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horizon control. Soft landing control, which is of interest in several applications in aerospace,
transportation systems, and factory automation, aims at achieving precise positioning of a
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function and horizon, also when the dynamics are uncertain. We demonstrate our approach
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Soft-landing Control by Control Invariance
and Receding Horizon Control

S. Di Cairano, A. Ulusoy and S. Haghighat

Abstract— We propose a design for soft landing control based
on control invariant sets and receding horizon control. Soft
landing control, which is of interest in several applications
in aerospace, transportation systems, and factory automation,
aims at achieving precise positioning of a moving object to
a target position, while ensuring that the maximum velocity
decreases as the target is approached. The resulting soft contact
avoids damages and wear. In this paper, we formulate appropri-
ate constraints and recast soft landing control as the generation
of an admissible trajectory of the constrained system. Then, we
compute a control invariant set and design a receding horizon
control law that forces the state to remain in such set. Thus,
the trajectories generated by the controller achieve soft landing,
regardless of the controller cost function and horizon, also when
the dynamics are uncertain. We demonstrate our approach by
a case study in transportation systems.

I. I NTRODUCTION

A significant number of control applications in the fields
of automotive, aerospace, manufacturing, and transportation
engineering involve the precise positioning of a moving
object at a desired stopping location while ensuring that the
velocity of the objects (or at least its allowed upper bound)
is progressively reduced while approaching the stopping
position. This results in soft landing (also called soft contact)
of the object at the desired stopping position that induces
robustness to disturbances and modeling errors. A classical
example of soft landing control is the closing of a valve
into its seating, which has found application in automotive
actuators, especially for camless engines valve control [1]
where high speed opening and closing of the valve is needed
without rough impacts that reduce the components operating
life. Besides valve control, some important problems that
can be formulated as soft landing control are, among others,
vehicle stopping [2] and spacecraft docking [3].

The soft landing requirements can be formulated in terms
of constraints that relate the bounds on the allowed ob-
ject velocity to the object position, and hence constrained
control techniques can be used to design a controller that
solves the soft landing problem. An early application of
constrained control to soft landing control was based on
reference governor [4], which can be guaranteed to satisfy
constraints. On the other hand the reference governor has
limited performance since it only manipulates the reference
of a (linearly) pre-compensated system.
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More recently, approaches based on model predictive
control (MPC) have been developed and applied to valve
soft landing control in camless [5], [6] engines. Soft landing
for spacecraft docking by MPC was proposed in [7], [8].

While MPC has increased capabilities when compared to
reference governor, its design is significantly more com-
plicated. This resulted in the approaches in [5], [7] to
require prediction horizon and cost function tuning, and
characterization of MPC recursive feasibility by extensive
simulations. Also, the capabilities of MPC in dealing with
uncertainty in the system parameters are still limited.

In this paper, we propose a soft landing control design
based on model predictive control and control invariant sets
which allows to characterize the regions where recursive
feasibility is guaranteed regardless of the cost function and
prediction horizon of MPC, and that can be applied also
in the case of parameter uncertainties. In Section II we
formulate the soft landing problem and we review some
fundamental results in control invariant sets [9]. In Section III
we show how by formulating soft landing constraints, the
solution of the soft landing problem amounts to generating
an infinite time admissible trajectories for a constrained
system. In order to generate such trajectories, we compute
a control invariant set and use it as additional constraintsin
the MPC optimal control problem. In Section IV we show
how the approach can be extended to polytopic difference
inclusions [10] to handle uncertainty in system dynamics. In
Section V the approach is demonstrated through a test case
involving an automated transportation vehicle stopping con-
trol. The conclusions and future directions are summarized
in Section VI.

Notation: R, R0+, R+ are the real, nonnegative real,
positive real numbers, andZ, Z0+, Z+ are the integer,
nonnegative integer, positive integer numbers. Byco and
projx we denote the convex hull and the projection on the
domain of vectorx, respectively. Given setsS, P , int(S)
denotes the interior, andS ⊕ P the Minkowski sum. For a
discrete-time signalx ∈ R

n with sampling periodTs, x(t)
is the state at sampling instantt, i.e., at timeTst. By [x]i we
denote thei-th component ofx, and byI and0 the identity
and the “zero” matrices of appropriate size.

