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Abstract
In this paper we propose an approach for solving convex quadratic programs (QPs) with linear
equalities and general linear inequalities by the alternating direction method of multipliers
(ADMM). ADMM has attracted considerable interest in recent years in different applica-
tion fields, especially due to the simplicity of the iteration. We focus on the application of
ADMM to the QPs that are solved in Model Predictive Control (MPC) algorithms, where
the inequalities represent limits on the states and controls. After introducing our ADMM
iteration, we provide a proof of convergence based on the theory of maximal monotone opera-
tors. The proving approach allows us to identify a more general measure to monitor the rate
of convergence than those previously used and to characterize the optimal step size for the
ADMM iterations for the considered class of QPs. While the mathematical result has a sim-
ilar structure to previous contributions, it allows us to relax some of the previously required
assumptions that currently limit the applicability to the QP of model predictive control. The
results are validated through numerical simulations on a large number of publicly available
QPs, which are generated from an MPC for controlling of a four tank process.
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Optimal Step-Size Selection in Alternating Direction Method of Multipliers
for Convex Quadratic Programs and Model Predictive Control

Arvind U. Raghunathan1 and Stefano Di Cairano1

Abstract— In this paper we propose an approach for solving
convex quadratic programs (QPs) with linear equalities and
general linear inequalities by the alternating direction method
of multipliers (ADMM). ADMM has attracted considerable
interest in recent years in different application fields, especially
due to the simplicity of the iteration. We focus on the application
of ADMM to the QPs that are solved in Model Predictive
Control (MPC) algorithms, where the inequalities represent
limits on the states and controls. After introducing our ADMM
iteration, we provide a proof of convergence based on the theory
of maximal monotone operators. The proving approach allows
us to identify a more general measure to monitor the rate of
convergence than those previously used and to characterize the
optimal step size for the ADMM iterations for the considered
class of QPs. While the mathematical result has a similar
structure to previous contributions, it allows us to relax some
of the previously required assumptions that currently limit the
applicability to the QP of model predictive control. The results
are validated through numerical simulations on a large number
of publicly available QPs, which are generated from an MPC
for controlling of a four tank process.

I. INTRODUCTION

In recent years, the Alternating Direction Method of
Multipliers (ADMM) has emerged as a popular optimization
algorithm for the solution of structured convex programs
in the areas of compressed sensing [1], image processing
[2], machine learning [3], distributed optimization [4], reg-
ularized estimation [5] and semidefinite programming [6],
[7], among others. ADMM algorithms were first proposed
by Gabay and Mercier [8] for the solution of variational
inequalities that arise in solving partial differential equations
and were developed in the 1970’s in the context of optimiza-
tion. An excellent introduction to the ADMM algorithm, its
applications, and the vast literature covering the convergence
results is provided in [9].

Under mild assumptions ADMM can be shown to con-
verge for all choices of the step-size [9]. R-linear conver-
gence of ADMM for strictly convex inequality constrained
QPs was proved in [10]. The requirement of strict convexity
and the restriction to a two block decomposition for proving
R-linear convergence of ADMM were relaxed by [11]. Also,
R-linear convergence rate of ADMM was shown in [12] in
the more general context of finding roots of the sum of a con-
tinuous monotone map and a point-to-set maximal monotone
operator with a separable two-block structure. Some of the
assumptions of [12] were relaxed in [13] by allowing for
the subproblems to be solved inexactly while maintaining
R-linear convergence for the ergodic iteration sequence. A
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first result on optimal step-size selection for the ADMM
algorithm for strictly convex QPs with general inequality
constraints was derived in [14]. However, such result requires
full row rank of the constraint matrix, which actually makes it
inapplicable for several cases, for instance when some of the
variables have both upper and lower bounds. The authors in
[15] considered a version of ADMM where the restrictions
of [14] were relaxed and derived the optimal step-size for
their ADMM algorithm. While [14] and [15] address the
case of strictly convex QPs with inequality constraints, the
ADMM algorithm of [14] results in subproblems that are
easier to solve, but the ADMM algorithm of [15] often results
in subproblems that are computationally intensive due to the
projection onto a set described by general linear inequalities.
The current paper addresses the computational aspect by
allowing equality constraints and simpler inequalities in the
QPs. We show that we can still derive the optimal step-size
under weaker assumptions than those in [14].

