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Abstract

We propose a design for soft landing control based on control invariant sets and receding
horizon control. Soft landing control, which is of interest in several applications in aerospace,
transportation systems, and factory automation, aims at achieving precise positioning of a
moving object to a target position, while ensuring that the maximum velocity decreases as
the target is approached. The resulting soft contact avoids damages and wear. In this paper,
we formulate appropriate constraints and recast soft landing control as the generation of an
admissible trajectory of the constrained system. Then, we compute a control invariant set and
design a receding horizon control law that forces the state to remain in such set. Thus, the
trajectories generated by the controller achieve soft landing, regardless of the controller cost
function and horizon, also when the dynamics are uncertain. We demonstrate our approach
by a case study in transportation systems.
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Soft-landing Control by Control Invariance
and Receding Horizon Control

S. Di Cairano, A. Ulusoy and S. Haghighat

Abstract— We propose a design for soft landing control based More recently, approaches based on model predictive
on control invariant sets and receding horizon control. Sof  control (MPC) have been developed and applied to valve
landing control, which is of interest in several applicatils soft landing control in camless [5], [6] engines. Soft largli

in aerospace, transportation systems, and factory automain, . .
aims at achieving precise positioning of a moving object to [OF SPacecraft docking by MPC was proposed in [7], [8].

a target position, while ensuring that the maximum velocity While MPC has increased capabilities when compared to
decreases as the target is approached. The resulting softrdact  reference governor, its design is significantly more com-
avoids damages and wear. In this paper, we formulate appropt  plicated. This resulted in the approaches in [5], [7] to
ate constraints and recast soft landing co.ntrol as the genation require prediction horizon and cost function tuning, and
of an admissible trajectory of the constrained system. Thenwe L . - .
compute a control invariant set and design a receding horizo ~ Characterization of MPC recursive feasibility by exteesiv
control law that forces the state to remain in such set. Thus, Simulations. Also, the capabilities of MPC in dealing with
the trajectories generated by the controller achieve softdnding,  uncertainty in the system parameters are still limited.
regardless of the controller cost function and horizon, ale when In this paper, we propose a soft landing control design
the dynamics are uncertain. We demonstrate our approach by ' . . .
a case study in transportation systems. baged on model pred|ct|ve_control and_ control invarians sgt
which allows to characterize the regions where recursive
. INTRODUCTION feasibility is guaranteed regardless of the cost functiod a

A significant number of control applications in the fieldsPrediction horizon of MPC, and that can be applied also
of automotive, aerospace, manufacturing, and trans;ilmtatin the case of parameter uncertainties. In Section Il we
engineering involve the precise positioning of a movingormulate the soft landing problem and we review some
object at a desired stopping location while ensuring that t undamental results in control invariant sets [9]. In Sacfil
velocity of the objects (or at least its allowed upper bound¥® show how by formulating soft landing constraints, the
is progressively reduced while approaching the Stoppin@olution of the soft landing problem amounts to generating
position. This results in soft landing (also called softtemt) an infinite time admissible trajectories for a constrained
of the object at the desired stopping position that inducesystem. In order to generate such trajectories, we compute
robustness to disturbances and modeling errors. A cldssi@control invariant set and use it as additional constramts
example of soft landing control is the closing of a valvéhe MPC optimal control problem. In Section IV we show
into its seating, which has found application in automotivéoW the approach can be extended to polytopic difference
actuators, especially for camless engines valve contiol [inclusions [10] to handle uncertainty in system dynamios. |
where high speed opening and closing of the valve is needegction V the approach is demonstrated through a test case
without rough impacts that reduce the components operatiff§0lving an automated transportation vehicle stopping-co
life. Besides valve control, some important problems thdfol. The conclusions and future directions are summarized
can be formulated as soft landing control are, among othef§, Section VI.
vehicle Stopping [2] and Spacecraft docking [3] Notation: R, R0+, RJr are the real, nonnegative real,

The soft landing requirements can be formulated in termi@ositive real numbers, and, Zo., Z; are the integer,
of constraints that relate the bounds on the allowed olflonnegative integer, positive integer numbers. &y and
ject velocity to the object position, and hence constraineroj, we denote the convex hull and the projection on the
control techniques can be used to design a controller th@@main of vectorz, respectively. Given sets, P, int(S)
solves the soft landing problem. An early application oflenotes the interior, anl & P the Minkowski sum. For a
constrained control to soft landing control was based ofiscrete-time signat € R™ with sampling periodZ’, (1)
reference governor [4], which can be guaranteed to satisfy the state at sampling instanti.e., at timeTt. By [z]; we
constraints. On the other hand the reference governor h@gnote the-th component ofr, and byl and0 the identity
limited performance since it only manipulates the refeeenc@nd the “zero” matrices of appropriate size.
of a (linearly) pre-compensated system.

