectiveness is demonstrated using simulation and experiments. The
notion of multi-model estimation can be extended promisingly to the development of many
other advanced battery management and control strategies.
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Abstract

Adaptive estimation of the state-of-charge (SoC) for besas increasingly appealing, thanks
to its ability to accommodate uncertain or time-varying relqghrameters. We propose to improve
the adaptive SoC estimation usingultiple modelsn this study, developing a unique algorithm
calledMt AdaSoC. Specifically, two submodels in state-space form are gégefeom a modi-
fied Nernst battery model. Both are shown to be locally ole®es/with admissible inputs. The
iterated extended Kalman filter (IEKF) is then applied toheaabmodel in parallel, estimating
simultaneously the SoC variable and unknown parameters.SDIC estimates obtained from the
two separately implemented IEKFs are fused to yield the brarall SoC estimates, which tend
to have higher accuracy than those obtained from a singl#gemtis effectiveness is demonstrated
using simulation and experiments. The notion of multi-mM@$timation can be extended promis-
ingly to the development of many other advanced battery gemant and control strategies.
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1. Introduction

Industrial applications of batteries usually require alwlelsigned management system for
operational safety and performance, which monitors tha@inghstatus and regulates the charg-
ing/discharging processes [1]. One of its fundamentaltions is to estimate the state-of-charge
(SoC), i.e., the percentage ratio of the present battergaigpover its maximum capacity.
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Literature review:SoC estimation has remained an active research field durengdst years,
and the reader may refer to [2] for a survey. A notable trerttliarea is the increasing emphasis
on model-based estimation methods. The dynamic modeisgeddrom either equivalent circuits
or electrochemical principles, facilitate the assimdatof the battery data and lead to real-time
SoC estimation with bounded errors. While battery modeliag been well-accomplished [3],
more attention is being geared towards the developmenttwhason algorithms. Application
of the Kalman filtering (KF) techniques has been remarkabltis respect. The classical lin-
ear KF and its extensions to nonlinear systems, includiageitended KF (EKF), unscented KF
(UKF), iterated extended KF (IEKF), have been used to dethil 80C estimation based on electro-
chemical and equivalent circuit models, see [4—13]. A \qrid other state observers originating
from control approaches have also played a role in congtigi&oC estimators. Here, we high-
light the sliding mode observer [14], adaptive model rafeesobserver [15], Lyapunov-based
observer [16] and PDE-based observer [17, 18].

Since a good model is a prerequisite, model-based SoC estimgpically follows after the
procedures of dynamic modeling and parameter identificatitmwever, accurate identification is
challenging. First, the parameters in a battery model aenfubject to changes with time and
operational conditions. For instance, the internal rasis® will rise and the capacity diminish as
a result of battery aging. Another example is the chargirdydischarging efficiencies, which are
dependent on the SoC, magnitude of current and temper&aoand, the parameters may differ
from one battery to another, making identification for eaelktdry at least rather cumbersome.
Therefore, adaptive approaches are more desirable, gdrgth identification and SoC estimation
in one step. As shown in Fig. 1, an adaptive SoC estimatosgie¢ only the SoC estimates but
also the estimates of the model parameters in real time afgmilating the current-voltage data
on the basis of a model. The parameter estimates will thersée o update the model to aid the
next-step estimation.

Adaptive SoC estimation has been attracting consideraigeteon in the recent literature. An
adaptive EKF-based SoC estimator is designed in [9], wntdracts with a parameter estimator.
In [11], state augmentation is conducted to incorporateSth€ variable and model parameters,
and then the UKF is applied to estimate the augmented staieever, the convergence, and as
a result, the accuracy, are noted to be difficult to guaranite¢l3], an adaptive SoC estimator
is developed using the IEKF, guided by an analysis of the robbdity/identifiability. Novel
adaptive PDE observers for SoC estimation have also beenteepin [19]. It should be noted
that all these existing approaches are based on a singég\patodel, and here we instead propose
to exploit multiple models for better estimation perforroan
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Statement of contributionsn this paper, we aim to achiewlaptive, high-fidelity and easy-
to-implement SoC estimatioRor this purpose, we seamlessly link the notion of ‘mudiplodels’
and adaptive SoC estimation. A multitude of models, comp#re single one, can give a better
description of complicated uncertain dynamics [20-22listiparticularly suitable to deal with
the tasks relevant to batteries. The design of the adapt@e&stimator partially builds on our
previous work [13]. In that work, we propose an adaptive apph for SoC estimation via IEKF-
based simultaneous state and parameter estimation. Whilgbte estimation is observed, the
accuracy is still limited in [13] by the mismatch between thedel and the true system. This fact
motivates the development of t4+ AdaSoC algorithm in this paper.

