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Extremum Seeking-based Iterative Learning Linear MPC

Mouhacine Benosman, Stefano Di Cairano, Avishai Weiss

Abstract— In this work we study the problem of adaptive MPC
for linear time-invariant uncertain models. We assume linear models
with parametric uncertainties, and propose an iterative multi-variable
extremum seeking (MES)-based learning MPC algorithm to learn on-
line the uncertain parameters and update the MPC model. We show the
effectiveness of this algorithm on a DC servo motor control example.

I. INTRODUCTION

Model predictive control (MPC) [1] is a model-based framework
for optimal control of constrained multi-variable systems. MPC is
based on the repeated, receding horizon solution of a finite-time
optimal control problem formulated from the system dynamics,
constraints on system states, inputs, outputs, and a cost function
describing the control objective. MPC has been applied to several
applications such as aerospace [2], [3], automotive [4], [5], and
mechatronic systems [6], [7]. Since MPC is a model-based con-
troller, its performance inevitably depends on the quality of the
prediction model used in the optimal control computation.

In contrast, extremum seeking (ES) control is a well known
approach where the extremum of a cost function associated with
a given process performance (under some conditions) is found
without the need for detailed modeling information, see, e.g., [8]–
[10]. Several ES algorithms (and associated stability analyses) have
been proposed, [8]–[12], [12]–[14], and many applications of ES
have been reported [15]–[19].

The idea that we introduce in this work, is that the performance of
a model-based MPC controller can be combined with the robustness
of a model-free ES learning algorithm for simultaneous identifi-
cation and control of linear time-invariant systems with structural
uncertainties. While regulation and identification are seemingly
conflicting objectives, by identifying (or re-identifying) the system
dynamics online and updating the MPC prediction model, the
closed-loop performance may be enhanced relative to a standard
MPC scheme that uses an inaccurate (or outdated) model. The
optimal solution to this trade-off between identification and control
is given by a dynamic program [20], which, for many applications,
is computationally intractable. As a result, many suboptimal tech-
niques and heuristics have been developed in recent years – often
in a receding horizon framework which is suitable for integration
with MPC.

In [21], an approximation of the dynamic program is developed
for a linear input-output map with no dynamics. Approaches for
more complex systems avoid dynamic programming altogether and,
instead, sub-optimally trade off between inputs that excite the
system and inputs that regulate the state. Excitation signals are
often designed to satisfy persistency of excitation conditions. For
example, a dithering signal may be added on top of the nominal
control [22], although difficulties arise in determining the amplitude
of the signal, and the dither indiscriminately adds noise to the
process. More sophisticated schemes employ optimal input design,
usually in the frequency domain, where maximizing the Fisher
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information matrix can be cast as a semi-definite program [23].
However, design in the frequency domain leads to difficulties with
constraints that are more naturally addressed in the time domain,
e.g., input (and possibly output) amplitude constraints. While the
problem formulation in the time domain is highly non-convex,
developing such techniques is desirable, and thus the focus of recent
work [24]–[32].

In this preliminary work, we aim at proposing an alternative
approach to realize an iterative learning-based adaptive MPC.
We introduce an approach for a multi-variable extremum seeking
(MES)-based iterative learning MPC that merges a model-based
linear MPC algorithm with a model-free MES algorithm to realize
an iterative learning MPC that adjusts to structured model uncer-
tainties. This approach is an extension to the recent MPC framework
reported in [33], where the author proposed to use MES with
model-based nonlinear control to design learning-based adaptive
controllers for a class of nonlinear systems.

The paper is organized as follows. We start the paper with
some preliminaries in Section II. In Section III, we first recall the
nominal MPC algorithm and then present the main result of the
paper, namely, the iterative learning MPC, with a discussion of the
algorithm stability. Section IV is dedicated to a DC servo-motor
case study. Finally, we conclude the paper with a brief summary of
the results in Section V.