Il. PROBLEM FORMULATION AND PRELIMINARIES
S. Di Cairano and S. Haghighat are with Mitsubishi Electrie- R
search Laboratories, Cambridge, MA, emadlli cai r ano@ eee. or g, First we define the problem addressed in this paper and

haghi ghat @rer| . com . limi Its i i .
A. Ulusoy was an intern at Mitsubishi Electric Research Lralwries at we review some preliminary results in control invariantsset

the time of this research. emadli phan@u. edu that are used for the subsequent developments.



A. Problem definition B. Preliminaries on control invariant sets and polytopic

We consider a physical object moving along a one dilinear difference inclusions
mensional space towards a target position, where the objeciconsider the discrete-time system

d [ defined b
ynamics are defined by ok 4 1) = Fala(k) u(k), I(E), @)

nf
d(t) = v(t) = %ZFN) (1) wherez € R™, u € R™ and?¥ € R™ are the state,
i=1 input and disturbance vectors, respectively, subject & th
whered is the position with respect to the targetjs the constraints
velocity, F;, i = 1,...,ny are the external forces acting on

the object, including the controlled ones. We consider the z(k) € X, u(k) €U, Vk € Zoy. @)
dynamics (1) modeled as Given the set of admissible disturbancé®.C R™, a
. robust control invariant (RCI) seb a set of states for which
2(t) = (), ult), 9(t) (23) there exists a control law such that (3) never violates (4)
y(t) = h(z@)), (2b)  for any admissible sequence of disturbanfégk)} ., where

where f and h are smooth functionsy € X C R js V(k) € O forall k € Zo,.

the state vectory € U - R™ js the control input vector, Definition 1: A setC - X is said to be a robust control
y = |dv] € Y C R? is the (performance) output vector, invariant set for (3) if

andy € O C R™ is the dlstur_bance vector which co_ntalnsxgk) €eC= Juk) clU: )
measured and unmeasured disturbances, and (possibly) par

metric uncertainties. Note that (2) may include additional fa(z(k), u(k), 9(k)) € C, ¥i(k) € O, Vk & Zo.

dynamics related to the forces(t), i = 1,...,ns, sUCh The selC is said to be thenaximalRCI (mRCl) set, denoted
as the ones due to actuator dynamics, dynamical frictiafy co if it is a robust control invariant set and contains all
models, and so on. the other RCI sets it

In what follows, we often separate two cases, one where The computation of RCI sets relies on the Pre-set operator
9(t) = 0, for all t € Roy, which means that there is no

uncertainty, and one where uncertainty is present. For the  Pre(S,0) £ {zeX : Juel (6)
simplicity of the subsequent discussion (1) representsea on falz,u,9) € S, V¥ € O},

dimensional motion, but all the results can be easily ex¢dnd
to multi-dimensional motions. which computes the set of states for the system (3) that can

The objective of the soft landing controller is to bring theP® robustly driven to the target s6tC R™ in one step.
system described by (1) to zero velocity in a pre-specified 1h€ procedure to compute the mRCI set for system (3),
[egioN £ gt = [Emin, Emax] C R, Emin < Emax. FUrthermore, subjept to _constra!nts (4), and based on the operator (6) is
itis required that the maximum velocity of the object tovgrd described in Algorithm 1.
the target decreases with the distance from the target. For
simplicity, we assume without loss of generality tiiate ~ Algorithm 1 Computation ofC>
int(é'tgt) and thatd(O) < O, ’U(O) > 0. 1) QO <« X, h+0

Problem 1 (Soft landing control)Given system (2) and  2) O, + Pre(Qp, 0) N Qy,
an initial stater(0) such that/(0) < 0, v(0) > 0, controlthe  3) | f ,,; =,
input u such that for allt € R, u(t) € U, z(t) € X and C® + Quiq, return
v(t) < vmax([€(f)]) whereg(t) = d(t) — argmax.ee,, [~  4) h+< h+1,goto 2.