An overview of the construction divt AdaSoCis as follows. First, multiple submodels are
brought up from a modified Nernst battery model by fixing soramameters and assuming the
others unknown. Each submodel is shown locally observalile admissible inputs by rigor-
ous analysis. Then, an adaptive SoC estimation schemeevithplemented simultaneously but
separately to each submodel, with the submodel in each mgsieation assumed true. The SoC
estimates resulting from different submodels will be fusethe light of a certain strategy to ob-
tain the final estimate. As such, we boost the accuracy of Sti@a&tion despite the presence of
uncertainties plaguing battery models.

The main contributions of this paper lie in two aspects. tFitss is the first known study
of multi-model adaptive SoC estimation to the best of ounkiedge, and it is shown that the
proposedvM AdaSoC algorithm provides more accurate estimation while mamitg a good
balance over the computational cost. Second, we introdhectlti-model framework for battery
management and control. In addition to the propos®bt AdaSoC, we discuss various other
ways for SoC estimation enhanced by multiple models. Mangerbattery management strategies
involving estimation and control can also be improved on &irmodel basis.

Organization:The rest of the paper is organized follows. Section 2 presgbisic review of
the multi-model estimation theory. Section 3 describesiibeel construction and gives observ-
ability analysis. Section 4 incorporates adaptive SoQregion and multi-model estimation to
establish theM AdaSoC algorithm, the effectiveness of which is validated in Satt by sim-
ulation and experimental results. Finally, Section 6 gatleir conclusions and ideas for future
work.

2. Basics of Multi-model Estimation

The structure of a typical multi-model estimator is showikig. 2. In this section, we give a
review of the multi-model estimation, with an emphasis anektimate fusion strategy.
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Its first part is composed of a bank of parallel filters basedlifierent models. Each filter
assimilates the data to produce its own estimate. All thiemases will then be fused to give the
best estimate. Many options exist for the elemental filischsas the KF for a linear model or the
EKF for a nonlinear one. What is of particular interest herthe design of the fusion strategy.

Let us consider a general system. Its unknown state at tistartk is denoted by, € R™
and its measurement tzy € R™. Different models are available to describe the systendithea
to a model seM = {.#1, #>,--- ,.ZN}. Suppose thatZ; is given by

s {Xk+l = f'.(Xk) +Wi<a )
z = h' (Xk) + Vi,

wheref! andh' areC! functions to represent the state transition and measutemespectively,
and{w} } and{vi} are uncorrelated, zero-mean, white Gaussian noise seggiefith covariances
Ql >0 andR} > 0, respectively. While assuming that the true system cdewivith one model
at each time instant, we do not know which model matches tsgyat any time. Thus a prob-
abilistic description is used. Let denote the system running statukatt may take any#; for
i=1,2,---,N to address the uncertainty of model matching. The proliglofithe evens, = . #;

is denoted ap(sc = .#), or simply,p(s),). In other wordsp(s,) indicates the priori probability
that the true model iz at timek. Obviously,sN, p(s,) = 1.

From a statistical perspective, andz, are continuous random variables agda discrete
one. Without causing confusion, we use the symbtd denote the probability density function
(pdf), probability mass function (pmf) or mixed pdf-pmf inet sequel for convenience. We define
the information set a&y = {z3,2,--- ,z«} and intend to estimate, from Zy, hence considering
p(Xk|Zx). By the Bayes’ theorem, we have

N )
P(Xk|Zk) = Z\ P(Xk, S| Zk)

N ) )
= Z\ P(Xk|Sk, Zk) P(S¢| Zk)- (2)

When p(xk|Zg) becomes available, we can carry out minimum-mean-squeaoe{&MSE) esti-
mation or Maximum a Posteriori (MAP) estimationx
MMSE: Xy = E(Xk|Zk) = /kap(xk|Zk)ka,
MAP: X = arg ranp(xk\Zk).
k
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Independent of the method (MMSE or MAP) used, it follows fr@hthat
N

ik = _Zlf(ikkp(édzk), 3)

whereiik‘k is the estimate oky based on the mode¥;. An observation from this analysis is
that p(§<|Zk) turns out to be a probabilistic weight coefficient. The asded estimation error
covariance is

