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Abstract

In this paper we present a learning-based adaptive method to solve the problem of robust trajec-
tory tracking for electromagnetic actuators. We merge a nonlinear backstepping controller that
ensures bounded input/bounded states stability, with a multi-variable extremum seeking (MES)
model-free learning algorithm. The learning algorithm is used to estimate online the uncertain
parameters of the model, in this sense we propose a learning-based adaptive controller. We
present a proof of stability of this learning-based nonlinear controller when considering uncer-
tainties with linear parametrization. The efficiency of this approach is shown on a numerical
example.
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In this paper we present a learning-based adaptive method to solve the problem of robust trajectory tracking for

electromagnetic actuators. We merge a nonlinear backstepping controller that ensures bounded input/bounded

states stability, with a multi-variable extremum seeking (MES) model-free learning algorithm. The learning

algorithm is used to estimate online the uncertain parameters of the model, in this sense we propose a learning-

based adaptive controller. We present a proof of stability of this learning-based nonlinear controller when

considering uncertainties with linear parametrization. The efficiency of this approach is shown on a numerical

example.
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1 Introduction

Electromagnetic actuators are used in many different systems, such us in combustion engines,

opening and closing cargo doors in aircraft systems, precision positioning stages actuation, etc.

This work deals with a particular control problem of nonlinear electromagnetic actuator, namely,

the robust ‘soft landing’ problem, which requires accurate control of the moving element of the

actuator between two desired positions. Soft landing aims at achieving small contact velocities,

thus reducing the noise of the actuator and ensuring low component wear of the actuator. Fur-

thermore, the soft landing property of an actuator has to be guaranteed over long periods of

time during which the actuator’s components may age slowly. Due to these practical constraints

we have developed a robust control algorithm that aims for a zero impact velocity, and adapts

to the system aging via a learning-based adaptive algorithm. We present here the results of this

study.

Many papers have been dedicated to the soft-landing problem for electromagnetic actuators,
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e.g. Hoffmann (2003), Tsai (2008), Peterson and Stefanopoulou (2004), Tai and Tsao (2002),

Peterson and Stefanopoulou (2003), Eyabi and Washington (2006), Kahveci and Kolmanovsky

(2010), Benosman and Atinc (2013a,b). Some linear controllers have been proposed in Hoffmann

(2003), Tai and Tsao (2002). The results based on linear control theory use linearized models of

the actuator dynamics and thus are usually designed to operate in a small neighborhood of the

linearization points. To control the system over a larger operation space, the controller has to

be based on more complex nonlinear models of the actuators. Thus, in this paper we consider

the nonlinear dynamics of the system for the control design. Various nonlinear controllers have

been used in Tsai (2008), Peterson and Stefanopoulou (2004, 2003), Eyabi and Washington

(2006), Kahveci and Kolmanovsky (2010), Benosman and Atinc (2013a,b). In Tsai (2008), the

authors studied the problem of electromagnetic valve actuator control in an internal combustion

engine. The proposed solution is based on iteratively solving a constrained nonlinear optimal

problem using Nelder-Mead algorithm. The robustness of this approach to system’s aging was

not shown, and there were no feedback terms to robustify the feedforward control. In Peterson

and Stefanopoulou (2003), the authors proposed a nonlinear control based on Sontag’s feedback

to solve the problem of armature stabilization for an electromechanical valve actuator. However,

this approach did not solve the problem of armature trajectory tracking and did not consider

robustness of the controller with respect to system’s uncertainties. In Kahveci and Kolmanovsky

(2010), the authors designed a backstepping-based controller for the electromagnetic actuator,

but uncertainties in the parameters of the system were not considered in this paper. In Eyabi

and Washington (2006), a nonlinear sliding mode approach was used to solve the problem of

trajectory tracking for an electromagnetic valve actuator. The reported results showed good

tracking performances, however, the robustness with respect to uncertainty in the system pa-

rameters was not guaranteed. In Peterson and Stefanopoulou (2004), the authors used a single

parameter extremum seeking learning method along with a nonlinear controller to solve the

problem of armature trajectory tracking for an electromechanical valve actuator. Although the

learning algorithm was not directly tailored to ensure robustness of the controller to model

uncertainties or parameters drift over time, this robustness was intrinsic due to the iterative

nature of the learning process. However, in this controller only a scalar gain of the control was

tuned online, and there was no explicit proof of robustness of the controller with respect to

model uncertainties. In Benosman and Atinc (2013a), the authors proposed a robust controller

for nonlinear electromagnetic actuators, which was based on Lyapunov redesign techniques. The

proposed nonlinear controller was complemented by a multi-variable extremum seeking control

to tune the feedback gains in order to improve the control robustness w.r.t model uncertainties.