II. PROBLEM FORMULATION AND PRELIMINARIES

First we define the problem addressed in this paper and
we review some preliminary results in control invariant sets
that are used for the subsequent developments.



A. Problem definition

We consider a physical object moving along a one di-
mensional space towards a target position, where the object
dynamics are defined by

d̈(t) = v̇(t) =
1

m

nf
∑

i=1

Fi(t) (1)

whered is the position with respect to the target,v is the
velocity,Fi, i = 1, . . . , nf are the external forces acting on
the object, including the controlled ones. We consider the
dynamics (1) modeled as

ẋ(t) = f(x(t), u(t), ϑ(t)) (2a)

y(t) = h(x(t)), (2b)

where f and h are smooth functions,x ∈ X ⊆ R
nx is

the state vector,u ∈ U ⊆ R
nu is the control input vector,

y = [d v]′ ∈ Y ⊆ R
2 is the (performance) output vector,

andϑ ∈ O ⊆ R
nϑ is the disturbance vector which contains

measured and unmeasured disturbances, and (possibly) para-
metric uncertainties. Note that (2) may include additional
dynamics related to the forcesFi(t), i = 1, . . . , nf , such
as the ones due to actuator dynamics, dynamical friction
models, and so on.

In what follows, we often separate two cases, one where
ϑ(t) = 0, for all t ∈ R0+, which means that there is no
uncertainty, and one where uncertainty is present. For the
simplicity of the subsequent discussion (1) represents a one-
dimensional motion, but all the results can be easily extended
to multi-dimensional motions.

The objective of the soft landing controller is to bring the
system described by (1) to zero velocity in a pre-specified
regionEtgt ≡ [εmin, εmax] ⊆ R, εmin ≤ εmax. Furthermore,
it is required that the maximum velocity of the object towards
the target decreases with the distance from the target. For
simplicity, we assume without loss of generality that0 ∈
int(Etgt) and thatd(0) < 0, v(0) > 0.

Problem 1 (Soft landing control):Given system (2) and
an initial statex(0) such thatd(0) < 0, v(0) > 0, control the
input u such that for allt ∈ R0+, u(t) ∈ U , x(t) ∈ X and
v(t) ≤ vmax(|ξ(t)|) whereξ(t) = d(t)− argmaxz∈Etgt |z −
d(0)| and d

dξ
vmax(|ξ|) < 0. Also, there needs to be a time

instant t̄ ∈ R+ whenv(t̄) = 0, x(t̄) ∈ Etgt.
With a little abuse of notation, bȳt =∞ we mean that the

soft landing occurs asymptotically and that is an acceptable
solution. Also, ξ represents the distance from the farthest
point of the target set from the initial condition. Finally,the
target set,Etgt, is a generalization of the case whereEtgt is
a single point.

Problem 1 does not require the state to reach an equilib-
rium at the landing instant̄t. This because in several practical
problems at landing the dynamics of the system changes,
such as the transition from dynamic to static friction in mov-
ing vehicles and valves, the engagement of parking brakes in
elevators, or the engagement of clamps in spacecraft docking.

Finally, if (2) includes disturbances, Problem 1 implicitly
requires the controller to robustly satisfy the constraints.

B. Preliminaries on control invariant sets and polytopic
linear difference inclusions

Consider the discrete-time system

x(k + 1) = fd(x(k), u(k), ϑ(k)), (3)

where x ∈ R
nx , u ∈ R

nu and ϑ ∈ R
nϑ are the state,

input and disturbance vectors, respectively, subject to the
constraints

x(k) ∈ X , u(k) ∈ U , ∀k ∈ Z0+. (4)

Given the set of admissible disturbances.O ⊆ R
nϑ , a

robust control invariant (RCI) setis a set of states for which
there exists a control law such that (3) never violates (4)
for any admissible sequence of disturbances{ϑ(k)}k, where
ϑ(k) ∈ O for all k ∈ Z0+.