Pyc=E [(kk— xic) (R — xk)T)Zk]

= [ (=0 (=% PO ZiIee

= ii / (Rt — X)) (R — Xi0) " P(Xic, S| Zie) A

= ii / (Rt = X4) (}ae = Xie) " P(Xk|Skr Zic) A P(Sk| Zi)

- ii [Pl (Bc= %) (R = 0| PISIZ0)- (a)

Let us take a closer look g@s,|Z). Using the Bayes’ theorem again, we see that

i . p(iv Zk)

_ P(Zi| S Zic—1) P(S| Zic-1)
P(z|Zk-1)
_ p<zk|§K7Zkfl)p<5{<|Zkfl)
> L1 P(Zk, S| Zk-1)
_ p(ZkH.(aZ;k—l)p(qJZ;k—l)
SN P(zSk Zic-1) P(SHZi- 1)

(5)
Furthermore, we have
p(zx/Sk, Zk 1) Z/D(Zk,xk\s'{(,zkl)dxk
I/D(Zk|Xk,5'{<,Zk1)D(Xk|5'4;<,Zk1)ka

=/p(Zk|Xk,SL)D(XkISL,Zk—l)ka-
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Under the mildly simplified assumption thafzq|x,s,) = -4 (h'(x),R}) and p(Xk|S,. Zk-1) =
N (f(ik‘k_l, PL“(_l), p(z|s,, Zk_1) can be approximated as

P(ads Zica) ~ (2m) ¥ 8] Fexp |58 "I 4.

where
Z=2c—h' (Kgp_ 1),
S= Hikpiqk—l(HL)T +R,
. oh /..
Hio= ¢ (Roa)
Furthermore,

P(Zi-1/9)P(S) _

P8 Zin) = P AR — pig),

sincep(Zk_1|q'<) =1 andp(Zk_1) = 1 becausé&y_1 is an event with probability 1 at timle— 1.
If we definept!, = p(S|Zx) andwi = p(z«|s,, Zk_1) and suppose, = p(s,), (5) becomes

. W 7T
My = Nkin%l (6)
2 =1 Wi 7§
Hence, by (3)-(4), the fusion strategy, or the fuser as iedais given by

N . .

Xk =Y KMo (7)
N - o i it

Piik = Zx [PL|k+(Xk—XL)(Xk—XL) - (8)
1=

The final conclusion drawn from this analysis is as followse fused estimate (covariance) is a
linear weighted combination of the estimates from the elgaidilters. It can be noted that

e The estimation is based on a series of elemental filters anfdiion. The process is similar
to a * weight-based reconciliation’, which balances the tbiat different models potentially
play in the estimation task.

e The residuals of the elemental filter based on the ‘correcitieh that best match the true
6



system is expected to be remarkably smaller than those aftbiezs [20]. As a result, the
probabilistic weight associated to this filter, say, will tend to increase and downplay the
others. The fused estimate will approach the estimate baséue correct model.

3. Battery Models and Observability Analysis

We investigate the battery modeling in this section. We fiestelop two submodels from a
slightly modified Nernst model and then analyze the locakolability properties for each one.

3.1. Construction of Multiple Battery Models

A battery model consists of a set of equations that relateninet (charging/discharging cur-
rent), the state variables (e.g., SoC) and the output(tedimbltage). Various models have been
proposed and used, depending on the specific purposes. Eoe&nation, we consider the
Nernst model here [5]:

Yk = K1 +K2In(SoG) + KzIn(1— SoG) — Ru, (9)

whereyy is the terminal voltage at time instaktuy is the applied currentu(> 0O for discharging
andu < O for charging)Ris the internal resistance, aKgfor i = 1,2, 3 are constants. To make (9)
more capable of grasping the dynamics of certain battemegropose the following modification:

Yk = K1+ KaoIn(11 + SoG) + KszIn(12+ 1 — SoG) — R, (10)

where two additional constants and 1, are added. In abov&; + Kz In(11 + SoG) + KsIn(12 +
1—SoG) in (10) can be regarded as the open-circuit voltage (OCWi) térhe dynamic change
of the SoC is described by the integration of the current tugz. In the discrete time, it is given

by

k—1
n-AT
—Uj,
2 c

wheren is the Coulombic efficiency;y the nominal capacity in ampere-hour (Ah), &kl is the
sampling period. An equivalent difference equation is

SoG = SoG —

S0G 1 = SoG — Ko, (11)



whereKg = n - AT /Co. We then obtain a state-space model for batteries by puttipether (10)-
(11). The model state is Se@nd the parameters akgfori =0,---,3 andR.