Our interest in ADMM is especially motivated by its po-
tential application to Model Predictive Control (MPC) [16].
MPC is an algorithm for controlling (constrained) dynam-
ical systems that repeatedly solves a finite horizon opti-
mal control problem formulated from the system dynamics,
constraints, and a user specified cost function. For linear
systems subject to linear constraints and with a quadratic cost
function, the MPC finite horizon optimal control problem
can be formulated as a parametric quadratic program [17].
At every control cycle, a specific QP is generated from
the parametric quadratic program and the current values of
the prediction model states, the QP is solved, and the first
element of the optimal input sequence is applied as control
input. At the following control cycle a new optimization
problem is solved from the updated system state (and,
possibly, reference). Since in recent years MPC has been
increasingly applied to systems with fast dynamics [18]–[22]
where it is executed in low computational power embedded
processors, low complexity fast optimization algorithms have
been investigated in the MPC context. First, MPC-tailored in-
terior point solvers [23], [24] and active set solvers [25] have
been introduced, which however require complex routines
of linear algebra. More recently, iterative algorithms with
simple updates have been also proposed. Algorithms based
on Nesterov’s fast gradient methods were developed in [26],
[27], algorithms based on accelerated gradient methods were
developed in [28], [29], an algorithm based on a multiplica-
tive update was developed in [30] and an algorithm based on
the fast gradient method combined with the Lagrange method
of multipliers was proposed in [31].
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ADMM has been explored in the context of MPC by [32],
which decomposed the MPC problem into two blocks, an
equality constrained QP and a projection onto the MPC
inequalities. More recently, [33] proposed to decompose the
MPC problem by time-steps and to solve the decoupled
problems to a consensus by ADMM. Under the assumptions
in [33], each time-step problem is a strictly convex QP, and
hence the authors propose to solve also the subproblems by
ADMM. None of these papers discuss the choice of the
ADMM step-size parameter. In [14] a first investigation
on the optimal step-size in the context of ADMM was
derived. The assumptions required by the approach proposed
in [14] do not hold in general for QPs generated by MPC,
thus, a heuristic strategy for these cases which showed good
numerical performance was introduced. The work of [15]
removes the restrictions of [14] and derives optimal step-
size for the ADMM algorithm but results in computationally
demanding subproblems.

In this paper we aim at solving by ADMM convex QPs
with equalities and general inequalities. We split the QP into
two blocks, an equality constrained QP and a projection onto
simple bounds. The considered class of QPs include those
that are generated by MPC when the system has bounds
on states and controls. For this class of QPs, we aim at
establishing the optimal step size for ADMM. The optimal
step size derived in [14] in general does not directly apply to
this class of QPs, because the full row rank condition on the
constraint matrix does not hold. Hence only the heuristic is
applicable so far for the QPs to be solved in MPC. While [14]
relies on the technique introduced by [10], in this paper we
provide a method similar to that in [15] and significantly
different from [9], [10], [14] to prove linear convergence of
ADMM. This method allows us to derive the optimal step-
size for the QPs we focus on. Our proof technique is based
on the theory of maximal monotone operators [34]. Instead
of relying on this involved line of results, we exploit the
structure of the class of convex QPs to provide short, self-
contained proofs of convergence that leads to our result on
the optimal step size selection.

The rest of the paper is organized as follows. Section
II introduces the QP formulation. The ADMM algorithm
is described in Section III. Convergence analysis of the
algorithm is provided in Section IV and the optimal selection
for the step-size of ADMM is derived in Section V. In
Section VI we present simulation results on MPC problems.
Conclusions and future work are discussed in Section VII.

Notation: We denote by R,R+ the set of reals and set of
non-negative reals, respectively, by Z the set of integers and
by Sn the set of symmetric n× n matrices. All vectors are
assumed to be column vectors. For a vector x ∈ Rn, xT

denotes its transpose and for two vectors x, y, (x, y) denotes
the vertical stacking of the individual vectors. For a matrix
A ∈ Rn×n, ρ(A) denotes the spectral radius, λi(A) denotes
the eigenvalues and λmin(A), λmax(A) denote the minimum
and maximum eigenvalues. For a matrix A ∈ Sn, A � 0
(A � 0) denotes positive (semi)definiteness. For a convex
set Y ⊂ Rn, PY(x) denotes the projection of x onto the set.

For M ∈ Rn×n, MPY(x) denotes the product of matrix M
and result of the projection. We denote by In ∈ Rn×n the
identity matrix, and (PY − In)(x) denotes PY(x)− x. The
notation λ ⊥ x ∈ Y denotes the inequality λT (x′ − x) ≥
0, ∀x′ ∈ Y , which is also called a variational inequality.
We use ‖ · ‖ to denote the 2-norm for vectors and matrices.
A sequence {xk} ⊂ Rn converging to x∗ is said to converge
at: (i) Q-linear rate if ‖xk+1 − x∗‖ ≤ α‖xk − x∗‖ where
0 < α < 1 and (ii) R-linear rate if ‖xk+1−x∗‖ ≤ αk where
{αk} is Q-linearly convergent.

II. QP FORMULATION

Consider the QP

min
y

1

2
yTQy + qTy

s.t. Ay = b

y ∈ Y

(1)

where y, q ∈ Rn, Q ∈ Sn � 0, A ∈ Rm×n,m < n and Y
is a closed convex set. For example, Y can include limits on
the variables y and general inequalities on y. We make the
following assumptions.

Assumption 1: The QP (1) is feasible, i.e., there exists y
such that Ay = b,y ∈ Y and the optimal value is finite.

Assumption 2: The matrix A has full row rank of m.
Assumption 3: The hessian is positive definite on the null

space of the equality constraints, i.e., ZTQZ � 0 where
Z ∈ Rn×(n−m) is a basis for the null space of A.

Using strong duality [35] the following lemma is proved.
Lemma 1 (Solution to (1)): Suppose Assumption 1 holds.