d(0)] and d%vmax(|§|) < 0. Also, there needs to be a time
instantt € Ry whenu(t) =0, z(t) € Egt. [ | ) ;

With a little abuse of notation, b= oo we mean that the _ Algorithm 1 generates the sequence of sgth, };_,
soft landing occurs asymptotically and that is an acceptabft € Zo+ satisfyingQy,.1 C Qp, for all h € Zoy, h < h.
solution. Also, ¢ represents the distance from the farthesflgorithm 1 terminates if2, 1, = €, and in this casél; is
point of the target set from the initial condition. Finaltpe the MRCI seC* for (3) subject to (4). We refer the reader
target setf, is a generalization of the case whekg, is to [9], [11] for details on the termination of Algorithm 1.

a single point. Definition 2 (Robustly admissible input set oy Given

Problem 1 does not require the state to reach an equiliB- robust control invariant sef for (3)-(4), the robustly
rium at the landing instarit This because in several practical@dmissible input (RAI) set for state € C is
problems at Iand_ing the dynamic_s of the_ sy_ste_m ghanges, Cole) ={ucll: f(z,u,0) €C, VI € O).
such as the transition from dynamic to static friction in mov
ing vehicles and valves, the engagement of parking brakeskor z € C>°, we denote the RAI set bg:°(x).
elevators, or the engagement of clamps in spacecraft dgckin Definition 3: If system (3) is not subject to uncertainty

Finally, if (2) includes disturbances, Problem 1 impligitl (i.e., O = {0}), the setC in Definition 1 is simply called
requires the controller to robustly satisfy the constsint  control invariant (Cl) set




Definition 4: Given ¢, € Zo., A; € R%*" B, € /\

R X" i =1,... ¢and aseW = co{w, ..., w,} C R™ T Ay
a (disturbed) polytopic linear difference inclusion (pl)id
z(k+1) € (co{ Ax(k)+ Biu(k) }i_y @ co{ Byw; }]_,) (7) .
P
wherex € X C R" is the state vector, € &/ C R™« is the
input vector, andv € YW C R™ is the disturbance vector.
By convexity arguments, (7) can be written as
V4 n Ymin
k+1 = i Az k Biu(k iBpow; (8a) gy _
1) = SN+ B + 3 B (69 i TSN
i=1 i=1 [~
‘ g
DNi=1 N0 i=1...1( (8b) et
i=1 Fig. 1: Schematics of the soft landing constraints
n
ZHZZI, ,UzZO,Z:Lﬂ? (80)

= admissible trajectory must (eventually) reach a statich

where A = [)\1,..._,)\@], M = (L1, .., py) are unkn_own that [A(z)]; = d € Exge, [h(z)]2 = v = 0. Due to (10b),

(and possibly varying) but satisfy (8b), (8c), respectivel ¢, every z such that/a(z)]; < emin, v = [h(z)]2 > 0.

Definition 5: For the pLDI (7) subject to the polytopic 5, the other hand for every such that[i(z)]; > Ema,
constraintst € X, u € U and with a polytopic disturbance =~ _ [h(z)]s < 0. By the continuity of the admissible

set)V, the RCI set (Definition 1) is trajectories of (11) and sina&(t) = v(t), we have that any
C = {zeX: Juel,(Az+ Bu+ Byw) €C, admissible trajectory must intersect or accumulate at atpoi
Vi1, 0Ywe W) ) of the set{z € R™= : [h(x)]1 € Eigt, [R(x)]2 = 0}. [ |
1. CONSTRAINED CONTROL FORSOET L ANDING Remark 1:By allowing &, to be a set, we obtain a more
' general form of the problem of soft landing to a specific
Next we reformulate Problem 1 as the control of goint. In general£,,; is small and it can also be a single
constrained system and we show that trajectories thafysatisoint. However, choosing,,; as a single point as opposed
the constraints achieve soft landing. To this end we defing a set forces the desired state to the border of the feasible
the soft-landing constraints set of (10). This may cause robustness problems and also
o) < Amax(Emax — d(1) (10a) make the problem infeasible [7], especially in the presence

, ; dlt 10b of disturbances.
v() = Ywin(Emin = d(t) (100) The following result also holds.