Some preliminary results related to the present work were presented in Benosman and Atinc
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(2013b), where the authors designed a backstepping-based controller for electromagnetic actua-

tors which was robustified by an extremum seeking algorithm to estimate uncertain parameters

of the system, however, no rigorous analysis was present concerning the stability of the combined

model-based nominal controller and the model-free learning algorithm. The proof of stability was

subsequently introduced by the same authors in Atinc and Benosman (2013). In Benosman and

Atinc (2013), the authors used classical adaptive control, i.e., indirect model-based adaptive

control, to solve the problem of robust soft-landing for electromagnetic systems. The method

relied on a nonlinear controller merged with a nonlinear model-based gradient descent filters to

estimate the uncertain parameters of the model. The controllers showed robust performances

w.r.t. model uncertainties, however, this approach could not deal with more than one uncertainty

at a time, due to some fundamental limitations of the gradient-descent model-based adaptive

approach (Benosman and Atinc (2013)).

In this work, we use a nonlinear model of the electromagnetic actuator to design a nonlinear

backstepping controller that ensures integral Input to State stability (iISS) between the tracking

error state and the uncertain parameters estimation error input. Subsequently, the controller

is robustified by a model-free MES algorithm which is used to identify online some uncertain

parameters of the model; this includes tracking over time any slow drifts of these parameters that

might occur due to the system aging. Notice that contrary to Peterson and Stefanopoulou (2004),

Benosman and Atinc (2013a), we are using a MES approach to learn a vector of the model’s

parameters, and not the gain of the controller. In this sense, we are proposing a learning-based

adaptive control. Furthermore, we present here the stability analysis of the whole controller; i.e.,

the nominal controller merged with the MES learning algorithm, for the case of model uncertain-

ties with linear parametrization.

This paper is organized as follows: We first recall some useful definitions in Section 2. Next, a

nonlinear model of electromagnetic actuators is presented in Section 3. Section 4 is dedicated

to the main result of this work, namely, the learning-based adaptive nonlinear controller design

and stability analysis. Numerical validation of the proposed controller is given in Section 5, and

concluding remarks are stated in Section 6.

2 Preliminaries

Throughout the paper we will use ‖.‖ to denote the Euclidean norm, i.e., for x ∈ R
n we have

‖x‖ =
√
xTx. We will use the notations diag{m1, ...,mn} for n×n diagonal matrix, and ˙(.) for the

short notation of time derivative. We denote by Ck functions that are k times differentiable. A

function is said to be analytic in a given set, if it admits a convergent Taylor series approximation
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in some neighborhood of every point of the set. A continuous function α : [0, a) → [0,∞)

is said to belong to class K if it is strictly increasing and α(0) = 0. A continuous function

β : [0, a)× [0,∞) → [0,∞) is said to belong to class KL if, for each fixed s, the mapping β(r, s)

belongs to class K with respect to r and, for each fixed r, the mapping β(r, s) is decreasing with

respect to s and β(r, s) → 0 as s→ ∞.

Let us now introduce some definitions that will be used subsequently.

Definition 2.1: [Local Integral Input-to-State Stability (Ito and Jiang (2009))] Consider the system

ẋ = f(t, x, u) (1)

where x ∈ D ⊆ R
n (D compact) such that 0 ∈ D, and f : [0,∞) ×D ×Du → R

n is piecewise continuous

in t and locally Lipschitz in x and u, uniformly in t. The inputs are assumed to be measurable and locally

bounded functions u : R≥0 → Du ⊆ R
m (Du compact). Given any control u ∈ Du and any ξ ∈ D0 ⊆ D,

there is a unique maximal solution of the initial value problem ẋ = f(t, x, u), x(t0) = ξ. Without loss

of generality, assume t0 = 0. The unique solution is defined on some maximal open interval, and it is

denoted by x(·, ξ, u). System (1) is locally integral input-to-state stable (LiISS) if there exist functions α,