Then, there exist an optimal solution y∗ to (1) and multi-
pliers ξ∗ to equality constraints, λ∗ to inequality constraints
satisfying,

Qy∗ +AT ξ∗ − λ∗ = −q
Ay∗ = b

λ∗ ⊥ y∗ ∈ Y .
(2)

The last constraint in (2) is a variational inequality. If Y =
[ymin,ymax] the variational inequality is equivalent to λ∗i ≥ 0
if y∗i = ymin

i , λ∗i ≤ 0 if y∗i = ymax
i , and λ∗i = 0 otherwise.

For Y = [ymin,∞), the variational inequality reduces to the
linear complementarity constraint λ∗ ≥ 0 ⊥ y∗ ≥ ymin . We
refer to (y∗, ξ∗,λ∗) satisfying (2) as a KKT point. From
convexity [35], any KKT point is a minimizer of (1).

III. ADMM ALGORITHM

Consider the following reformulation of the QP in (1),

min
y,w

1

2
yTQy + qTy

s.t. Ay = b,w ∈ Y
y = w.

(3)

The advantage of (3) is that the inequalities are placed on
separate variables, coupled with the others by y = w. The
ADMM algorithm dualizes the constraints in the objective
using multipliers λ, and augments the objective with a
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penalty on the squared norm of the violation of the equality
constraints coupling x and w. Thus, we obtain

min
y,w

L(y,w,λ) :=
1

2
yTQy + qTy +

β

2

∥∥∥∥y −w − λβ
∥∥∥∥2

s.t. Ay = b,w ∈ Y
(4)

for β > 0, which results in a problem where w and y are
coupled only by the objective function. The operations in the
ADMM iteration are:

yk+1 = arg min
y

L(y,wk, λ̃
k
) s.t. Ay = b

= M(wk + λ̃
k
− q̃) +Nb

wk+1 = arg min
w

L(yk+1,w, λ̃
k
) s.t. w ∈ Y

= PY(yk+1 − λ̃
k
)

λ̃
k+1

= λ̃
k

+wk+1 − yk+1

(5)

where M := Z
(
ZT (Q/β + In)Z

)−1

ZT , N := (In −
MQ/β)R(AR)−1, R,Z denote an orthonormal basis for
the range space of AT and null space of A, respectively,
and λ̃ = λ/β, q̃ = q/β. Substituting for yk+1 in (5) and
simplifying we obtain,

wk+1 = PY(vk)

λ̃
k+1

= (PY − In)(vk)
(6)

where

vk = Mwk + (M − In)λ̃
k
−Mq̃ +Nb. (7)

The algorithm (5) attains primal and dual feasibility in the
limit. The following lemma shows that at every iteration of
the ADMM algorithm the variational inequality in (2) holds
between wk+1 and λ̃

k+1
.

Lemma 2: At every iteration of the ADMM algorithm
wk+1, λ̃

k+1
in (5) satisfy λ̃

k+1
⊥ wk+1 ∈ Y .

Proof: From the definition of projection operator,
PY(v) := arg minθ∈Y

1
2‖θ − v‖

2. From the convexity of Y
we have that at the solution any feasible direction is non-
decreasing for the objective. In other words,

(PY(v)− v)T (v′ − PY(v)) ≥ 0 ∀ v′ ∈ Y
=⇒ (PY − In)(v) ⊥ PY(v) ∈ Y .

(8)

Thus, the variational inequality is satisfied by the operators
PY(v) and (PY − In)(v) for any vector v. Observe that the
update steps for wk+1 and λ̃

k+1
in (6) are precisely of this

form. Thus, the claim holds.
The following result shows the equivalence between the

fixed points of the iteration (5) and the minimizer of (1).
Theorem 1: Suppose Assumption 1 holds. Then, if

(y◦,w◦, λ̃
◦
) is a fixed point of (5), (y◦,ξ◦,βλ̃

◦
) is a KKT

point for (1), where ξ◦ is the multiplier for the equalities in
the subproblem for y in (5). Conversely, if (y∗, ξ∗,λ∗) is a
KKT point of (1), (y∗,y∗,λ∗/β) is a fixed point of (5).

Proof: Suppose that (y◦,w◦, λ̃
◦
) is a fixed point of

(5). From the update for λ̃ we obtain,

λ̃
◦

= λ̃
◦

+w◦ − y◦ =⇒ 0 = w◦ − y◦ =⇒ y◦ ∈ Y ,

where the second implication follows from the update of w,
since wk+1 ∈ Y . From Lemma 2, w◦ and λ̃

◦
satisfy the

variational inequality in (2). Since y◦ = w◦ and β > 0,
βλ̃
◦
⊥ y◦ ∈ Y . Also, from the update of y in (5), there

exist ξ◦ such that(
Q+ βI AT

A 0

)[
y◦

ξ◦

]
=

[
βw◦ + βλ̃

◦
− q

b

]
,

i.e., the first order optimality conditions are satisfied. Sub-
stituting βy◦ for βw◦ and simplifying,(

Q AT

A 0

)[
y◦

ξ◦

]
=

[
βλ̃
◦
− q
b

]
,

which together with βλ̃
◦
⊥ y◦ ∈ Y are the first order

optimality conditions in (2). Hence, (x◦, ξ◦, βλ̃
◦
) is a KKT

point of (1) which implies that y◦ is a minimizer of (1).
Thus, the first claim holds.