II. NOTATIONS AND PRELIMINARIES

Throughout the paper, R, Z0+, Z[i,j] denote the set of real
numbers, positive integers, and positive integers from i to j,
respectively. For x ∈ R

N we define ||x|| =
√

xT x, we denote
by Aij , i = 1, . . . , n, j = 1, . . . , m the elements of the matrix A,
and by [A]i the vector equal to the line i of the matrix A. We denote
by ||A||2 the spectral matrix norm, and by ||x||A =

√
xT Ax. We

denote by x(i|k) the value of x at the time sample i and the
MPC cycle k. In the sequel, when we use the term well-posed
optimization problem, we mean that the problem admits a unique
solution, which is a continuous function of the initial conditions
[34].

III. ITERATIVE LEARNING-BASED ADAPTIVE MPC

A. Control objective

We want to design an adaptive controller that solves regulation
and tracking problems for linear time-invariant systems with struc-
tural model uncertainties under state, input, and output constraints.
In what follows, we first present the nominal MPC problem, i.e.,
without model uncertainties, and then extend this nominal controller
to its adaptive form by merging it with an MES algorithm.

B. Constrained linear nominal MPC

Consider a linear MPC, based on the nominal linear prediction
model

x(k + 1) = Ax(k) + Bu(k), (1a)

y(k) = Cx(k) + Du(k), (1b)



where x ∈ R
n, u ∈ R

m, y ∈ R
p are the state, input, and output

vectors subject to constraints

xmin ≤ x(k) ≤ xmax, (2a)

umin ≤ u(k) ≤ umax, (2b)

ymin ≤ y(k) ≤ ymax, (2c)

where xmin, xmax ∈ R
n, umin, umax ∈ R

m, and ymin, ymax ∈ R
p

are the lower and upper bounds on the state, input, and output
vectors, respectively. At every control cycle k ∈ Z0+, MPC solves
the finite horizon optimal control problem

min
U(k)

N−1
∑

i=0

‖x(i|k)‖2
QM

+ ‖u(i|k)‖2
RM

(3a)

+‖x(N |k)‖2
PM

,

s.t. x(i + 1|k) = Ax(i|k) + Bu(i|k), (3b)

y(i|k) = Cx(i|k) + Du(i|k), (3c)

xmin ≤ x(i|k) ≤ xmax, i ∈ Z[1,Nc], (3d)

umin ≤ u(i|k) ≤ umax, i ∈ Z[0,Ncu−1], (3e)

ymin ≤ y(i|k) ≤ ymax, i ∈ Z[0,Nc], (3f)

u(i|k) = Kfx(i|k), i ∈ Z[Nu,N−1], (3g)

x(0|k) = x(k), (3h)

where QM ≥ 0, PM, RM > 0 are symmetric weight matrices
of appropriate dimensions, N is the prediction horizon, Nu ≤
N is the control horizon (the number of free control moves),
Ncu ≤ N , Nc ≤ N − 1 are the input and output constraint
horizons along which the constraints are enforced. The performance
criterion is defined by (3a), and (3d)–(3f) enforce the constraints.
Equation (3g) defines the pre-assigned terminal controller where
Kf ∈ R

m×n, so that the optimization vector effectively is U(k) =
[u′(0|k) . . . u′(Nu − 1|k)]′ ∈ R

Num.
Although the optimal control problem (3) does not explicitly

mention a reference, tracking is achieved by including in the state
update equation (1a) the reference prediction dynamics

rr(k + 1) = Arrr(k), (4)

and an additional output in (1b) representing the tracking error

ye(k) = Cx(k) − Crrr(k), (5)

which is then accounted for in the cost function (3a) as later
shown in the example (see also [5] for an example in a real world
application). At time k, the MPC problem (3) is initialized with the
current state value x(k) by (3h) and solved to obtain the optimal
sequence U∗(k). Then, the input u(k) = uMPC(k) = u∗(0|k) =
[Im 0 . . . 0]U(k) is applied to the system.

C. Learning-based adaptive MPC algorithm

Consider now, the system (1), with structural uncertainties, such
that

x(k + 1) = (A + ∆A)x(k) + (B + ∆B)u(k) (6a)

y(k) = (C + ∆C)x(k) + (D + ∆D)u(k), (6b)

with the following assumptions.
Assumption 1: The constant uncertainty matrices

∆A, ∆B, ∆C and ∆D, are bounded, s.t. ||∆A||2 ≤ lA,
||∆B||2 ≤ lB , ||∆C||2 ≤ lC , ||∆D||2 ≤ lD , with
lA, lB , lC , lD > 0.