For adaptive SoC estimation, we will perform simultaneatswation of the SoC and the pa-
rameters. To obtain a locally observable model, one or aéparameters usually need to be fixed
in order to estimate the others and the SoC. A few options misy eegarding which parameters
are fixed. Based on our experience with the considered medeleparate the parameters into two
sets, fix one set and augment the state vector to incorptia&aC and the other set. Accordingly,
two submodels will be constructed.

Letting Ko andK be fixed, the first one can be obtained:

1 1/y1
Xic1 = FH(Xig, Uk),
My { et 1( ) ) (12)
Yk = h (Xk7 Uk),
where
1 T
xt = [SOQ Ky Ks R] :
1 1 T
f1 (X, Uk) = X — [Ko 00 0} Uk,
1 _ 1 1 1 1 1
h1 (X, Uk) = K1 +xk’2In(T1 +xk’1) +xk73ln(T2 +1-— Xk,l) — Xi¢ 4Uk-
Analogously, by fixing&; fori =1,2,3, we have
2 2/y2
X1 = F9(Xi, Uk),
" { fia = 0w 3
Yk = h (Xk7 Uk),

where

) T
X2 = [Soq Ko R] :
f2 2 _ 2 2 T
P (xg, U) = Ka+ K2 In(T1+Xg 1) + KaIn(T2+ 1= XE 1) — XE 3k
Remark 1. In an implicit manner,#1 places more confidence on the state equation (11), assum-
ing thatKg is accurate, while the belief in the measurement equatiOhi€lemphasized inZ>

similarly. Nevertheless, it is noteworthy that the conficehevel on each submodel during the
estimation process is dynamically determined by the fustaategy outlined earlier in Section 2.
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Remark 2. An extended series can be constructed on the basis of eaofodebif we let the
parameters take different values that are believed to ks @o equal to the truth. For instance,
the Coulombic efficiency may be 100%, 90% or even 80% depgratirthe operating conditions.
Then.#1 will give birth to three more submodelskh assumeAT /Cy, 0.9AT /Cy and 08AT /Co,
respectively. This allows considerable flexibility for esdtescribe the battery dynamics and brings
improvements to the single-model case.

3.2. Observability Analysis

It is well-known that state estimation requires a ‘certdimid of observability of the system.
Hence, we will analyze the observability properties.4f, and.#> before proceeding to SoC
estimation.

Consider a general single-input-single-output (SISO)eys

P {xk+1:f(xk, U), 14)
Yk = h(Xg, Uk),

wherex € X of dimensionn, y € Y andu € U. We assume that I¥ andY connected, second
countable, Hausdorff, differentiable manifolds of cl&@swith q € N, 2) U is an open interval of
R, and 3)f : X x U — X andh: X — Y are of clas€9. For conveniencd(x, u) is denoted a&'(x),
andh(f(x,up),u;) = h"t o fY(x). Following [23, 24], the local observability fo¥” is defined as
follows:

Definition 1. (Distinguishability)Two statex andx* are said to be indistinguishable, written as
x = x*, if for each 1 0 and for each input sequencgyo,---,u } € U', we have

hYof'-10...0f%(x) =h"of"-1...0f'(x*).
Otherwise, they are distinguishable.

Definition 2. (Local observability)The system” is locally observable if for any state® € X,
there exists a neighborhodil of x° such thatx = x* impliesx = x* for eachx,x* € D.

By Definitions 1-2, local observability means th&tcan be distinguished from its neighbors
given the input sequendely, - - - ,u;} and the output sequengg, ---,y;. It should be noted that
this definition of observability depends not only on the eysttself but also on the applied inputs,
unlike the uniform observability for any inputs defined ib[2While one sees various definitions
of nonlinear observability in the literature, this does pbstruct our discussion since they are



usually about ‘different measurements results from diifeinitial states (for admissible inputs)’.
The interested reader can refer to the literature on theestjlg.g., [26].
To address the observability condition, the following s#tiinctions are defined:

Qo = {h(-)},
Q) = {iofiito...ofdo():y eUVi=1,---,jand 1< j <1},
Q= Uj20Q|.