Definition 1: A set C ⊆ X is said to be a robust control
invariant set for (3) if

x(k) ∈ C ⇒ ∃u(k) ∈ U : (5)

fd(x(k), u(k), ϑ(k)) ∈ C, ∀ϑ(k) ∈ O, ∀k ∈ Z0+.

The setC is said to be themaximalRCI (mRCI) set, denoted
by C∞, if it is a robust control invariant set and contains all
the other RCI sets inX .

The computation of RCI sets relies on the Pre-set operator

Pre(S,O) , {x ∈ X : ∃u ∈ U (6)

fd(x, u, ϑ) ∈ S, ∀ϑ ∈ O},

which computes the set of states for the system (3) that can
be robustly driven to the target setS ⊆ R

n in one step.
The procedure to compute the mRCI set for system (3),

subject to constraints (4), and based on the operator (6) is
described in Algorithm 1.

Algorithm 1 Computation ofC∞

1) Ω0 ← X , h← 0
2) Ωh+1 ← Pre(Ωh,O) ∩ Ωh

3) If Ωh+1 = Ωh

C∞ ← Ωh+1, return
4) h← h+ 1, goto 2.

Algorithm 1 generates the sequence of sets{Ωh}
h̄
h=0,

h̄ ∈ Z0+, satisfyingΩh+1 ⊆ Ωh, for all h ∈ Z0+, h ≤ h̄.
Algorithm 1 terminates ifΩh+1 = Ωh, and in this caseΩh is
the mRCI setC∞ for (3) subject to (4). We refer the reader
to [9], [11] for details on the termination of Algorithm 1.

Definition 2 (Robustly admissible input set forC): Given
a robust control invariant setC for (3)-(4), the robustly
admissible input (RAI) set for statex ∈ C is

Cu(x) = {u ∈ U : f(x, u, ϑ) ∈ C, ∀ϑ ∈ O}.

For x ∈ C∞, we denote the RAI set byC∞u (x).
Definition 3: If system (3) is not subject to uncertainty

(i.e., O = {0}), the setC in Definition 1 is simply called
control invariant (CI) set.



Definition 4: Given ℓ, η ∈ Z0+, Ai ∈ R
nx×nx , Bi ∈

R
nx×nu , i = 1, . . . , ℓ and a setW ≡ co{wi, . . . , wη} ⊂ R

nw

a (disturbed) polytopic linear difference inclusion (pLDI) is

x(k+1) ∈ (co{Aix(k)+Biu(k)}
ℓ
i=1⊕co{Bwwi}

η
i=1) (7)

wherex ∈ X ⊆ R
nx is the state vector,u ∈ U ⊆ R

nu is the
input vector, andw ∈ W ⊆ R

nw is the disturbance vector.
By convexity arguments, (7) can be written as

x(k + 1) =
ℓ

∑

i=1

λi(Aix(k) +Biu(k)) +

η
∑

i=1

µiBwwi (8a)

ℓ
∑

i=1

λi = 1, λi ≥ 0, i = 1, . . . , ℓ (8b)

η
∑

i=1

µi = 1, µi ≥ 0, i = 1, . . . , η (8c)

whereΛ = [λ1, . . . , λℓ], M = [µ1, . . . , µη] are unknown
(and possibly varying) but satisfy (8b), (8c), respectively.

Definition 5: For the pLDI (7) subject to the polytopic
constraintsx ∈ X , u ∈ U and with a polytopic disturbance
setW , the RCI set (Definition 1) is

C = {x ∈ X : ∃u ∈ U , (Aix+Biu+Bww) ∈ C,

∀i = 1, . . . , ℓ, ∀w ∈ W}. (9)

III. C ONSTRAINED CONTROL FORSOFT LANDING

Next we reformulate Problem 1 as the control of a
constrained system and we show that trajectories that satisfy
the constraints achieve soft landing. To this end we define
the soft-landing constraints

v(t) ≤ γmax(εmax − d(t)) (10a)

v(t) ≥ γmin(εmin − d(t)) (10b)

where γmin, γmax ∈ R+, γmin < γmax, are spatial decel-
eration coefficients. See Figure 1 for a representation of
constraints (10).