Assumption 2: There exists non empty convex sets Ka ⊂ R
n×n,

Kb ⊂ R
n×m, Kc ⊂ R

p×n, and Kd ⊂ R
p×m, such that A+∆A ∈

Ka for all ∆A such that ||∆A||2 ≤ lA, B + ∆B ∈ Kb for all
∆B such that ||∆B||2 ≤ lB , C + ∆C ∈ Kc for all ∆C such that
||∆C||2 ≤ lC , D+∆D ∈ Kd for all ∆D such that ||∆D||2 ≤ lD ,.

Assumption 3: The iterative learning MPC problem (3) (and the
associated reference tracking extension), where we substitute the
model with structural uncertainty (6) for the nominal model (3b)
and (3c), is a well-posed optimization problem for any matrices
A + ∆A ∈ Ka, B + ∆B ∈ Kb, C + ∆C ∈ Kc, D + ∆D ∈ Kd.

Under these assumptions, we postulate the following: If we solve
the iterative learning MPC problem (3), where we substitute (6)
for (3b) and (3c), iteratively, such that, at each new iteration we
update our knowledge of the uncertain matrices ∆A, ∆B, ∆C,
and ∆D, using a model-free learning algorithm, in our case the
extremum seeking algorithm, we claim that, if we can improve
over the iterations the MPC model, i.e., learn over iterations the
uncertainties, then we can improve over time the MPC performance,
i.e., either in the stabilization or in the tracking. Before formulating
this idea in terms of an algorithm, we briefly recall the principle of
model-free multi-variable extremum seeking (MES) control.

To use the MES learning algorithm, we define the cost function
to be minimized as

Q(∆̂) = F (ye(∆̂)), (7)

where ∆̂ is the vector obtained by concatenating all the elements
of the estimated uncertainty matrices ∆Â, ∆B̂, ∆Ĉ and ∆D̂, F :
R

p → R, F (0) = 0, F (ye) > 0 for ye 6= 0.
In order to ensure convergence of the MES algorithm, Q need

to satisfy the following assumptions.
Assumption 4: The cost function Q has a local minimum at

∆̂∗ = ∆.
Assumption 5: The original parameter estimate vector ∆̂ is close

enough to the actual parameters vector ∆.
Assumption 6: The cost function is analytic and its variation with

respect to the uncertain variables is bounded in the neighborhood
of ∆∗, i.e., there exists ξ2 > 0, s.t. ‖ ∂Q

∂∆
(∆̃)‖ ≤ ξ2 for all ∆̃ ∈

V(∆∗), where V(∆∗) denotes a compact neighborhood of ∆∗.
Remark 1: Assumption 4 simply means that we can consider that

Q has at least a local minimum at the true values of the uncertain
parameters.

Remark 2: Assumption 5 indicates that our result will be of local
nature, meaning that our analysis holds in a small neighborhood of
the actual values of the parameters.

Remark 3: We wrote the cost function (7) as function of the
tracking error (5), however, the case of regulation or stabilization
can be directly deduced from this formulation by replacing the time-
varying reference with a constant reference or an equilibrium point.

Under Assumptions 4, 5, and 6, it has been shown (e.g. [9], [10]),
that the MES

żi = aisin(ωit + π
2
)Q(∆̂)

∆̂i = zi + aisin(ωit − π
2
), i ∈ {1, . . . , Np}

(8)

with Np ≤ nn + nm + pn + pm is the number of uncertain
elements, ωi 6= ωj , ωi + ωj 6= ωk, i, j, k ∈ {1, . . . , Np}, and
ωi > ω∗, ∀i ∈ {1, . . . , Np}, with ω∗ large enough, converges to
the local minima of Q.