An observability criterion is presented in the followingetirem, please see [23] for the proof.

Theorem 1. [23] If dim dQ(x) = n ¥x € X, then the systen¥ is locally observable.

Theorem 1 gives a sufficient condition to determine the lobakervability by relating it to the
full dimensionality of the codistribution@. Now the local observability of#; and.#> can be
analyzed using Theorem 1. Let us tal# for an example since the analysis for both follows
similar lines.

Note thatf! andh! are of clas€C®. Suppose that the initial statex§ for .#, and that there
areL measurement§ys, -+, yi }. By (12),xi is given by

Tk-1
Xi = X3 — [KO 00 O] .Z)Ui-
1=
Hence, we have
hit(x3) = hl% o flUk-1o... o flUo(x3)

k-1 k-1
=K1 +Xg2In <T1+x(1)71 — Ko ZJUi> +Xg3ln (rz+ 1—xg1+Ko Z)ui> — XG.4Uk,

whereht € Q. Define a matrixJ with dimensiong. x 4:

J:[d_ﬁi Lood d_hHT
dxg dxg dxg

The elements in thke-th row of J are

1 1 1
ohy X0,2 X033

S 0xgy X —Koyigu Tot+1-x3,+Koy

Ji1 k—1,.°
o Ui
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Jk,3 = 1
0

1 k—1
Jk72 lk - Tl"’XOl_KO% 5
0 i=
k—1
i—=

: 1
ax0,4

By observation, we have the following conclusions:

e The submodel#; is locally observable if a suitable input sequercg} is applied. By
‘suitable’, we mean thati varies sufficiently in magnitude over time, or in other wqrds
{ux} contains a rich mix of frequency contents. In this cabejll have full column rank,
and as a result, dim@ has a dimension of 4, satisfying the condition in Theoremtl. |
should be emphasized such a condition imposed on the inpuhikl constraint that can be
easily satisfied when a battery is in use.

e We can analogously determine that is also locally observable if a suitabjey} is used
to excite the system.

¢ Additional submodels other thaw, and.#> can be constructed by fixing different param-
eters. An example is to fix onli{y, which will lead to another locally observable model.
However, no matter how many submodels are used, the essenualtomodel adaptive
SoC estimation remains the same, as will be seen in Sectibmslso noteworthy that the
resultant submodel will be unobservable if all the paransedee assumed unknown.

4. Multi-model Adaptive SoC Estimation

In this section, we study multi-model adaptive SoC estioratin the basis of Sections 2 and 3.
An IEKF-based elemental filter will be applied t&#1 and.#>, respectively, for adaptive SoC
estimation. The overall estimate will be obtained by fusatigthe estimates for the elemental
filters, leading to thé/M AdaSoC algorithm.

4.1. Adaptive SoC Estimation

Adaptive SoC estimation can be attained via state estimabecause the state vector of each
consists of both the SoC variable and the parameters. FHolipj&3], we use the IEKF. As an
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improved version of the EKF, it is capable of giving more aate state estimates even for highly
nonlinear systems by iteratively refining the estimate adaie current point at each time instant.

Consider applying the IEKF to the system in (14).kAt 1, prediction can be made about the
next time instant. The formulas are as follows:

Xigk—1 = F(Xk—1jk—1, Uk-1), (15)

Puk_1=Fr-1Pi 1k 1F 1+ Q. (16)

whereX is the estimate af, P is the error covarianc& > 0 is an adjustable matrix to account for

the process noise, aiidis given by

of .
Fke1= % (Ri 11, Uk-1) -

When the measuremewt arrives X1 can be updated by the new informatignbrings. The
procedure is based on iteration. l/edenote the iteration number aﬁ&ﬁ = Xk—1 for £=0. The

update formulas are

- -1

.

K =P aHY Y [HE P HE Y+ R} , (17)
9 =n (g5 Y u)) (18)
?;((‘ﬁ)( = Xk-1+ Ky Y~ R <)A(k\kfl - >A<|(<f|: D)] : (19)

whereR > 0 accounts for the measurement noise and

(0) _ 9h (o)
L = o (R )

The iteration process stops whéachieves the pre-specified maximum iteration nunthgy or
when the error between two consecutive iterations is less the pre-selected tolerance level.