Where Yimin, Ymax € R4, Ymin < Ymax, are spatial decel-  Corollary 1: Given anyp > 0, d(0) < emin — p < 0 (S€€
eration coefficients. See Figure 1 for a representation @figure 1), for any admissible trajectory of (11) there exist
constraints (10). t € Ry such thatd(f) = [h(x(£)]; = Emin — p and
Definition 6: Given systeni: = f(z), y = h(x) subject to
the constrainte: € X andy € ), a trajectoryz() : Ro, — 7 ¢ [ 1 log (Emax — d(0)> ’ 1 log (ami“ — d(0)
R™= is admissible for € [0, c0), (or simply,admissible for Vmax Ae+p Vmin p 12)
shortness) ifc(t) € X, y(t) € Y for all t € [0, 00).
The followir(lg) result PEO)|dS. 0o where A = Emax ~ Emin > O'_ _ o
Theorem 1:Consider the constrained system obtainedhe proof is omitted due to limited space and it is based on

from (2) and (10), computing two extremal trajectories “riding” the consirtai
Given anyo > 0, from anyd(0) < emin — 0/Ymin time
i(t) = flz(t),ud),d()) (11a) pounds for reaching velocity (see Figure 1) can also be
v = | o) | =re () OPtaned _ _
By Theorem 1, solving Problem 1 amounts to generating
[Y(t)]2 < Ymax(emax — [¥(t)]1)  (11c) an admissible trajectory fot € [0, +occ) for system (11).
()2 > Ymin (Emin — [¥()]1) (11d) In order to generate such an admissible trajectory, several

constrained control techniques can be applied. In this pape
we consider numerical algorithms that restricts the system
Any admissible trajectory of (11) is a solution of Problem 1be linear and discrete time, hence relaxing the admigyibili

Proof (sketch):For the considered casé0) < e, <  Of the continuous time trajectory to the admissibility oéth
0, (10a) enforces(t) < vmax(|£(t)]). An admissible tra- discrete time trajectory. Thus, it is assumed that the saqpl
jectory of (11) enforces that for all € Ry, x(t) € X, periodTy is small enough not to cause significant constraints
u(t) € U, and (10a) is satisfied. Finally, we show that anyiolations in the intersamping.

x(t) € X, u(t) el (11e)



Next, we propose a strategy based on MPC and contrflet not necessarily optimal) solution of (16), for= z(k).
invariant sets that overcomes some of the limitations of th€hen, the obtained trajectory solves Problem 1. [ |
current approaches, such as the limits in manipulating oniyhe proof is omitted due to limited space, and follows
a reference for the reference governor and the guarantegectly from using the Cl set constraint (16c).
feasibilif[y for ;tandard MPC, and that is capable of harglin Thus, the MPC strategy based on (16) generates trajecto-
uncertainties in the model parameters. ries that solve Problem 1. Next, we consider the case where
the physical system model is not exactly known or its linear

A. Soft landing control by control invariant sets / THOR : !
) __model is an approximation of nonlinear dynamics.
Due to Theorem 1, Problem 1 is solved by generating

admissible trajectories for (11). A method to achieve that i

to compute a control invariant set for the constrained syste IV. ROBUST SOFT-LANDING CONTROL
and to maintain the state in such a set, which is always
possible if the set is control invariant. Consider the case where system (2) is subject to un-

While the approach described next applies to generaertainty. Let f; be the discrete time formulation of the

nonlinear systems, here we consider (2) to be a discrete-tilynamics (2) and letl/,n < Z,, a set of matrices
linear system, {(A;,B))}t_,, a matrix B,, € R%*"v and a polytope
W = co{ws,...,w,} C R™ exist, such that for alt € X,
z(k+1) = Alp)z(k) + B(p)u(k) + Byw(k) (13a) , UdeO K

y(k) = Cux(k) (13b)

wherez € X CR"™, u e Y CR™, y=[dv] € Y CR?, .
w € W C R is the additive disturbance, apcc P C R7» [N addition, for allz ¢ 22( ued deO,lety = Cu
is the parameter vector which represents uncertainty in tf{g" SOme matrixC’ € R="=. Then, we reformulate con-
plant. It is assumed that, &/, W are polytopes. First, we trolling (11) as controlling the constrained polytopicdar

assume that there are no disturbances,le= {0}, and no difference inclusion .