The idea that we want to propose here (refer to [33] where we
introduced this concept of learning-based adaptive control for a
class of nonlinear systems), is that under Assumptions 1-6, we
can merge the MPC algorithm and a discrete-time version of the
MES algorithm to obtain an iterative learning MPC algorithm. We
formalize this idea in the following iterative algorithm:



ALGORITHM I
- Initialize zi(0) = 0, and the uncertainties’ vector estimate
∆̂(0) = 0.
- Choose a threshold for the cost function minimization εQ > 0.
- Choose the parameters, MPC sampling time δTmpc > 0, and
MES sampling time δTmes = NEδTmpc, NE > 0.
- Choose the MES dither signals’ amplitudes and frequencies:
ai, ωi, i = 1, 2 . . . , Np.
WHILE(true)

FOR(` = 1, ` ≤ NE , ` = ` + 1)
- Solve the MPC problem

min
U(k)

N−1
∑

i=0

‖x(i|k)‖2
QM

+ ‖u(i|k)‖2
RM

(9a)

+‖x(N |k)‖2
PM

,

s.t. x(i + 1|k) = (A + ∆A)x(i|k) (9b)

+(B + ∆B)u(i|k),

y(i|k) = (C + ∆C)x(i|k) (9c)

+(D + ∆D)u(i|k),

xmin ≤ x(i|k) ≤ xmax, i ∈ Z[1,Nc], (9d)

umin ≤ u(i|k) ≤ umax, i ∈ Z[0,Ncu−1], (9e)

ymin ≤ y(i|k) ≤ ymax, i ∈ Z[1,Nc], (9f)

u(i|k) = Kfx(i|k), i ∈ Z[Nu,N−1], (9g)

x(0|k) = x(k), (9h)

- Update k = k + 1.
End
IF Q > εQ

- Evaluate the MES cost function Q(∆̂)
- Evaluate the new value of the uncertainties ∆̂:

zi(h + 1) = zi(h) + aiδTmes sin(ωihδTmes + π
2
)Q(∆̂)

∆̂i(h + 1) = zi(h + 1) + ai sin(ωihδTmes − π
2
),

i ∈ {1, . . . , Np}
(10)

- Update h = h + 1.
End
Reset ` = 0

End
D. Stability discussion

As mentioned, in this preliminary work we aim at presenting
an algorithm that merges model-based MPC and model-free MES
learning, to obtain an iterative learning MPC algorithm, with
encouraging numerical numerical results (see, e.g., the case study in
Section IV). A rigorous stability analysis of the combined algorithm
is out of the scope of this work, but we want to sketch below an
approach to analyze the stability of Algorithm I. We propose here
to follow the analysis presented in [33], for the case of learning-
based adaptive control for some class of nonlinear systems. By
Assumptions 1 -3, the model structural uncertainties ∆A, ∆B, ∆C,
and ∆D are bounded, the uncertain model matrices A + ∆A,
B + ∆B, C + ∆C, and D + ∆D are elements of convex sets Ka,
Kb, Kc, and Kd, and that the MPC problem (9) is well-posed. Based
on this, the approach for proving stability is based on establishing a
boundedness of the tracking error norm ‖ye‖ with the upper-bound
being function of the uncertainties estimation error norm ‖∆̂−∆‖.
One effective way to characterize such a bound is to use an integral
Input-to-State Stability (iISS) (or ISS for time-invariant problems)

between the input ‖∆̂ − ∆‖ and the augmented state ‖ye‖, see,
e.g. [33]. If the iISS (or ISS) property is obtained, by reducing the
estimation error ‖∆̂ − ∆‖ we also reduce the the tracking error
‖ye‖, due to the iISS relation between the two signals. Based on
Assumptions 5, 6, and 7, we know, e.g. [9], [10], that the MES
algorithm (10) converges to a local minimum of the MES cost
Q, which implies (based on Assumption 4), that the estimation
error ‖∆̂ − ∆‖ is reducing over the MES iterations. Thus, finally
we conclude that the MPC tracking (or regulation) performance is
improved over the iterations of Algorithm I. While obviously this
discussion is not a rigorous proof of stability of the iterative learning
MPC, it provides an interesting guideline to follow for analyzing
the controller stability observed during the test case presented next.
A more rigorous proof is currently under development and will be
presented in future works.