Suppose that (x∗, ξ∗,λ∗) solves (1). Hence, from (2)(
Q AT

A 0

)[
y∗

ξ∗

]
=

[
λ∗ − q
b

]
=⇒

(
Q+ βI AT

A 0

)[
y∗

ξ∗

]
=

[
βy∗ + λ∗ − q

b

]
which is the fixed point of the update step of y in (5) with
yk+1 = wk = y∗, λ̃

k
= λ∗/β. Furthermore, since λ∗ ⊥ y∗

from (2), λ∗/β ⊥ y∗ for all β > 0 which implies,

(λ∗/β)T (v′ − y∗) ≥ 0,∀v′ ∈ Y
=⇒ (y∗ − y∗ + λ∗/β)T (v′ − y∗) ≥ 0, ∀v′ ∈ Y .

Thus, y∗ satisfies the first order optimality conditions in (8)
for being the projection of y∗−λ∗/β on to the convex set Y
and hence, y∗ = PY(y∗−λ∗/β). Consequently, (y∗,λ∗/β)
is a fixed point of the update step for w in (5). The fixed
point of the update equation in λ̃ holds trivially, and thus
also the second claim holds.

A. Comparison with the ADMM Algorithm in [14]

The authors in [14] proposed an ADMM algorithm for the
class of QPs in (1) where Q̂ � 0, equality constraints are
not present, Y ≡ {y|By ≤ c}, and where B ∈ Rp×n is full
row rank. The authors reformulate the QP as,

min
y,z

1

2
yT Q̂y + qTy

s.t. By + z = c, z ≥ 0
(9)

The formulation of (9) for applying ADMM is,

min
y,z

L̂(y, z,ν) :=
1

2
yT Q̂y + qTy

+
β

2

∥∥∥∥By + z − c+
ν

β

∥∥∥∥2

s.t. z ≥ 0

(10)
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and the ADMM iteration in [14] is,

yk+1 = arg min
y

L̂(y, zk,νk)

= M̂

(
BT (−zk + c− ν

k

β
)− q̃

)
zk+1 = arg min

z
L̂(yk+1, z,νk) s.t. z ≥ 0

= max

(
0,−Byk+1 + c− ν

k

β

)
νk+1

β
=
νk

β
+Byk+1 + zk+1 − c

(11)

where M̂ = (Q̂/β+BTB)−1. The main advantage of (11)
is that the subproblem for updating z is simple. When
applied to (9), our approach retains such an advantage by
reformulating the problem as,

min
y,z,w

1

2
yT Q̂y + qTy

s.t. By + z = c, (y, z) = w,w ∈ Rn × Rp+.
(12)

With such formulation Assumption 3 holds since Q̂ � 0 is
assumed in [14]. The results in [14] for optimal step-size
selection require B to be full row rank. Instead, we will
derive an approach that, i.e. Assumption 2, only requires the
full row rank p of [B Ip], which trivially holds. In order
to develop such an approach, a novel way to analyze the
convergence of the ADMM algorithm is introduced next.

IV. CONVERGENCE OF ALGORITHM

Next, we show that the ADMM algorithm converges to a
solution of (1) for any choice of the parameter β > 0 in a
novel way. The sketch of the proving strategy is as follows:
• the iterates are shown to lie within a bounded set
• the existence of limit point follows from Bolzano-

Weierstrass’s theorem [36]
• every limit point is a fixed point of (6) from the

continuity of the update steps
• convergence to a solution follows from Theorem 1.

First, we introduce some results on the projection operator.
Lemma 3: For any v, v′ ∈ Rn:
(i) (PY(v)−PY(v′))T ((In−PY)(v)−(In−PY)(v′)) ≥ 0

(ii) ‖(PY(v), (In−PY)(v))−(PY(v′), (In−PY)(v′))‖ ≤
‖v − v′‖

(iii) ‖(2PY − In)(v)− (2PY − In)(v′)‖ ≤ ‖v − v′‖
Proof: The result follows by noting that PY(v) :=

arg min
θ

IY(θ)+ 1
2‖θ−v‖

2 where IY(θ) is the set membership
indicator function being 0 when θ ∈ Y and ∞ otherwise.
Thus, PY = (In + ∂IY)−1 where ∂IY is the subgradient of
the extended real-valued convex function IY(·), and hence,
PY(·) is a maximal monotone operator [34]. The claims
follow from Proposition 1 of [34].

The following result on spectral radius ofM is also useful.
Lemma 4: Suppose Assumptions 2 and 3 hold. Then,

ρ(ZTMZ) < 1 and ρ(M) < 1.

Proof: The eigenvalues of ZTMZ are given by
(λi(Z

TQZ)/β + 1)−1. Since β > 0 and ZTQZ � 0 by
Assumption 3 we have that 0 < (λi(Z

TQZ)/β+1)−1 < 1.
Since Z is an orthonormal matrix we have that ρ(M) =
ρ(ZTMZ) < 1. The claim holds.
Next, we prove that the iterates in (6) are bounded.