fa(x,u,9) € co{Ax + Biu}i_,) @ co{ Buw; }]_,),

uncgrtaiqti_es, i.e.p is known and does not change, so that a2(k+1) € col{Ax(k)+ Biu(k)}_,)
for simplicity A = A(p), B = B(p). Beo{Buw;}_1) (172)
Let ¥ = {z € X : (11)holds for y = Cz}, C be a whtli=l
control invariant set of (13), subject to € X, u € U, and y(k) = Cux(k) (17Db)
Cu(xz) C U be the corresponding RAI set (k)2 < Ymax(Emax — [¥(K)]1) (17¢c)
C = {reX: Juel, Av+BuecC} (14) (k)2 > Ymin(emin — [y(k)]1) (17d)
Cul) = {ueld: Ax+BueC}. (15) w(k) € X, u(k) €U (17e)
Obviously,C C X. Thus, if2(0) € C and for allk € Zq,, We can repeat the approach of Section Ill, whereas now
u(k) € Cu(z(k)), z(k) € X for all k € Zq,. we compute a RCI set for (17). For such computation we

For system (13) with no uncertainties, by Algorithm 1 thémplement thePre-set operator as defined in Algorithm 2.
maximalCl (mCl) set,C*, can be computed [9].

GivenC>* = {z € R" : H*z < K>} we obtain also Algorithm 2 Pre(Q,,©®) computation for (17)
the RAl setC°(z) = {u e U : Ax + Bu € C*} ={u € . . . ™
R™ : H®z + Ju < K} Given the stater € ¢, 1) Qn={zeR™:HWz <KW} KM e R"

consider the finite time optimal control problem U={ueR™ : Hu< K},
2) [KM]; = [KM); — max[H™ B,,w];,
N-1 wew
m[}n F(zy) + Z L(x;,u;) (16a) i=1,.. .,n,(lh)
i=0 3 Uy ={reR™ ueR™: Hu<kK,
st. x4 = Az + Buyy (16b) H® (Aiz + Biu) < KM i=1,....0}
H>®(Az; + Bu;) < K (16c)  4) Qpy1 = proj, (Qp+1) N,
u; €U (16d)
o =T (16e) When Algorithm 1 with thePre-set operator implemented

as in Algorithm 2 is applied to (17) terminates, we obtain the
RCI setC™ = {x € R"» : H*z < K°} and, from that, the
RAI setC°(x) ={u e U : Ajx + Bju+ Byw € C°,Vi =
..., lVweWr={ueR™: Hx + J°u < K°}.

where N € Z. is the prediction horizon,U =
[uo, ...,un—1] is the control sequence, arfd, L, are the
final and stage cost, respectively. The following resuldkol
Theorem 2:Consider system (13) whedy = {0} andp
Remark 2:The setC® = {(z,u) € Rt : y €

is known, and let:(0) € C*°. Let the control input be chosen . - 2 :
Cy°(x)} is equal to€;,, whereh € Zg, is the smallest

so that at any: € Zo., u(k) = i, whereU is any feasible “u ' :
W € Lot ulk) = o Y index such thaf);,, ; = Q; in Algorithm 1

Relating (13) to (2), we havpy’ p']’ = 0. Given x € C*, consider the finite time optimal control



problem

N—-1

min F(zn)+ ; L(x;,u;) (18a)
st. xip1 = Awx; + Bu; + B,w (18b)
Hp i+ J u; < K2 (18c)
wi €U (18d)
To=2x (18e)

where N € Zy is the prediction horizon,U =
[uwo, ..., un—1] is the control sequencdy, L, are the final
and stage cost, respectivelyl, B) € co({(A;, B;)}¢_,, and
w € W. Then, the following result holds. 200 o e
Theorem 3:Consider (17) and lex(0) € C>. Let the d fn]
control input be chosen so that at abye Zo, u(k) = o,
wherel is any feasible (yet not necessarily optimal) solution
of (18) forx = x(k). Then, we obtain a trajectory that solves

L
-50

Fig. 2: Control invariant set for the nominal vehicle model

Problem 1. | _ _ _
The proof is omitted due to limited space, and followdesistance as a measured disturbance, (&), = _Coﬂg/m-
directly from using the RCI set constraint (18c). for all k € Zo; and another state representinglatep