Definition 6: Given systeṁx = f(x), y = h(x) subject to
the constraintsx ∈ X andy ∈ Y, a trajectoryx(·) : R0+ →
R

nx is admissible fort ∈ [0,∞), (or simply,admissible, for
shortness) ifx(t) ∈ X , y(t) ∈ Y for all t ∈ [0,∞).

The following result holds.
Theorem 1:Consider the constrained system obtained

from (2) and (10),

ẋ(t) = f(x(t), u(t), ϑ(t)) (11a)

y(t) =

[

d(t)
v(t)

]

= h(x(t)) (11b)

[y(t)]2 ≤ γmax(εmax − [y(t)]1) (11c)

[y(t)]2 ≥ γmin(εmin − [y(t)]1) (11d)

x(t) ∈ X , u(t) ∈ U (11e)

Any admissible trajectory of (11) is a solution of Problem 1.
Proof (sketch):For the considered cased(0) < εmin <

0, (10a) enforcesv(t) ≤ vmax(|ξ(t)|). An admissible tra-
jectory of (11) enforces that for allt ∈ R0+, x(t) ∈ X ,
u(t) ∈ U , and (10a) is satisfied. Finally, we show that any

d

v

Etgt

εmin εmax

γmin

γmax

ρ

σ

Fig. 1: Schematics of the soft landing constraints

admissible trajectory must (eventually) reach a statex such
that [h(x)]1 = d ∈ Etgt, [h(x)]2 = v = 0. Due to (10b),
for every x such that[h(x)]1 < εmin, v = [h(x)]2 > 0.
On the other hand for everyx such that[h(x)]1 > εmax,
v = [h(x)]2 < 0. By the continuity of the admissible
trajectories of (11) and sincėd(t) = v(t), we have that any
admissible trajectory must intersect or accumulate at a point
of the set{x ∈ R

nx : [h(x)]1 ∈ Etgt, [h(x)]2 = 0}.

Remark 1:By allowing Etgt to be a set, we obtain a more
general form of the problem of soft landing to a specific
point. In general,Etgt is small and it can also be a single
point. However, choosingEtgt as a single point as opposed
to a set forces the desired state to the border of the feasible
set of (10). This may cause robustness problems and also
make the problem infeasible [7], especially in the presence
of disturbances.

The following result also holds.

Corollary 1: Given anyρ > 0, d(0) < εmin − ρ < 0 (see
Figure 1), for any admissible trajectory of (11) there exists
t̂ ∈ R+ such thatd(t̂) = [h(x(t̂)]1 = εmin − ρ and

t̂ ∈

[

1

γmax
log

(

εmax − d(0)

∆ε+ ρ

)

,
1

γmin
log

(

εmin − d(0)

ρ

)]

(12)
where∆ε = εmax − εmin > 0.

The proof is omitted due to limited space and it is based on
computing two extremal trajectories “riding” the constraints.
Given anyσ > 0, from any d(0) < εmin − σ/γmin time
bounds for reaching velocityσ (see Figure 1) can also be
obtained.

By Theorem 1, solving Problem 1 amounts to generating
an admissible trajectory fort ∈ [0,+∞) for system (11).
In order to generate such an admissible trajectory, several
constrained control techniques can be applied. In this paper
we consider numerical algorithms that restricts the systemto
be linear and discrete time, hence relaxing the admissibility
of the continuous time trajectory to the admissibility of the
discrete time trajectory. Thus, it is assumed that the sampling
periodTs is small enough not to cause significant constraints
violations in the intersamping.



Next, we propose a strategy based on MPC and control
invariant sets that overcomes some of the limitations of the
current approaches, such as the limits in manipulating only
a reference for the reference governor and the guaranteed
feasibility for standard MPC, and that is capable of handling
uncertainties in the model parameters.

A. Soft landing control by control invariant sets

Due to Theorem 1, Problem 1 is solved by generating
admissible trajectories for (11). A method to achieve that is
to compute a control invariant set for the constrained system
and to maintain the state in such a set, which is always
possible if the set is control invariant.