γ ∈ K and β ∈ KL such that, for all ξ ∈ D0 and all u ∈ Du, the solution x(t, ξ, u) is defined for all t ≥ 0

and

α(‖x(t, ξ, u)‖) ≤ β(‖ξ‖, t) +

∫

t

0

γ(‖u(s)‖)ds (2)

for all t ≥ 0. Equivalently, system (1) is LiISS if and only if there exist functions β ∈ KL and γ1, γ2 ∈ K
such that

‖x(t, ξ, u)‖ ≤ β(‖ξ‖, t) + γ1

(
∫

t

0

γ2(‖u(s)‖)ds
)

(3)

for all t ≥ 0, all ξ ∈ D0 and all u ∈ Du. Note that if system (1) is LiISS, then the 0-input system is locally

uniformly asymptotically stable (0-LUAS), that is, the unforced system

ẋ = f(t, x, 0) (4)

is LUAS (Sontag and Wang (1996)).

Definition 2.2: [iISS-Lyapunov (Ito and Jiang (2009),Angeli (2000))] A C1 function V :

[0,∞) × D → R is called an iISS-Lyapunov function for system (1) if there exist functions α1,

α2, σ ∈ K, and a continuous positive definite function α3, such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (5)

for all x ∈ D and

V̇ ≤ −α3(‖x‖) + σ(‖u‖) (6)

for all x ∈ D and all u ∈ Du.
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Definition 2.3: [Weakly Zero-Detectability (Angeli (2000)) ] Let an output for the system

(1) be a continuous map h : D → R
p, with h(0) = 0. For each initial state ξ ∈ D0, and each

input u ∈ Du, let y(t, ξ, u) be the corresponding output function; i.e., y(t, ξ, u) = h(x(t, ξ, u)),

defined on some maximal interval [0, Tξ,u). The system (1) with output h is said to be weakly

zero-detectable if, for each ξ such that Tξ,0 = ∞ and y(t, ξ, 0) ≡ 0, it must be the case that

x(t, ξ, 0) → 0 as t→ ∞.

Definition 2.4: [Smooth Dissipativity (Angeli (2000))] System (1) with output h is dissipative

if there exists a C1, proper and positive definite function V , together with a σ ∈ K and a

continuous positive definite function α4, such that

V̇ ≤ −α4(‖h(x(t, ξ, u))‖) + σ(‖u‖) (7)

for all x ∈ D and all u ∈ Du. If this property holds with a V that is also smooth, system (1)

with output h is said to be smoothly dissipative. Finally, if (7) holds with h = 0, i.e., there exists

a smooth proper and positive definite V , and a σ ∈ K, so that

V̇ ≤ σ(‖u‖) (8)

holds for all x ∈ D and all u ∈ Du, the system (1) is said to be zero-output smoothly dissipative.

3 System modelling

We recall below a nonlinear model of the electromagnetic actuator presented in Peterson and

Stefanopoulou (2004):

md2x
dt2

= k(x0 − x) − η dx
dt

− ai2

2(b+x)2 + fd

u = Ri+ a
b+x

di
dt

− ai
(b+x)2

dx
dt
, 0 ≤ x ≤ xf

(9)

where, x represents the armature position mechanically constrained between the initial position

of the armature 0, and the maximal position of the armature xf , dx
dt

represents the armature

velocity, m is the armature mass, k the spring constant, x0 the initial spring length, η the

damping coefficient, ai2

2(b+x)2 represents the electromagnetic force (EMF) generated by the coil,

a, b being constant parameters of the coil, fd a constant term modelling unknown disturbance

force, e.g. static friction, R the resistance of the coil, L = a
b+x

the coil inductance (assumed to

be dependent on the position of the armature), ai
(b+x)2

dx
dt

represents the back EMF, i denotes the

coil current, di
dt

its time derivative and u represents the control voltage applied to the coil.

In the next section, based on this nonlinear model of the electromagnetic actuator, we first



July 29, 2014 11:4 International Journal of Control TCON-2014-0005˙revision

develop a backstepping nonlinear controller and then we extend it to its adaptive version using

a MES algorithm.

4 Learning-based adaptive nonlinear control

4.1 Backstepping Controller with Guaranteed Integral Input-to-State Stability

In this section, we will first state a result discussed in Angeli (2000) for autonomous systems,

and then prove that the sufficiency part of these results also hold for non-autonomous systems.