Remark 3:The prediction model can be any model indelayed velocity. For the case of no uncertainty = 0,
the difference inclusion. Convergence is independent ef tor j € {m, c1,7a}, the resulting discrete state model is the
chosen model, although the closed-loop performance is ndfiear system (13) with knowp wherez € R?, z(k) =

Remark 4: Constraint (18c) can be enforced at the firstd(k) v(k) x(k) ¢(k) v(k—1)]" andy € R?, y = [d v]', and

step of the prediction horizon only. Since, is invariant, at @ € [~dw(cog/m), +0u(copg/m)], wlm/s’] is an additive
the subsequent control step a feasible input will still exis Pounded disturbance that models also uncertainty in the

rolling resistance (especially due to the friction coeéfiti
V. CASE STUDY IN TRANSPORTATIONSYSTEMS u) andd,, expresses the relative uncertainty.
We consider upper and lower bounds on the stafes,
12200, 1], v € [~5,30], x € [-1,1], and on the input; €
[—1,1], and thequasi-monotonicitywelocity constraint,

We consider a large automated transportation vehicle mo
ing on a straight line that has to stop&g,; = [—0.5,0.5]m.
The dynamics of the vehicle are

. k) <wvk-1 w(d(k) — dmin 20

i — v, (158) oK) < vk = 1) + 70 (d(k) — dusa)  (20)
. kq copg  C1 whered,i, = —200 and~, > 0 is the monotonicity relax-
ot) = %X(t) T Ev(t)’ (19b)  ation gain. Constraint (20) ensures that wher: dyin =

) B 1 1 —200 the vehicle can only decelerate, and progressively relax
Xt = _T_GX(t) + T_au(t)’ (190)  his requirementy, as the vehicle gets closer to the stopping

point to counteract disturbances.

where d[m], v[m/s], and are position, velocity, and .
[m], vlm/s] X P 4 We formulate (16) with (16a) as

traction actuator state, respectively. Equations (19a&) an

(19b) describe the system’s longitudinal dynamics, where N—-1
m[kg] is the vehicle massy[m] is the wheel radius, and J =" [yihQlyilr + uiRu (21)
kqo[Nm] is the traction actuator gain. In (19b) the resist- i=0

ing forces to the vehicle motion are the rolling resistancahere@, R € Ry, are weighting matricesy = 5, and we
and the bearing friction, modeled through the coefficientsompute the mCI s&f> using Algorithm 1. In Figure 2 we
co, c1, respectively. For the conditions considered in thishowproj, (C>), superimposed toroj, (X) 2 proj, (C>).
application the airdrag is small, and hence it is ignored In Figure 2 we also show the closed-loop trajectories
(or linearized and included im4). Equation (19¢c) mod- of position and velocity obtained from0 random initial
els the traction actuator dynamics. We consider also thlmnditions where from each we generated trajectorie for
case where (19) is affected by uncertainty in the bearingifferent calibrations of the cost function 21),= 1, R =1
friction, mass, and actuator time constant, thatnis € (red) and@ = 0, R = 1 (blue). The trajectories obtained for
[(1=06m)m, (L4 0m)m], c1 € [(1=6a)c1,(1+da)c1], @ =1 evolve close to the highest velocity allowed by the
Ta € [(1 = 07a) Ta, (1 + 674) Ta], Whered,,, .1, 6, define  control invariant set. The time-histories for positionlogity,
the relative uncertainty. and input for all the simulations are reported in Figure 3.
We obtain the model for control design from (19), that Next, we consider the case when there is uncertainty in
formulated in discrete-time witlly, = 1s, and augmented the parameters, namely;,, = 6,, = 0.25, .1 = 0.20,
with a constant state, representing the effect of the rolling 6,, = 0.15. We model the system as a pLDI (17) which
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Fig. 3: Position, velocity, and input time history for the simuteis of the  Fig. 5: Position, velocity, and input time history for the simutats of the
nominal vehicle uncertain model of the vehicle

of admissible time-unbounded trajectories of a constchine

25 system, compute a control invariant set for the constrained
system and implement an MPC to maintain the state in the
20 set. By using polytopic linear difference inclusions, fdriah
= robust control invariant sets can be computed, the apprisach
E15 applicable also to uncertain systems. We have demonstrated
. our approach through a case study in transportation systems
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