While the approach described next applies to general
nonlinear systems, here we consider (2) to be a discrete-time
linear system,

x(k + 1) = A(p)x(k) +B(p)u(k) +Bww(k) (13a)

y(k) = Cx(k) (13b)

wherex ∈ X ⊆ R
nx , u ∈ U ⊆ R

nu , y = [d v]′ ∈ Y ⊆ R
2,

w ∈ W ⊆ R
nw is the additive disturbance, andp ∈ P ⊆ R

np

is the parameter vector which represents uncertainty in the
plant1. It is assumed thatX , U , W are polytopes. First, we
assume that there are no disturbances, i.e.,W ≡ {0}, and no
uncertainties, i.e.,p is known and does not change, so that
for simplicity A = A(p), B = B(p).

Let X̄ = {x ∈ X : (11) holds for y = Cx}, C be a
control invariant set of (13), subject tox ∈ X̄ , u ∈ U , and
Cu(x) ⊆ U be the corresponding RAI set

C = {x ∈ X̄ : ∃u ∈ U , Ax+Bu ∈ C} (14)

Cu(x) = {u ∈ U : Ax +Bu ∈ C}. (15)

Obviously,C ⊆ X̄ . Thus, if x(0) ∈ C and for allk ∈ Z0+,
u(k) ∈ Cu(x(k)), x(k) ∈ X̄ for all k ∈ Z0+.

For system (13) with no uncertainties, by Algorithm 1 the
maximalCI (mCI) set,C∞, can be computed [9].

Given C∞ ≡ {x ∈ R
nx : H∞x ≤ K∞} we obtain also

the RAI setC∞u (x) = {u ∈ U : Ax + Bu ∈ C∞} = {u ∈
R

nu : H∞
u x + J∞

u u ≤ K∞
u }. Given the statex ∈ C∞,

consider the finite time optimal control problem

min
U

F (xN ) +

N−1
∑

i=0

L(xi, ui) (16a)

s.t. xi+1 = Axi +Bui (16b)

H∞(Axi +Bui) ≤ K∞ (16c)

ui ∈ U (16d)

x0 = x (16e)

where N ∈ Z+ is the prediction horizon,U =
[u0, . . . , uN−1] is the control sequence, andF , L, are the
final and stage cost, respectively. The following result holds.

Theorem 2:Consider system (13) whereW = {0} andp
is known, and letx(0) ∈ C∞. Let the control input be chosen
so that at anyk ∈ Z0+, u(k) = ũ0, whereŨ is any feasible

1Relating (13) to (2), we have[w′ p′]′ = ϑ.

(yet not necessarily optimal) solution of (16), forx = x(k).
Then, the obtained trajectory solves Problem 1.

The proof is omitted due to limited space, and follows
directly from using the CI set constraint (16c).

Thus, the MPC strategy based on (16) generates trajecto-
ries that solve Problem 1. Next, we consider the case where
the physical system model is not exactly known or its linear
model is an approximation of nonlinear dynamics.

IV. ROBUST SOFT-LANDING CONTROL

Consider the case where system (2) is subject to un-
certainty. Let fd be the discrete time formulation of the
dynamics (2) and letℓ, η ∈ Z+, a set of matrices
{(Ai, Bi)}

ℓ
i=1, a matrix Bw ∈ R

nx×nw , and a polytope
W = co{w1, . . . , wη} ⊂ R

nw exist, such that for allx ∈ X ,
u ∈ U , ϑ ∈ O

fd(x, u, ϑ) ∈ co({Aix+Biu}
ℓ
i=1)⊕ co({Bwwi}

η
i=1),

In addition, for all x ∈ X , u ∈ U , ϑ ∈ O, let y = Cx
for some matrixC ∈ R

2×nx . Then, we reformulate con-
trolling (11) as controlling the constrained polytopic linear
difference inclusion .

x(k + 1) ∈ co({Aix(k) +Biu(k)}
ℓ
i=1)

⊕co({Bwwi}
η
i=1) (17a)

y(k) = Cx(k) (17b)

[y(k)]2 ≤ γmax(εmax − [y(k)]1) (17c)

[y(k)]2 ≥ γmin(εmin − [y(k)]1) (17d)

x(k) ∈ X , u(k) ∈ U (17e)

We can repeat the approach of Section III, whereas now
we compute a RCI set for (17). For such computation we
implement thePre-set operator as defined in Algorithm 2.