ThenXyy = kﬁf{j""”, and the associated error covariance is given by

gmax émax
Pue = |1 = K™ H™ [ gy

Following the above description, the IEKF can be appliedraglamental filter to#71 and
M>. The resultant state estimates ﬁt& and?ﬁ‘k, respectively. Accordingly, the SoC estimates

— l "1 — 2 A2 .
are denoted aSoG, = Xk 1 andSoG, = Xidk 1 respectively.
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4.2. Mk AdaSoC. Multi-model Adaptive SoC Estimation

The SoC estimates produced frosh and. 75, S/O\Ci andS/o\qf, respectively, can be combined
weightedly to generate the overall estims/ﬁ?;(. In the light of the fusion strategy in (7)-(8), we
have

2 .
SoG = 3 SoGiki, (20)

where the weight coefficient; for i = 1,2 can be determined using (6).
Putting together the results, we obtain Méd AdaSoCalgorithm, as is summarized in Table 1.

Remark 3. The underlying idea of the propos&fi# AdaSoC algorithm is that the IEKF-based
adaptive SoC estimation is carried out for multiple modal$then the estimation results are fused
to yield the overall SoC estimate. For thbt AdaSoC, the recursive and real-time implementa-
tion cuts down the amount of stored data. Meanwhile, higlsémation accuracy is achieved,
because the update procedure relies on iterative searahearh recursion. Another noteworthy
advantage is that a good balance is maintained betweentthegsn performance and the com-
putational complexity, conceding a generally linear matkemcrease of the demanded computing
power depending on the number of models used.

Remark 4. The applicability of the proposedM AdaSoC algorithm to different types of bat-
teries is quite promising. Due to its parameterized charettion, the Nernst model has been
found capable of describing the dynamics of many batteegs, nickel metal hydride (NiMH),
LiMn,O, and LiCoG,. As a result, thévM AdaSoCalgorithm can be well applied to such batter-
ies for its construction based on the Nernst model.

Remark 5. Not limited to theMW AdaSoC algorithm at all, the role that multi-model estimation
can play is more profound. It can be developed as a framewattin which variety of advanced
estimation methods can be built for battery applicationsreiiwe identify five potential sources
of multiple models:

e aset of submodels established from a battery model by fixengin parameters for adaptive
SoC estimation, as we have done in this paper,

e a set of submodels established from a model by assumingettfeets of values for model
parameters,
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¢ a set of different models constructed in different wayshsag an equivalent-circuit model
and an electrochemical-principles-based model,

e a set of models capturing different characteristics ofdvegs, e.g., the charging and dis-
charging processes, cycling and aging effects, and

e a multitude of (sub)models combining the above four cases.
The multi-model approach promises three-fold benefits.

e It better apprehends the battery dynamics known to be comraote multi-faceted, thus
promoting the accuracy and robustness of SoC estimation.

e It reduces the complexity of estimator design, especialignvhighly nonlinear battery dy-
namics are involved, in a ‘divide-and-conquer’ manner. [@arand elegant solutions will
be achieved and theoretical analysis is made easier.

e It can even provide useful model interpretation and congparin some circumstances. We
note that research on relevant topics would be of much istt@red requires further explo-
ration.

To fully realize its potential and benefits, multi-modeliesttion/control for batteries needs to be
further studied in the future.

5. Application Examples

In this section, we present two examples using simulati@hexperiment data, respectively,
to evaluate thvM AdaSoCalgorithm.

Example 1. This example is based on simulation with a model used in [@bRfNIMH battery
system. For simulation purpose, we employ certain minorifieadion, but the obtained model is
still considered to be a sufficiently accurate represemaif the NiMH battery dynamics in most
circumstances. The change of SoC is governed by

n-AT S (Tref) - AT

SOCk+1 = SOCk— ?Uk— T7

where the third term on the right-hand side representssstharge with

E
S (Tref) = koex"(‘ﬁ) SoC
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Here ko = 1.0683x 10’ per hourEa s/Ryg = 6, 789K, the current efficiency = 1 for discharging
and Q99 for charging near 50% SoC, the nominal capaCity: 1.25Ah, the reference temperature
T = 35°C (308.15K), and the sampling peridd = 1s. The initial SoC is assumed to be 50%.
The terminal voltage is equal to the OCV plus internal-ttesise-induced drop, that is,

Yk = Vock — F\7L|(.