Lemma 5: Suppose Assumptions 1-3 hold. Then, the se-
quence {(wk, λ̃

k
)} produced by (6) is such that:

(i) ‖(wk+1, λ̃
k+1

)−(w∗, λ̃
∗
)‖ ≤ ‖(wk, λ̃

k
)−(w∗, λ̃

∗
)‖

(ii) Equality in (i) holds iff (wk, λ̃
k
) is a fixed point of (6).

Proof: Define

v∗ = Mw∗ + (M − In)λ̃
∗
−Mq̃ +Nb. (13)

Then,

‖(wk+1, λ̃
k+1

)− (w∗, λ̃
∗
)‖2

=‖(PY(vk), (PY − In)(vk))− (PY(v∗), (PY − In)(v∗))‖2

≤‖vk − v∗‖2

≤‖M(wk −w∗) + (M − In)(λ̃
k
− λ̃

∗
)‖2

≤‖wk −w∗‖2 + ‖λ̃
k
− λ̃

∗
‖2

where the first inequality holds by Lemma 3(ii) and the last
inequality holds since ρ(M) < 1, by Lemma 4. Hence, claim
(i) holds.

Consider claim (ii). Suppose (i) holds with equality and
assume that (wk, λ̃

k
) is not a fixed point of (6). Then,

‖(wk, λ̃
k
)− (w∗, λ̃

∗
)‖ = ‖(wk+1, λ̃

k+1
)− (w∗, λ̃

∗
)‖

≤‖M(wk −w∗) + (M − In)(λ̃
k
− λ̃

∗
)‖

where the last inequality follows from the proof of claim
(i). Since ρ(M) < 1 by Lemma 4, the above can only hold
if (wk, λ̃

k
) is a fixed point of (6) and the claim holds. The

reverse implication trivially holds, hence claim (ii) is proven.

Finally, we prove convergence of ADMM algorithm (5).
Theorem 2: Suppose Assumptions 1-3 hold. Then, the se-

quence of iterates generated by (5) converges to a minimizer
of (1).

Proof: From Lemma 5(i) the iterate sequence produced
by (5) lies in a compact set. By Bolzano-Weierstrass’s
theorem [36], there exists a convergent subsequence
{(ykj ,wkj , λ̃

kj
)} → (y◦,w◦, λ̃

◦
). From the continuity of

the update equations in (5), {(ykj+1,wkj+1, λ̃
kj+1

)} →
(y′,w′, λ̃

′
) where y′ = v◦ − λ̃

◦
,w′ = PY(v◦), λ̃

′
=

(PY − In)(v◦) and v◦ is defined according to (7) with
wk, λ̃

k
replaced by w◦, λ̃

◦
. Thus, (y′,w′, λ̃

′
) is also a limit

point of the sequence {(yk,wk, λ̃
k
)}. From Lemma 5(i),

{‖(wk, λ̃
k
)− (w∗, λ̃

∗
)‖} is a non-increasing sequence and

hence, convergent. Thus,

‖(w′, λ̃
′
)− (w∗, λ̃

∗
)‖ = ‖(w◦, λ̃

◦
)− (w∗, λ̃

∗
)‖

=⇒ ‖(PY(v◦), (PY − In)(v◦))− (w∗, λ̃
∗
)‖

= ‖(w◦, λ̃
◦
)− (w∗, λ̃

∗
)‖
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and hence from Lemma 5(ii) the limit (w◦, λ̃
◦
) is also a

fixed point of (6). Thus, every limit point of the sequence
is a fixed point of (6) and hence of (5). By Theorem 1 we
have that all fixed points of (5) are minimizers of (1) and
the claim is proven.

V. OPTIMAL STEP-SIZE SELECTION

Theorem 2 does not provide any quantification of the rate
of convergence of the sequence or insight on how this rate
is affected by the choice of the step-size parameter β. In
this section we derive an optimal value for β based on the
eigenvalues of M in (5).

To characterize the convergence rate, consider the se-
quence {vk} from (7). We monitor vk to measure con-
vergence (6) because it appears in the updates of both w
and λ̃ in (6). More importantly, this choice is motivated by
Lemma 3(ii) from which,

‖(wk+1, λ̃
k+1

)− (w∗, λ̃
∗
)‖

=‖(PY(vk), (PY − In)(vk))− (PY(v∗), (PY − In)(v∗))‖
≤‖vk − v∗‖

where v∗ is defined in (13). Indeed, convergence of {vk}
ensures convergence to a fixed point of (6) since wk, λ̃

k
are

uniquely determined by vk.
Simplifying the operators in (7) we obtain,

vk+1

= MPY(vk) + (M − In)(PY − In)(vk)−Mq̃ +Nb

= ((2M − In)PY + In −M) (vk)−Mq̃ +Nb

=

(
(2M − In)PY −

2M − In
2

+
In
2

)
(vk)−Mq̃ +Nb

=

(
2M − In

2
(2PY − In) +

In
2

)
(vk)−Mq̃ +Nb.

We can now prove the convergence rate.
Theorem 3: Suppose Assumptions 1-3 hold. Then, the

sequence of iterates {vk} generated by (6) is Q-linearly
convergent.