Algorithm 2 Pre(Ωh,O) computation for (17)

1) Ωh ≡ {x ∈ R
nx : H(h)x ≤ K(h)}, K(h) ∈ R

n(h)
q

U = {u ∈ R
nu : Huu ≤ Ku},

2) [K̃(h)]i = [K(h)]i − max
w∈W

[H(h)Bww]i,

i = 1, . . . , n
(h)
q

3) Ω̄h+1 = {x ∈ R
nx , u ∈ R

nu : Huu ≤ Ku

H(h)(Aix+Biu) ≤ K̃(h), i = 1, . . . , ℓ}
4) Ωh+1 = projx(Ω̄h+1) ∩ Ωh

When Algorithm 1 with thePre-set operator implemented
as in Algorithm 2 is applied to (17) terminates, we obtain the
RCI setC∞ ≡ {x ∈ R

nx : H∞x ≤ K∞} and, from that, the
RAI set C∞u (x) = {u ∈ U : Aix+ Biu+ Bww ∈ C

∞, ∀i =
1, . . . , ℓ, ∀w ∈ W} = {u ∈ R

nu : H∞
u x+ J∞

u u ≤ K∞
u }.

Remark 2:The set C∞u = {(x, u) ∈ R
nx+nu : u ∈

C∞u (x)} is equal toΩ̄h̄+1 where h̄ ∈ Z0+ is the smallest
index such thatΩh̄+1 = Ωh̄ in Algorithm 1

Given x ∈ C∞, consider the finite time optimal control



problem

min
U

F (xN )+
N−1
∑

i=0

L(xi, ui) (18a)

s.t. xi+1 = Āxi + B̄ui +Bww̄ (18b)

H∞
u xi + J∞

u ui ≤ K∞
u (18c)

ui ∈ U (18d)

x0 = x (18e)

where N ∈ Z+ is the prediction horizon,U =
[u0, . . . , uN−1] is the control sequence,F , L, are the final
and stage cost, respectively,(Ā, B̄) ∈ co({(Ai, Bi)}

ℓ
i=1, and

w̄ ∈ W . Then, the following result holds.
Theorem 3:Consider (17) and letx(0) ∈ C∞. Let the

control input be chosen so that at anyk ∈ Z0+, u(k) = ũ0,
whereŨ is any feasible (yet not necessarily optimal) solution
of (18) forx = x(k). Then, we obtain a trajectory that solves
Problem 1.
The proof is omitted due to limited space, and follows
directly from using the RCI set constraint (18c).

Remark 3:The prediction model can be any model in
the difference inclusion. Convergence is independent of the
chosen model, although the closed-loop performance is not.

Remark 4:Constraint (18c) can be enforced at the first
step of the prediction horizon only. SinceC∞ is invariant, at
the subsequent control step a feasible input will still exist.

V. CASE STUDY IN TRANSPORTATIONSYSTEMS

We consider a large automated transportation vehicle mov-
ing on a straight line that has to stop inEtgt ≡ [−0.5, 0.5]m.
The dynamics of the vehicle are

ḋ(t) = v(t), (19a)

v̇(t) =
ka
rm

χ(t)−
c0µg

m
−

c1
m

v(t), (19b)

χ̇(t) = −
1

τa
χ(t) +

1

τa
u(t), (19c)

where d[m], v[m/s], and χ are position, velocity, and
traction actuator state, respectively. Equations (19a) and
(19b) describe the system’s longitudinal dynamics, where
m[kg] is the vehicle mass,r[m] is the wheel radius, and
ka[Nm] is the traction actuator gain. In (19b) the resist-
ing forces to the vehicle motion are the rolling resistance
and the bearing friction, modeled through the coefficients
c0, c1, respectively. For the conditions considered in this
application the airdrag is small, and hence it is ignored
(or linearized and included inc1). Equation (19c) mod-
els the traction actuator dynamics. We consider also the
case where (19) is affected by uncertainty in the bearing
friction, mass, and actuator time constant, that ism ∈
[(1− δm) m̄, (1 + δm) m̄], c1 ∈ [(1− δc1) c̄1, (1 + δc1) c̄1],
τa ∈ [(1− δτa) τ̄a, (1 + δτa) τ̄a], whereδm, δc1, δτa define
the relative uncertainty.