IV. DC SERVO-MOTOR EXAMPLE

The example studied here is about the angular position control of
a load connected by a flexible shaft to a voltage actuated DC servo
motor, see [35] and references therein. The states are the load angle
and angular rate, and the motor angle and angular rate, the control
input is the motor voltage, and the outputs are the load angle and
the torque acting on the flexible shaft. The model for the system is

ẋc(t) =











0 1 0 0

− kl

Jl
− βl

Jl

kl

gJl
0

0 0 0 1
kl

gJm
0 − kl

g2Jm
−βm+R

−1

A
K2

m

Jm











xc(t)+









0
0
0

Km

RAJm









uc(t)

yc(t) =

[

1 0 0 0

kl 0 − kl

g
0

]

xc(t)

(11)
where xc ∈ R

4 is the state vector, uc ∈ R is the input
vector, and yc ∈ R

2 is the output vector. In (11) RA[Ω] is the
armature resistance, Km[Nm/A] is the motor constant, Jl[kgm2],
βl[Nms/rad], kl[Nm/rad], are the inertia, friction and stiffness of
load and flexible shaft, Jm[kgm2], βm[Nms/rad], are the inertia
and friction of the motor, and g is the gear ratio between motor
and load. The nominal numerical values used in the simulations
are RA = 10Ω, Km = 10Nm/A, Jl = 25kgm2, βl = 25Nms/rad,
kl = 1.28 · 103Nm/rad, Jm = 0.5kgm2, βm = 0.1Nms/rad. The
system is subject to constraints on motor voltage and shaft torque

−78.5 ≤ [yc(t)]2 ≤ 78.5, (12a)

−220 ≤ uc(t) ≤ 220. (12b)

The control objective is to track a time varying load angle posi-
tion reference signal rl(t). Following the nominal MPC presented
in Section III-B, the prediction model is obtained by sampling (11)
with a period δTmpc = 0.1s, and the trajectory tracking problem
is solved by augmenting the model with the reference prediction
model (4), which in this case represents a constant reference

rr(k + 1) = rr(k),

where rr ∈ R, and with an incremental formulation of the control
input, such that

uc(k + 1) = uc(k) + ∆v(k)
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Fig. 1. Outputs and input signals in the nominal case (reference trajectory
and constraints limits in dashed-line, obtained signals in solid-line)
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Fig. 2. Outputs and input signals in the uncertain case with nominal MPC
control (reference trajectory and constraints limits in dashed-line, obtained
signals in solid-line)

Next, the MPC cost function is chosen as
N

∑

i=1

‖[y(i|k)]1 − rl(i|k)‖2
Qy

+ ‖∆v(i|k)‖2
Rv

+ ρσ2, (13)

where Qy = 103 and Rv = 0.05, prediction, constraints, and
control horizons are N = 20, Nc = Ncu = Nu = 4, and
Kf = 0 in (3g). In this case study output constraints (12a) are
considered as soft constraints, which may be (briefly) violated due
to the prediction model not being equal to the actual model. Thus, in
(13) we add the term ρσ2, where ρ > 0 is a (large) cost weight, and
σ is an additional variable used to model the (maximum) constraint
violation of the softened constraints.

Thus, the MPC problem (3) results in a family of quadratic
programs parameterized by the current state x(k) in (3h), with
nq = 16 constraints, and nu = 4 variables. In the subsequent
simulations, we consider initial state x(0) = [0 0 0 0]′ and reference
rl(t) = 4.5 sin( 2π

Tref
t), Tref = 20π sec.