The OCVV, is given by the following equation with the inclusion of \exdfe hysteresis:

RgTref SOQ(_ I_I
Voc = In Vi
oc =Uo+ = 1_ SOG,< + H k>

where the varying voltage hystere¥js is characterized by an empirical expression

Vi kt1 = Vi k= B+ 1N - [V max+ Sign(Ui) - Vi i - AT - U

The resistanc® s described by

R= JiajSod.

The Farady’s constari = 96,487C mofl, ne = 1, Ry = 8.314J moi* K=%, Ug = 1.37V, N =
0.08,3 =3 x 107°C~1, Viy max=0.05V. The initialVi is 0.005V. In additiongg = 4.1252x 102,
ay = 8.9691x 1074, ap = 1.6760x 107>, ag = —1.4435x 10~/ anday = 4.7223x 10~10,

During the simulation, we do not assume that this model ig fatailable for SoC estimation.
Instead, the modified Nernst model presented in Sectionl®&vilsed for approximate description
of the above true model. L&t = n - AT /Co, K1 =Up, Ko = Kz = RyTrer/(NeF ), 1 = —M, 12 =0
andR = ag. The current signal applied as the input to the battery waseagn-random binary
sequence (PRBS) stretched by 100 times over the time agisndgnitude is 1A. A view of the
input current and output voltage during the first 2000 tingants is given in Fig. 3(a). Let the
true initial SoC be 55% and the initial SoC estimate be 65%e ifitial weights assigned te7;
and.#> are 0.7 and 0.3, respectively.

In this setting, we face hysteresis, model mismatch andriacbinitial estimate, which to-
gether make SoC estimation a tougher challenge. As dedanlj@evious sections, we consider
two submodels, with the first one assuming knaégandK; and the second assuming known
K1, K2 andKsz. When theMt AdaSoC algorithm is applied, Fig. 3(b) shows the estimation of
the SoC over time. We see that bo#,- and.#>-based estimates differ from the actual values
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with bounded errors. However, it turns out that the oversilineates given by th¥M AdaSoC
algorithm become more accurate, demonstrating that timasin errors can be reduced effec-
tively by fusion of the multi-model estimates. The weightdle two models are compared in
Fig. 3(c). Obviously,#, weighs much more tham7; in this case. This is becaus# is sensitive
to the initial SoC estimate, relying on the state equati@edan Coulomb counting. Furthermore,
we also apply the well-known EKF to the modified Nernst modighwnownK; fori =0,1,2,3
for SoC estimation. As shown in Fig. 3(d), the EKF yields Uiatge results in this situation in
comparison to th&M AdaSoCalgorithm.

Example 2. For the experimental evaluation of tMt AdaSoC algorithm, data was collected
from a LiMn,O,/hard-carbon battery in the Advanced Technology R&D Cemiéisubishi Elec-
tric Corporation. The experiment was conducted using aargeable battery test equipment pro-
duced by Fujitsu Telecom Network¥he current input was a PRBS signal stretched by 10 times
over the time axis with a magnitude of 5A. Despite many otheions, we chose the PRBS be-
cause it has white-noise-like properties and is admisgiblebservability. The profile of the input
current and the output voltage is shown in Fig. 4. The battesya nominal capacity of 43Ah.
The sampling period was 1s. During the experiment, the ambeenperature in the chamber was
maintained at 28°C.

We consider the model in (10)-(11). The Coulombic efficienopstaniKo = 5.6342x 10~°
whenuy > 0 (100% for discharging) ankly = 4.7891x 10~ whenuy < 0 (85% for charging).
From the SoC-OCV data collected from this type of batteriesn be determined thih = 1.294,

Ky =0.0984,K3=3.972, 11 = 10 = 0.3.

As aforementioned, the actual values of the paraméfefer i = 0,---,3 can change as a
result of the operating conditions. Hence, rather than wiéipg fully on their nominal values,
we perform multi-model adaptive SoC estimation by applyimgMvt AdaSoC algorithm. The
construction of two submodels from (10)-(11) is describe8ection 3.1.