Proof: The convergence rate of the iteration can be
deduced from,

‖vk+1 − v∗‖

=

∥∥∥∥2M − In
2

(
2PY − In)(vk)− (2PY − In)(v∗)

)
+

1

2
(vk − v∗)

∥∥∥∥ .
Since RRT +ZZT = In and RTZ = 0 we have that,

(2M − In) = (RRT +ZZT )(2M − In)(RRT +ZZT )

= 2Z(ZTMZ)ZT −RRT −ZZT
(14)

where the last simplification follows from noting that M =

Z
(
ZT (Q/β + In)Z

)−1

ZT is orthogonal to R. For sim-

plicity, define

uk = (2PY − In)(vk)− (2PY − In)(v∗),

M̃ =
2ZTMZ − In−m

2
.

(15)

By (14) and (15) we have that,

‖vk+1 − v∗‖

=

∥∥∥∥ZM̃ZTuk − 1

2
RRTuk +

1

2
(vk − v∗)

∥∥∥∥
=

∥∥∥∥ZM̃(ZTZ)ZTuk − 1

2
RRTuk +

1

2
(vk − v∗)

∥∥∥∥ ,
(16)

where the last equality follows from orthonormality of Z,
i.e., ZTZ = In−m. We analyze the right hand side of (16)
under two cases: (i) ZZTuk 6= 0, (ii) ZZTuk = 0.

Consider case (i), ZZTuk 6= 0. Then, (16) reduces to,

‖vk+1 − v∗‖

≤
∥∥∥∥ZM̃ZTZZTuk − 1

2
RRTuk

∥∥∥∥+
1

2
‖vk − v∗‖.

(17)

Furthermore,∥∥∥∥ZM̃ZTZZTuk − 1

2
RRTuk

∥∥∥∥2

=
∥∥∥ZM̃ZTZZTuk

∥∥∥2

+

∥∥∥∥1

2
RRTuk

∥∥∥∥2

(since ZTR = 0)

≤‖M̃‖2‖ZZTuk‖2 +

∥∥∥∥1

2
RRTuk

∥∥∥∥2

(since ‖Z‖ = 1)

(18)
and,

uk = (RRT +ZZT )uk

=⇒ ‖RRTuk‖ = ζk‖uk‖, ‖ZZTuk‖ =
√

1− (ζk)2‖uk‖

for ζk ∈ [0, 1), since ZZTuk 6= 0. Substituting in (18),∥∥∥∥ZM̃ZTZZTuk +
1

2
RRTuk

∥∥∥∥
≤
√
‖M̃‖2(1− ζk)2 +

1

4
(ζk)2‖uk‖

≤
√
‖M̃‖2(1− ζk)2 +

1

4
(ζk)2‖vk − v∗‖

where the last inequality follows from Lemma 3(iii). Conse-
quently (17) can be written as

‖vk+1 − v∗‖

≤

(√
‖M̃‖2(1− ζk)2 +

1

4
(ζk)2 +

1

2

)
‖vk − v∗‖.

From Lemma 4, ‖M̃‖ < 1
2 (due to ρ(ZTMZ) < 1) and

ZZTuk 6= 0, hence {vk} converges Q-linearly.
Consider case (ii), ZZTuk = 0. Then, Muk = 0,

RRTuk = uk and hence, (16) reduces to

‖vk+1 − v∗‖ =

∥∥∥∥−1

2
uk +

1

2
(vk − v∗)

∥∥∥∥
= ‖(In − PY)(vk)− (In − PY)(v∗)‖ ≤ ‖vk − v∗‖

(19)
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where the last inequality follows from Lemma 3(ii). In
this case, we have linear convergence only when ‖(In −
PY)(vk) − (In − PY)(v∗)‖ < ‖vk − v∗‖ holds for all
k. Next we prove that equality in (19) holds iff the fixed
point of (6) has been attained. For the remainder of the
proof assume that the equality holds at an iteration k, i.e.,
‖(In − PY)(vk)− (In − PY)(v∗)‖ = ‖vk − v∗‖ which by
Lemma 3(ii) yields that,

‖PY(vk)− PY(v∗)‖ = 0 =⇒ PY(vk)− PY(v∗) = 0

=⇒ wk+1 = w∗ = y∗.

From ZZTuk = 0 and PY(vk)−PY(v∗) = 0 we have that,

ZZT
(
(2PY − In)(vk)− (2PY − In)(v∗)

)
= 0

=⇒ ZZT
(
(PY − In)(vk)− (PY − In)(v∗)

)
= 0

=⇒ ZZT (λ̃
k+1
− λ̃

∗
) = 0 =⇒ ZT (λ̃

k+1
− λ̃

∗
) = 0.