First, to have a base-line performance, we solve the nominal
MPC problem, i.e. without model uncertainties. We report the
corresponding results on Figure 1, where it is clear that the desired
load angular position is precisely tracked, without violating the shaft
torque and the control voltage constraints. Next, we introduce the
parametric model uncertainty δβl = −70 [Nms/rad]. Note that
we purposely introduced a very large model uncertainty, i.e. more
than 100% of the nominal value, to show clearly the bad effect of
this uncertainty on the nominal MPC algorithm and to subsequently
test the iterative learning MPC algorithm on a challenging case.
We first apply the nominal MPC controller to the uncertain model,
we show the obtained performance on Figure 2, where it is clear
that the nominal performance is lost, since the second output, i.e.
the shaft torque, is oscillating and is violating its upper and lower
limits. Furthermore, this oscillations are also present on the control
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Fig. 3. Outputs and input signals in the uncertain case with iterative
learning MPC (reference trajectory and constraints limits in dashed-line,
obtained signals in solid-line)

voltage signal.
Now, we apply the iterative learning MPC Algorithm I, where we

set δTmes = 1.5Tref . We choose the MES learning cost function
as

Q =

NE−1
∑

i=0

‖[ye(t − iδTmpc)]1‖2 + ‖[ẏe(t − iδTmpc)]1‖2

+‖[ye(t − iδTmpc)]2‖2,

i.e. the norm of the error in the load angular position and velocity,
plus the norm of the error on the shaft torque. To learn the uncertain
parameter βl, we apply the algorithm (10), as

zβl
(k

′

+ 1) = zβl
(k

′

) + aβl
δTmessin(ωβl

k
′

δTmes + π
2
)Q

δβ̂l(k
′

+ 1) = zβl
(k

′

+ 1) + aβl
sin(ωβl

k
′

δTmes − π
2
),

(14)
with aβl

= 10−6, ωβl
= 0.7 rad/s. We select ωβl

to be higher
than the desired frequency of the closed-loop (around 0.1 rad/s), to
ensure convergence of the MES algorithm, since the ES algorithms
convergence proofs are based on averaging theory, which assumes
high dither frequencies, e.g. [9], [10]. We chose a small value of
the dither signal amplitude, since we noticed that the MES cost
function has large values due to the large simulated uncertainty, so
to keep the search excursion amplitude small, and converge to a
precise value of the uncertainty δβl, i.e. to keep aβl

Q small, we
choose small aβl

(for further explanations on how to tune MES
algorithms please refer to [36]). We also set the MES cost function
threshold εQ to 1.5Qnominal, where Qnominal is the value of the
MES cost function obtained in the nominal-model case with the
nominal MPC, i.e. the base-line ideal case. In other words, we
decide to stop searching for the best estimation of the value of the
uncertainty when the uncertain MES cost function, i.e., the value
of Q when applying the iterative learning MPC algorithm to the
uncertain model, is less or equal to 1.5 of the MES cost function
in the case without model uncertainties, which represents the best
achievable MES cost function.

The obtained results of the iterative learning MPC algorithm are
reported on Figures 3, 4 and 5. First, note on Figure 4, that the
uncertain cost function initial value (at the first iteration of the MES
learning) is very high, about 4.5 · 106, which is about 50 times the
value of the nominal base-line MES cost function value. We see
on Figure 4 that this cost function decreases as expected along
the MES learning iterations to reach a small value after about 25
iterations. This corresponds to the required number of iterations to
learn the actual value of the uncertain parameter as shown on Figure
5. Eventually, after the convergence of the learning algorithm, we
see on Figure 3, that the nominal base-line performances of the
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Fig. 5. Uncertain parameter learning evolution over the learning iterations

MPC are recovered and that the output track the desired reference
with smooth signals and without violating the desired constraints.

We also tested the case of multiple uncertainties. We assumed the
two uncertainties δβl = −70, [Nms/rad], δJl = −0.2, [kgm2].
We first show on Figure 6 the performance of the nominal MPC
when applied to this uncertain model. It is clear that the nominal
MPC cannot cope with the uncertainties effect on the system’s
performance, since the shaft torque, is oscillating and is violating
its limits. The control voltage signal experiences oscillations, as
well. Next, we apply the iterative learning-based MPC, where δ̂βl

is learned using (14), and δ̂J l is learned using the ES equations

zJl
(k

′

+ 1) = zJl
(k

′

) + aJl
δTmessin(ωJl

k
′

δTmes + π
2
)Q

δĴl(k
′

+ 1) = zJl
(k

′

+ 1) + aJl
sin(ωJl

k
′

δTmes − π
2
),

(15)
with aJl

= 10−8, and ωJl
= 0.8 rad/s. Note that we choose a

smaller dither amplitude for the δJl estimation, since the value of
the uncertainty on Jl is smaller, so we need a smaller dither signal
amplitude for the search of the uncertain value.