Subsequently, we will make use of these results to discuss the stability of the backstepping merged

with the MES algorithm.

Theorem 4.1 : [Equivalent Characterizations of iISS (Angeli (2000))] Consider the au-

tonomous system

ẋ = f(x, u) (10)

where x ∈ R
n, f : R

n × R
m → R

n is locally Lipschitz and the inputs are measurable and locally

bounded functions u : R≥0 → R
m. The unique solution of the initial value problem ẋ = f(x, u)

with x(0) = ξ defined on some maximal open interval is denoted by x(·, ξ, u). The following

properties are equivalent for the system (10): 1) The system is iISS. 2) The system admits

a smooth iISS-Lyapunov function. 3) There exists an output that makes the system smoothly

dissipative and weakly zero-detectable. 4) The system is 0-globally asymptotically stable (0-GAS)

and zero-output smoothly dissipative.

Remark 1: Note that we will analyze the local stability properties of the electromagnetic

actuator system, hence we do not require conditions that give global iISS properties. To this

purpose, we will modify the 0-GAS condition to 0-LUAS for the non-autonomous system. More-

over, we only need sufficiency, hence smoothness condition of iISS Lyapunov functions which

was used in Angeli (2000) to prove necessity, is not required here. Thus, we modify properties

1− 4 of Theorem 4.1 to the following ones for the non-autonomous system (1): [1a.] The system

is LiISS. [2a.] The system admits a continuously differentiable iISS-Lyapunov function. [3a.]

There exists an output that makes the system dissipative and weakly zero-detectable locally.

[4a.] The system is 0-LUAS and zero-output dissipative.

Now we propose the following lemma.

Lemma 4.2: Consider the non-autonomous system (1). If there exists an output that makes

the system dissipative and weakly zero-detectable locally, then the system is LiISS.
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Proof:

If we interpret Lemma 4.2 in terms of the modified conditions of Remark 4.1, then Lemma 4.2

states that for non-autonomous systems, if 3a holds, then 1a is true. To prove this lemma, we

will first show that 3a =⇒ 4a; then, we will show 4a =⇒ 2a, and finally we will prove that

2a =⇒ 1a.

3a =⇒ 4a: Assume that some output h(·) that makes the system weakly-zero detectable locally,

and there exist a C1 proper positive definite function V , a function σ ∈ K and a continuous

positive definite function α4 such that

V̇ ≤ −α4(‖h(x)‖) + σ(‖u‖) (11)

hold for all x ∈ D and all u ∈ Du. With u = 0, we have V̇ ≤ −α4(‖h(ξ)‖), and since the system

is weakly-zero detectable, by LaSalle-Yoshizawa Theorem (Haddad and Chellaboina (2008)), we

conclude that the system (10) is 0-LUAS. Also, since −α4(‖h(x)‖) ≤ 0, we have V̇ ≤ σ(‖u‖)
from (11), implying, by Definition 2.4, that the system is zero-output dissipative.

4a =⇒ 2a: Assume 4a holds. Since the system is 0-LUAS, by a converse Lyapunov theorem

(e.g., Haddad and Chellaboina (2008)), there exists a C1 function V0 for the system (1) such

that

α1(x) ≤ V0(t, x) ≤ α2(x) (12)

∂V0

∂t
+ ∂V0

∂x
f(t, x, 0) ≤ −α0(‖x‖), ∀x ∈ D (13)

holds for some continuous positive definite functions α1, α2, α0 ∈ K. If we take the derivative of

V0 along the trajectories of the whole system (1), we have

∂V0

∂t
+ ∂V0

∂x
f(t, x, u) = ∂V0

∂t
+ ∂V0

∂x
f(t, x, 0)

+∂V0

∂x
[f(t, x, u) − f(t, x, 0)]

(14)

Since V0 is continuously differentiable and we consider x in a compact subset D, there exists a

positive constant KV0
such that

∥

∥

∥

∂V0

∂x

∥

∥

∥
≤ KV0

, ∀x ∈ D (15)

Moreover, system (1) is locally Lipschitz in x and u, uniformly in t. This implies that there exists

a positive constant L(x, u) such that

∥

∥

∥
f(t, x, u) − f(t, x, 0)