The SoC estimation results are shown in Fig. 5. The full vieerdhe available experimental
data is given in Fig. 5(a). The initial SoC of the battery ioowm to be approximately 50%.
It is seen that there is a difference of approximately 5% betwthe #:-based and#>-based
estimates. Based on our experieneg, tends to yield conservative estimates in this case #fd
does the opposite. THdW+ AdaSoC algorithm, through the fusion strategy, makes adjustneent t
give neutralized overall estimates. Although the true Sata dre not available, we still judge that
the estimates are close to the truth, based oraquiiori knowledge about the battery behavior.
Fig. 5(b) illustrates what happens during the initial 45@3s seen from Figs. 5(a)-5(b) that the
overall estimates are closer to those basedzn This is verified in Figs. 5(c)-5(d), where the
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weight uy for . fluctuates slightly around.63 andu, around 037. Thus, with a larger weight,
1 i1s given more confidence tha#, by theMt AdaSoCalgorithm during the implementation.
It is understood that the fusion depends on the performahoeesstep-forward prediction of the
terminal voltage. Fig. 5(e) compares the measured datathetprediction based am7; and. 7>,
respectively. The prediction is satisfactory for both soldels, but#> is observed to lead to the
better predicted voltage.

From the above results, we believe thatkié AdaSoCalgorithm is quite effective, supported
by the findings that the obtained SoC estimates exhibit denable accuracy and that the voltage
prediction approximates the truth wellhrough experiments with charging/discharging rates of
0.5A, 1A, 10A and 15A, we consistently observe similar estioratesults, which shows that the
applicability of the model and the power of tM+ AdaSoC algorithm.

6. Conclusions

Development of adaptive approaches for SoC estimation jgaftical significance, because
battery dynamics are often hard to fully determine and anevarying. We are focused on im-
proving the adaptive SoC estimation via launching a mutided strategy in this paper, motivated
by the proven success of multi-model estimation in addngssroblems involving structural and
parameter changes.

The main contribution of this paper is the development ardalaaon of theM AdaSoC
algorithm. It is built to estimate a battery’s SoC in real @éithrough carrying out simultaneous
state and parameter estimation on a set of (sub)models. SYedinstruct two submodels from
a general state-space battery model by fixing differentrpaters, with both shown to be locally
observable with admissible inputs. The well-known IEKFhen applied to each submodel to
produce the SoC and parameter estimates. The final ovetatiates are generated by fusing
the submodel-based estimates, and it is shown that thenfissalinear weighted combination of
the estimates. Simulation and experimental results asepted to demonstrate and validate the
effectiveness of the algorithm.

Apart from theMt AdaSoC algorithm, we also emphasize the potential of the multi-etod
framework for battery applications. The initial succegsonted in this paper would provide strong
incentives for further development of a wide range of meghoaised on multiple models to better
monitor the status and health of a battery.
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initialize the implementatiork = 0, X{,, = Xg, Py = 8'l, whered' > 0, fori = 1,2
repeat

kK—k+1

IEKF based adaptive SoC estimation:

fori=1to2do
import the submodel7;

;-based prediction (time-update):

project the state ahead to obtai[g‘](fl
Rgk-1 = 1 (R ape1, Ue-1)
project the error covariance ahead to obt%ﬁmfl

. of . o . .
k1= x (Xk 1k-10 Uk) Pik-1= Fle 1Pk i 1Fll 1+ Q'

;-based update (measurement-update):

Si(0) o

initialize the iteration proceduré:= 0, xk‘k 7xk‘k 1

while ¢ < fmaxdo
(—l+1
compute the Kalman gain matrix

HY = Z:. (R ue) » K =PigeHE {H< Ul Hy +R'}
update the state estimate
R =1 P (R Y)Y (R %0 )
end while
assngrxk‘k = x'kﬁkm“)
update the error covariance

Pk =

[I - K(zmax) ‘(([max)} Puk 1

export.;-based SoC estimaﬁq = )’Zik\k.l
end for

Estimation fusion

determine the probabilit, that the battery runs an; fori = 1,2 with 32, 7§, = 1
fori=1to 2do
compute the initial weights

C9n . .
k=237 X (Xk|k B Uk) Sc=HiPige 1(H) T +R

. o . _ _ T G2
ko1 = N R 15U Tkt = Yk — kg1 Wee = (21) 7 2(S) " Z exp {(st)(}

end for
compute the normalized weights

fuse the SoC estimates fromd; and. 7,
2 .
— —
SoG =Y SoGpi
2

until SoC estimation task ends

-1

Table 1: ThevMt AdaSoC algorithm: Adaptive SoC estimation using multiple models.
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