The results of the iterative learning MPC algorithm in this
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Fig. 6. Outputs and input signals in the uncertain case with nominal MPC
control (reference trajectory and constraints limits in dashed-line, obtained
signals in solid-line)
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Fig. 7. Outputs and input signals in the uncertain case with iterative
learning MPC (reference trajectory and constraints limits in dashed-line,
obtained signals in solid-line)

20 40 60 80 100

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Number of iterations

C
os

t f
un

ct
io

n 
[−

]

Fig. 8. MES cost function evolution over the learning iterations

case are reported on Figure s 7, 8, 9 and 10. The learning cost
function shown on Figure 8, is clearly decreasing and stabilizes after
about 30 iterations. The uncertainties are learned and the overall
tracking performance is recovered, as shown on Figures 9, 10 and 7,
respectively. We notice here that the estimation of the uncertainties
has some small residual error, this estimation error can be improved
by either fine tuning the MES dither signals’ amplitudes, e.g., by
using a time-varying dither amplitude [37], or by choosing other
type of MES algorithms with larger domain of attraction, e.g. [12],
[38].

V. CONCLUSION

In this paper, we have reported some preliminary results about
an MES-based adaptive MPC algorithm. We have argued that it is
possible to merge together a model-based linear MPC algorithm
with a model-free MES algorithm to iteratively learn structural
model uncertainties and thus improve the overall performance of
the MPC controller. We have discussed a possible direction to
analyze the stability of such algorithms. However, a more rigorous
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analysis of the stability and convergence of the proposed algorithm
is under development, and will be presented in our future reports.
We have reported encouraging numerical results obtained on a
mechatronics example, namely, a DC servo-motor control example.
Future investigations will focus on improving the convergence rate
of the iterative learning MPC algorithm, by using different ES
algorithms with semi-global convergence properties, e.g. [12], [38],
and on extending this work to different types of model-free learning
algorithms, e.g. reinforcement learning algorithms, and comparing
the learning algorithms in terms of their convergence rate and
achievable optimal performances.
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[31] A. González, A. Ferramosca, G. Bustos, J. Marchetti, and D. Odloak,
“Model predictive control suitable for closed-loop re-identification,” in
American Control Conference. IEEE, 2013, pp. 1709–1714.

[32] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably
safe and robust learning-based model predictive control,” Automatica,
vol. 49, no. 5, pp. 1216–1226, 2013.

[33] M. Benosman, “Learning-based adaptive control for nonlinear sys-
tems,” in European Control Conference, 2014, pp. 920–925.

[34] J. Hadamard, “Sur les problmes aux drives partielles et leur significa-
tion physique,” Princeton University Bulletin, pp. 49–52, 1902.

[35] S. Di Cairano, M. Brand, and S. Bortoff, “Projection-free parallel
quadratic programming for linear model predictive control,” Int. Jour-
nal of Control, vol. 86, no. 8, pp. 1367–1385, 2013.

[36] Y. Tan, D. Nesic, and I. Mareels, “On the dither choice in extremum
seeking control,” Automatica, no. 44, pp. 1446–1450, 2008.

[37] W. Moase, C. Manzie, and M. Brear, “Newton-like extremum seeking
part I: Theory,” in IEEE, Conference on Decision and Control,
December 2009, pp. 3839–3844.

[38] W. Noase, Y. Tan, D. Nesic, and C. Manzie, “Non-local stability
of a multi-variable extremum-seeking scheme,” in IEEE, Australian
Control Conference, November 2011, pp. 38–43.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

	Title Page
	Title Page
	page 2


	Extremum Seeking-based Iterative Learning Linear MPC
	page 2
	page 3
	page 4
	page 5
	page 6