Thus, from y update in (5) we have that yk+2 = y∗ since
M is in the range space of Z and wk+1 = y∗,ZT λ̃

k+1
=

ZT λ̃
∗
. From the first order stationary conditions for the

projection in the update step for w in (5) we have that,

(wk+2 − y∗ + λ̃
k+1

)T (w′ −wk+2) ≥ 0 ∀ w′ ∈ Y . (20)

Since λ̃
k+1
⊥ wk+1 ∈ Y we have that,

(λ̃
k+1

)T (w′ −wk+1) ≥ 0 ∀ w′ ∈ Y . (21)

Hence, wk+2 = wk+1 = y∗ satisfies the variational
inequality in (20). Since, yk+2 = wk+2 = y∗ we have from
the update step for λ̃ in (5) that λ̃

k+2
= λ̃

k+1
. It is easy to

show by induction that

yk+j = y∗,wk+1 = y∗, λ̃
k+j

= λ̃
k+1
∀ j ≥ 2

which implies that, (y∗,y∗, λ̃
k+1

) is a fixed point of (6).
Thus, either {vk} converges linearly for k < k̄ and uk̄

is such that ZZTuk̄ = 0 and ‖(In − PY)(vk̄) − (In −
PY)(v∗)‖ = ‖vk̄ − v∗‖, and the fixed point is attained in
a finite number of iterations, or the sequence is infinite and
converges linearly to the solution. Hence, the claim holds.

An immediate result on {(wk, λ̃)} can be deduced as below.
Corollary 1: Suppose Assumptions 1-3 hold and β > 0.

Then, (i) {(wk, λ̃
k
)}k≥1 converges R-linearly to (w∗, λ̃

∗
)

and (ii) {(wk, λ̃
k
)}k≥2 converges 2-step Q-linearly to

(w∗, λ̃
∗
).

Proof: Under the assumptions, Theorem 3 applies
and hence, {vk} converges Q-linearly to a solution. Since
‖(wk+1, λ̃

k+1
) − (w∗, λ̃

∗
)‖ ≤ ‖vk − v∗‖ by Lemma 3(ii)

and {vk} converges Q-linearly, the claim in (i) follows from
the definition of R-linear convergence. Furthermore from
proof of Lemma 5(i) ‖vk − v∗‖ ≤ ‖(wk, λ̃

k
)− (w∗, λ̃

∗
)‖.

In other words,

‖(wk+2, λ̃
k+2

)− (w∗, λ̃
∗
)‖

≤ ‖vk+1 − v∗‖ ≤ αk‖vk − v∗‖(from Q-linear convergence)

≤ αk‖(wk, λ̃
k
)− (w∗, λ̃

∗
)‖

for some αk ∈ (0, 1). This proves claim in (ii). ,
From the proof of Theorem 3 it is clear that rate of

convergence is influenced by the components of uk along
the null space and range space of the constraints. While the
range space component cannot be controlled we can affect
the contraction resulting from the null space component
by choosing β∗ to minimize ‖M̃‖ = ‖2ZMZT−In−m‖

2

where the eigenvalues of ZMZT satisfy λ(ZMZT ) =
λ((ZT (Q/β + In)Z)−1) = β/(β + λ(Q̃)) with Q̃ =
ZTQZ. Thus, the optimal choice for the step size is given
by,

β∗ = arg min
β>0

max
i

(∣∣∣∣ β

β + λi(Q̃)
− 1

2

∣∣∣∣+
1

2

)
.

We can easily rearrange the right hand side to obtain,

β∗ = arg min
β>0

max
i

(∣∣∣∣∣ β/λi(Q̃)

β/λi(Q̃) + 1
− 1

2

∣∣∣∣∣+
1

2

)
. (22)

Equation (22) is identical in form to Equation (36) of [14],

β∗, [14]

=arg min
β>0

max
i

(∣∣∣∣∣ βλi(BQ̂
−1
BT )

βλi(BQ̂
−1
BT ) + 1

− 1

2

∣∣∣∣∣+
1

2

)
.

where B is the matrix of inequality constraints in for-
mulation (9). In essence, the optimal step-size in our ap-
proach depends on λ(Q̃

−1
) while that in [14] depends

on λ(BQ̂
−1
BT ). Even though the involved variables are

different (Q̃
−1

as opposed to BQ̂
−1
BT ), the functional

form is the same as the one in [14]. Hence, the analysis
proposed in [14] to obtain the step-size can be repeated by
using Q̃

−1
in place of BQ̂

−1
BT .

Theorem 4: Suppose Assumptions 1-3 hold. Then, the
optimal step-size for the class of convex QPs in (1) is

β∗ =

√
λmin(Q̃)λmax(Q̃). (23)

Proof: The proof is similar to that of Theorem 4 in
[14], with Q̃

−1
substituted for BQ−1BT , and hence it is

not repeated.

VI. MODEL PREDICTIVE CONTROL

Next, we apply the developed ADMM strategy to the
QPs generated by Model Predictive Control (MPC) al-
gorithm [16]. Consider the discrete-time linear prediction
model of a plant, possibly augmented with additional states
for enforcing control specifications,

x(k + 1) = Ax(k) +Bu(k) + Fd(k) (24)

where x ∈ Rnx is the state vector, u ∈ Rnu is the control
input vector, d ∈ Rnr is a measured disturbance vector, and
A ∈ Rnx×nx , B ∈ Rnx×nu , F ∈ Rnx×nr are the state,
control and disturbance transfer matrices, respectively. At
every discrete time step k ∈ Z, k ≥ 0, given the current
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state x(k) and the predicted future sequence of disturbances
{d(k + i)}N−1