∥

∥

∥
≤ L(x, u)‖u‖ (16)

∀x ∈ D, ∀u ∈ Du, ∀t ≥ 0. Since x ∈ D, u ∈ Du, where D, Du are compact, Lumax
:=
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maxx∈D,u∈Du
L(x, u) exists. Thus, using the inequality (13), and the definitions for KV0

and

Lumax
, we have

∂V0

∂t
+ ∂V0

∂x
f(t, x, 0) + ∂V0

∂x
[f(t, x, u) − f(t, x, 0)]

≤ −α0(‖x‖) +KV0
Lumax

‖u‖
(17)

After defining the K-function σ0(s) = KV0
Lumax

s, for s ∈ R≥0, we rewrite (17) as

V̇0 ≤ −α0(‖x‖) + σ0(‖u‖) (18)

Thus, by Definition 2.2, V0 is an iISS Lyapunov function for the system (1).

2a =⇒ 1a: Consider the iISS Lyapunov function V0 for system (1) satisfying (12) and (18).

Then, by similar sufficiency discussion as in (Angeli (2000), p. 1088), system (1) is locally iISS.

�

Consider now the dynamical system (9), and let us define the state vector z := [z1 z2 z3]
T =

[x ẋ i]T . The objective of the control is to make the variables (z1, z2) robustly track sufficiently

smooth (at least C2) time-varying position and velocity trajectories zref
1 (t), zref

2 (t) = dz
ref
1 (t)
dt

that satisfy the following constraints: zref
1 (t0) = z1int

, z
ref
1 (tf ) = z1f

, ż
ref
1 (t0) = ż

ref
1 (tf ) =

0, z̈ref
1 (t0) = z̈

ref
1 (tf ) = 0, where t0 is the starting time of the trajectory, tf is the final time,

z1int
is the initial position and z1f

is the final position.

To start, let us first write the system (9) in the following form:

ż1 = z2

ż2 =
k

m
(x0 − z1) −

η

m
z2 −

a

2m(b+ z1)2
z2
3 +

fd

m

ż3 = − R
a

b+z1

z3 +
z3

b+ z1
z2 +

u
a

b+z1

(19)

We consider the case where (19) has uncertainties on the spring constant k , the damping

coefficient η, and the additive disturbance fd. To take into account these uncertain coefficients,



July 29, 2014 11:4 International Journal of Control TCON-2014-0005˙revision

a backstepping controller is designed as (refer to the constructive proof of Lemma 2):

u = a
b+z1

(

R(b+z1)
a

z3 − z2z3

(b+z1)
+ 1

2z3

(

a
2m(b+z1)2

(z2 − z
ref
2 ) − c2(z

2
3 − ũ)

)

)

+2mz2

z3

(

k̂
m

(x0 − z1) − η̂
m
z2 + f̂d

m
+ c3(z1 − z

ref
1 ) + c1(z2 − z

ref
2 ) + κ1(z2 − z

ref
2 )‖ψ‖2

2 − ż
ref
2

)

+m(b+z1)
z3

((

k̂
m

(x0 − z1) − η̂
m
z2 + f̂d

m
− a

2m(b+z1)2
z2
3 − ż

ref
2

) (

c1 + κ1‖ψ‖2
2 − η̂

m

)

− η̂
m
ż

ref
2

)

+m(b+z1)
z3

(

2κ1(z2 − z
ref
2 )

(

(x0−z1)(−z2)
m2 +

z2

(

k̂

m
(x0−z1)−

η̂

m
z2+

f̂d
m

−
az2

3
2m(b+z1)2

)

m2

))

−κ2(z
2
3 − ũ)

∣

∣

2m(b+z1)2

a

∣

∣

2
[

∣

∣c1 + κ1‖ψ‖2
2 − η̂

m

∣

∣

2
+

∣

∣2κ1(z2 − z
ref
2 )

∣

∣

2∣
∣

z2

m2

∣

∣

2
]

‖ψ‖2
2

−κ3(z
2
3 − ũ)

∣

∣

2m(b+z1)2

a

∣

∣

2‖ψ‖2
2 + m(b+z1)

z3

(

− k̂
m
z2 − z̈

ref
2 + c3(z2 − z

ref
2 )

)

(20)

with

ũ = 2m(b+z1)2

a

(

k̂
m

(x0 − z1) − η̂
m
z2 + f̂d

m
+ c3(z1 − z

ref
1 ) + c1(z2 − z

ref
2 ) − ż

ref
2

)

+2m(b+z1)2

a

(

κ1(z2 − z
ref
2 )‖ψ‖2

2

) (21)

where k̂, η̂, f̂d are the system parameter estimates, and ψ ,

[

x0−z1

m
z2

m
1
m

]T

. We can now state

the following lemma.