We obtain the model for control design from (19), that
formulated in discrete-time withTs = 1s, and augmented
with a constant stateζ, representing the effect of the rolling
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Fig. 2: Control invariant set for the nominal vehicle model

resistance as a measured disturbance, i.e.,ζ(k) = c0µg/m,
for all k ∈ Z0+ and another state representing a1-step
delayed velocity. For the case of no uncertaintyδj = 0,
for j ∈ {m, c1, τa}, the resulting discrete state model is the
linear system (13) with knownp wherex ∈ R

5, x(k) =
[d(k) v(k) χ(k) ζ(k) v(k− 1)]′ andy ∈ R

2, y = [d v]′, and
w ∈ [−δw(c0µg/m),+δw(c0µg/m)], w[m/s2] is an additive
bounded disturbance that models also uncertainty in the
rolling resistance (especially due to the friction coefficient
µ) andδw expresses the relative uncertainty.

We consider upper and lower bounds on the states,d ∈
[−200, 1], v ∈ [−5, 30], χ ∈ [−1, 1], and on the inputu ∈
[−1, 1], and thequasi-monotonicityvelocity constraint,

v(k) ≤ v(k − 1) + γv(d(k)− dmin) (20)

wheredmin = −200 andγv > 0 is the monotonicity relax-
ation gain. Constraint (20) ensures that whend = dmin =
−200 the vehicle can only decelerate, and progressively relax
this requirementγv as the vehicle gets closer to the stopping
point to counteract disturbances.

We formulate (16) with (16a) as

J =

N−1
∑

i=0

[yi]1Q[yi]1 + uiRui (21)

whereQ,R ∈ R0+ are weighting matrices,N = 5, and we
compute the mCI setC∞ using Algorithm 1. In Figure 2 we
showprojy(C

∞), superimposed toprojy(X̄ ) ⊇ projy(C
∞).

In Figure 2 we also show the closed-loop trajectories
of position and velocity obtained from10 random initial
conditions where from each we generated trajectories for2
different calibrations of the cost function (21),Q = 1, R = 1
(red) andQ = 0, R = 1 (blue). The trajectories obtained for
Q = 1 evolve close to the highest velocity allowed by the
control invariant set. The time-histories for position, velocity,
and input for all the simulations are reported in Figure 3.

Next, we consider the case when there is uncertainty in
the parameters, namelyδm = δτa = 0.25, δc1 = 0.20,
δw = 0.15. We model the system as a pLDI (17) which
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Fig. 3: Position, velocity, and input time history for the simulations of the
nominal vehicle
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Fig. 4: Robust control invariant set for the uncertain model of the vehicle

requiresℓ = 8, η = 2, and we compute the robust control
invariant setC̃∞ using Algorithm 1 and Algorithm 2. In
Figure 4 we show theprojy(C̃

∞) for the case of a system
subject to uncertainty, superimposed toprojy(C

∞), and to
projy(X̄ ). Indeed, the RCI set is smaller than the nominal
CI set. In Figure 4 we also show the trajectories of position
and velocity obtained from3 initial conditions, each with10
values of the parameters randomly chosen at their maximum
or minimum. The control input is generated as described in
Section IV with cost function (21) forQ = 1, R = 1, with a
fixed prediction model being always the same vertex of the
pLDI. The trajectories tend to group into two bundles, which
correspond to the minimum and maximum value of the mass,
which is the parameter with highest sensitivity. The position,
velocity, and input time-histories are presented in Figure5.

VI. CONCLUSIONS

We have presented a design for general soft-landing con-
trollers. The approach reduces the problem to the generation
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Fig. 5: Position, velocity, and input time history for the simulations of the
uncertain model of the vehicle

of admissible time-unbounded trajectories of a constrained
system, compute a control invariant set for the constrained
system and implement an MPC to maintain the state in the
set. By using polytopic linear difference inclusions, for which
robust control invariant sets can be computed, the approachis
applicable also to uncertain systems. We have demonstrated
our approach through a case study in transportation systems.
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