i=0 , MPC solves the optimization problem

min
{xt}Nt=0,{ut}N−1

t=0

1

2

N−1∑
t=0

(
xTt Qxxt + uTt Rut

)
+

1

2
xTNPxN

s.t. xt+1 = Axt +But + Fdt

(xt+1, ut) ∈ X × U
dt = d(k + t)

t = 0, . . . , N − 1

x0 = x(k)
(25)

where Qx, P ∈ Rnx×nx are stage and terminal matrices on
the state, respectively, R ∈ Rnu×nu is the cost matrix for the
controls and X ,U are polyhedral sets defining feasible region
for the states and controls. Typically, R � 0 and Qx, P � 0,
which also allow to formulate a reference tracking objective
by Qx = CTQεC, Q ∈ Rne×ne , P = CTPεC, Pε ∈
Rne×ne , where ε = Cx , ε ∈ Rne×ne , ne < nx ,
models the tracking error for a reference model embedded
in (24). MPC solves (25) to find the optimal input sequence
{u∗t }N−1

t=0 , and then applies to the system the control input
u(k) = u∗0. In (25), the state variables can be eliminated
by exploiting the equations of the system dynamics, thus
obtaining a QP where the optimization vectors contain only
the control input sequence, and, since the hessian of the
objective in (25) is strictly positive definite in the space of
controls, Assumptions 2 and 3 are satisfied. However, when
the states are eliminated the QP has general linear inequality
constraints, even though (25) has only simple bounds. Here
we avoid eliminating the states which allows us to exploit (5)
for solving (1). In fact, the obtained QP has only simple
bounds as inequality constraints and hence the projections
in (5) are computationally inexpensive.

First formulate (25) in a form that is similar to the QP in
(1) by introducing

y = (x1, . . . , xN , u0, . . . , uN−1)

Q =

IN−1 ⊗Qx 0 0
0 QN 0
0 0 IN ⊗R


b = (Axinit + Fd0, . . . , FdN−1)

Y = X × . . .X︸ ︷︷ ︸
N times

×U × . . .U︸ ︷︷ ︸
N times

A =


Inx

0 . . . 0 0
−A Inx . . . 0 0

...
...

. . .
...

...
0 0 . . . Inx

0
0 0 . . . −A Inx

∣∣∣∣∣∣∣∣∣∣∣
− IN ⊗B


The range space of (25) is the space spanned by the control

input sequence, since the state variables can be eliminated
by system dynamics equations. Since the Hessian of the cost
function of (25) formulated with respect to only the control
input sequence is strictly positive definite, the optimization
problems generated by MPC satisfy Assumptions 2 and 3.

Fig. 1. Plot of minimum and maximum number of iterations to attain
convergence over the set of 170 QPs for different values of the step size β
for the algorithm proposed in this paper.

The structure of the set Y determines the complexity of
the update step for w in ADMM iterate (5). If the MPC
problem has only lower and upper bounds on the states and
inputs, the update for w entails a simple projection onto
the bounds. If rate bounds on the control exist, these can
be included by re-defining as inputs the input variations
∆u(t) = ut − ut−1 and including in (24) an integrator
dynamics for generating u from ∆u(t) = ut − ut−1. If
constraints involving multiple states need to be included, as
well as constraints on the rate of change of the input, these
can be formulated as simple bounds in (25) by introducing
additional state (or output) equations [19] in (24). In other
words, general inequalities can always be accommodated
within the framework developed in this paper through the
introduction of additional variables in (1).

To evaluate the proposed optimal step size selection we
consider the QPs generated by the MPC for controlling
the quadruple-tank process [37] which has 4 states and 2
inputs. The authors of [14] have made publicly available
at [38] the data of 170 QPs generated by such an MPC
controller from different initial conditions of the tank system.
The problems have horizon of N = 5 time-steps, resulting
in QP with y ∈ R30. The sets X × U specifies lower
and upper bounds on the controls and on some states. The
initial guess for the ADMM iterations in (5) was chosen as
w0 = max(0, b− A(−Q−1q)),λ0 = 0 and the termination
thresholds for primal and dual residuals [9] is 10−6, i.e.
max(‖λ̃

k+1
− λ̃

k
‖, ‖β(wk+1 −wk)‖) < 10−6.

For the ADMM algorithm presented in this paper The-
orem 4 yields the optimal step-size as β∗ = 16.4. Figure
1 reports the minimum and maximum number of iterations
over the 170 QP instances for each value of the step size
β. It is clear that the optimal step size β∗ selected by the
approach proposed in this paper is close to the minimum
number of iterations required over all the 170 problems.
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VII. CONCLUSION

We have presented an alternating direction method of
multipliers for a class of convex QPs which includes those
generated by model predictive control algorithms, and shown
convergence of the algorithm in a novel way. Our method of
analysis suggests how to select the optimal step-size for the
considered class of QPs. We have evaluated such a selection
on openly available benchmark problems. The advantage of
the proposed method over previous approaches is that full
row rank of the inequality constraint matrix, which in general
does not hold in the QPs generated by MPC, is not required
anymore. In the future we propose to study the numerical
performance of different decomposition strategies for the
MPC problems in conjunction with the proposed ADMM
algorithm.
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