Lemma 2

Consider the closed-loop dynamics given by (19), (20) and (21), with constant unknown param-

eters k, η, fd and consider the parameter estimation error vector ∆ ,

[

k − k̂ η − η̂ fd − f̂d

]T

.

Then, there exist positive gains c1, c2, c3, κ1, κ2 and κ3 such that (z1(t), z2(t)) are uniformly

bounded and the system (19) is locally integral input-to state stable (LiISS) with respect to

(∆, ∆̇).

Proof: Consider the mechanical subsystem that consists of the first two equations, where

we define the virtual control input ũ := z2
3

ż1 = z2

ż2 = k
m

(x0 − z1) − η
m
z2 + fd

m
− a

2m(b+z1)2
ũ

(22)

We define the Lyapunov function Vsub = c3

2 (z1 − z
ref
1 )2 + 1

2(z2 − z
ref
2 )2, with c3 > 0. To ensure

that V̇sub is upper bounded by a quadratic function of the tracking error and the uncertain
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parameters estimation error, we design ũ as given in equation (21), which leads to

V̇sub = −c3(z1 − z
ref
1 )(ż1 − ż

ref
1 ) + (z2 − z

ref
2 )(ż2 − ż

ref
2 )

= (z2 − z
ref
2 )

(

c3(z1 − z
ref
1 ) + k

m
(x0 − z1) − η

m
z2 + fd

m
− ż

ref
2 − a

2m(b+z1)2
ũ
)

= −c1(z2 − z
ref
2 )2 + (z2 − z

ref
2 )

(

(k−k̂)(x0−z1)
m

− (η−η̂)z2

m
+ fd−f̂d

m

)

− κ1(z2 − z
ref
2 )2‖ψ‖2

2

(23)

Using the definitions of the vectors ψ and ∆, we have

V̇sub ≤ c1(z2 − z
ref
2 )2 + |z2 − z

ref
2 |‖ψT ‖2‖∆‖2 − κ1(z2 − z

ref
2 )2‖ψ‖2

2

≤ −c1(z2 − z
ref
2 )2 − κ1

[

|z2 − z
ref
2 |‖ψ‖2 − ‖∆‖2

2κ1

]2
+ ‖∆‖2

2

4κ1

≤ −c1(z2 − z
ref
2 )2 + ‖∆‖2

2

4κ1

(24)

where ∆ =
[

k − k̂ η − η̂ fd − f̂d

]T

is the vector holding the discrepancy between the actual

system parameters and the estimated parameters. Note that we have made use of the non-

linear damping term −κ1(z2 − z
ref
2 )2‖ψ‖2

2 to attain a negative quadratic term of ψ and ∆
(

i.e.,−κ1

[

|z2 − z
ref
2 |‖ψ‖2 − ‖∆‖2

2κ1

]2
)

and a positive term that is function of ∆ only, i.e., ‖∆‖2
2

4κ1

(refer to Krstic (1995) for a detailed presentation of the use of nonlinear damping terms in

Lyapunov analysis to achieve ISS stability). Since we cannot directly control z2
3 , we use back-

stepping to design the control input u(t) so that z2
3 converges to ũ, which in turn will render the

mechanical subsystem LiISS, as proven below. To this purpose, we define the Lyapunov function

for the full system:Vaug = Vsub + (z2
3−ũ)2

2 . Taking the derivative of Vaug along the trajectories of

the full system, leads to the following inequality

V̇aug ≤ −c1(z2 − z
ref
2 )2 + ‖∆‖2

2

4κ1
+ (z2

3 − ũ)
(

−a(z2−z
ref
2 )

2m(b+z1)2
− ˙̃u

)

+(z2
3 − ũ)

(

2z3

(

− R(b+z1)
a

z3 + z2z3

(b+z1)
+ b+z1

a
u
))

(25)

where ˙̃u is obtained from (21) as

˙̃u = 4m(b+z1)z2

a

(

k̂
m

(x0 − z1) − η̂
m
z2 + f̂d

m
+ c3(z1 − z

ref
1 ) + c1(z2 − z

ref
2 )

)

+4m(b+z1)z2

a

(

κ1(z2 − z
ref
2 )‖ψ‖2

2 − ż
ref
2

)

+2m(b+z1)2

a

(

˙̂
k
m

(x0 − z1) −
˙̂η

m
z2 +

˙̂
fd

m

)

+2m(b+z1)2

a

((

k
m

(x0 − z1) − η
m
z2 + fd

m
− a

2m(b+z1)2
z2
3 − ż

ref
2

)(

c1 + κ1‖ψ‖2
2 − η̂

m

)

− η̂
m
ż

ref
2

)

+2m(b+z1)2

a

(

2κ1(z2 − z
ref
2 )

(

(x0−z1)(−z2)
m2 +

z2

(

k

m
(x0−z1)−

η

m
z2+

fd
m

−
az2

3
2m(b+z1)2

)

m2

))

+2m(b+z1)2

a

(

− k̂
m
z2 − z̈

ref
2 + c3(z2 − z

ref
2 )

)

(26)

The goal now is to write an upper bound of V̇aug as a sum of quadratic terms of the tracking

errors, the error z2
3 − ũ, and the uncertain parameters estimation error. By choosing the control
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input as (20), equation (25) becomes

V̇aug ≤ −c1(z2 − z
ref
2 )2 + ‖∆‖2

2

4κ1
− c2(z

2
3 − ũ)2

−(z2
3 − ũ)

(

2m(b+z1)2

a

( (k−k̂)(x0−z1)
m

− (η−η̂)z2

m
+ fd−f̂d

m

)(

c1 + κ1‖ψ‖2
2 − η̂

m

)

)

−(z2
3 − ũ)

(

2κ1(z2 − z
ref
2 )

(2z2(b+z1)2

ma

)( (k−k̂)(x0−z1)
m

− (η−η̂)z2

m
+ fd−f̂d

m

)

)

−(z2
3 − ũ)

(2m(b+z1)2

a

)( ˙̂
k
m

(x0 − z1) −
˙̂η

m
z2 +

˙̂
fd

m

)

−κ3(z
2
3 − ũ)2

∣

∣

2m(b+z1)2

a

∣

∣

2‖ψ‖2
2

−κ2(z
2
3 − ũ)2

[

∣

∣

2m(b+z1)2

a

∣

∣

2∣
∣c1 + κ1‖ψ‖2

2 − η̂
m

∣

∣

2
+

∣

∣2κ1(z2 − z
ref
2 )

∣

∣

2∣
∣

2z2(b+z1)2

ma

∣

∣

2
]

‖ψ‖2
2

(27)

Using the aforementioned definitions of the vectors ψ and ∆, and noting that ∆̇ =
[

− ˙̂
k − ˙̂η − ˙̂

fd

]T

, we can further bound V̇aug in the following way

V̇aug ≤ −c1(z2 − z
ref
2 )2 + ‖∆‖2

2

4κ1
− c2(z

2
3 − ũ)2

+
∣

∣z2
3 − ũ

∣

∣

∣

∣

2m(b+z1)2

a

∣

∣

∣

∣c1 + κ1‖ψ‖2
2 − η̂

m

∣

∣‖ψT ‖2‖∆‖2

+
∣

∣z2
3 − ũ

∣

∣

∣

∣2κ1(z2 − z
ref
2 )

∣

∣

∣

∣

2z2(b+z1)2

ma

∣

∣‖ψT ‖2‖∆‖2

+
∣

∣z2
3 − ũ

∣

∣

∣

∣

2m(b+z1)2

a

∣

∣‖ψT ‖2‖∆̇‖2

−κ3(z
2
3 − ũ)2

∣

∣

2m(b+z1)2

a

∣

∣

2‖ψ‖2
2

−κ2(z
2
3 − ũ)2

[

∣

∣

2m(b+z1)2

a

∣

∣

2∣
∣c1 + κ1‖ψ‖2

2 − η̂
m

∣

∣

2
+

∣

∣2κ1(z2 − z
ref
2 )

∣

∣

2∣
∣

2z2(b+z1)2

ma

∣

∣

2
]

‖ψ‖2
2

(28)

By making use of the quadratic damping terms, e.g. −κ1(z2 − z
ref
2 )2‖ψ‖2

2, we can further simplify

the right hand-side of the previous inequality. For instance, if we consider the term

∣

∣z2
3 − ũ

∣

∣

∣

∣2κ1(z2 − z
ref
2 )

∣

∣

∣

∣

2z2(b+z1)2

ma

∣

∣‖ψT ‖2‖∆‖2 − κ2(z
2
3 − ũ)2

∣

∣2κ1(z2 − z
ref
2 )

∣

∣

2∣
∣

2z2(b+z1)2

ma

∣

∣

2‖ψ‖2
2

(29)

we can write is as

∣

∣z2
3 − ũ

∣

∣

∣

∣2κ1(z2 − z
ref
2 )

∣

∣

∣

∣

2z2(b+z1)2

ma

∣

∣‖ψT ‖2‖∆‖2 − κ2(z
2
3 − ũ)2

∣

∣2κ1(z2 − z
ref
2 )

∣

∣

2∣
∣

2z2(b+z1)2

ma

∣

∣

2‖ψ‖2
2

+‖∆‖2
2

4κ2
− ‖∆‖2

2

4κ2

(30)

which finally equals to

−κ2

[

∣

∣z2
3 − ũ

∣

∣

∣

∣2κ1(z2 − z
ref
2 )

∣

∣

∣

∣

2z2(b+z1)2

ma

∣

∣‖ψ‖2 − ‖∆‖2

2κ2

]2
+ ‖∆‖2

2

4κ2
(31)
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following the same steps for the remaining terms in (28), we get

V̇aug ≤ −c1(z2 − z
ref
2 )2 + ‖∆‖2

2

4κ1
− c2(z

2
3 − ũ)2

−κ2

[

∣

∣z2
3 − ũ

∣

∣

∣

∣

2m(b+z1)2

a

∣

∣

∣

∣c1 + κ1‖ψ‖2
2 − η̂

m

∣

∣‖ψ‖2 − ‖∆‖2

2κ2

]2
+ ‖∆‖2

2

4κ2

−κ2

[

∣

∣z2
3 − ũ

∣

∣

∣

∣2κ1(z2 − z
ref
2 )

∣

∣

∣

∣

2z2(b+z1)2

ma

∣

∣‖ψ‖2 − ‖∆‖2

2κ2

]2
+ ‖∆‖2

2

4κ2

−κ3

[

∣

∣z2
3 − ũ

∣

∣

∣

∣

2m(b+z1)2

a

∣

∣‖ψ‖2 − ‖∆̇‖2

2κ3

]2
+ ‖∆̇‖2

2

4κ3

(32)

Finally, from (32), we deduce

V̇aug ≤ −c1(z2 − z
ref
2 )2 − c2(z

2
3 − ũ)2 +

(

1
4κ1

+ 1
2κ2

)

‖∆‖2
2 + ‖∆̇‖2

2

2κ3
(33)

It is easy to see that the uncertain system can be expressed in the following nonlinear time-

varying form

ė = f(t, e, ∆̃) (34)

with e ∈ De, ∆̃ ∈ D∆̃, where e := [z1 − z
ref
1 z2 − z

ref
2 z2

3 − ũ]T and ∆̃ = [∆ ∆̇]T . Then,

considering the output map defined by h = [z2 − z
ref
2 z2

3 − ũ]T , we show now that the system

(34) with h is weakly zero-detectable, by analyzing the zero-dynamics of (34) with h ≡ ∆̃ ≡ 0).

Indeed, ∆̃ ≡ 0 means that we are analyzing the zero dynamics of the feedback system in the

nominal case. Now considering the output condition h ≡ 0, together with the dynamics (21),

and (22), leads to the following zero dynamics

ż1 = z2

ż2 = ż
ref
2 − c3(z1 − z

ref
1 ) − c1(z2 − z

ref
2 ) (35)

Writing the second equation in (35) in terms of z1 and zref
1 only, and introducing ez1

:= z1−zref
1 ,

we obtain

ëz1
+ c1ėz1

+ c3ez1
= 0 (36)

It can be seen that if c3 and c1 are selected such that

−c1 ±
√

c21 − 4c3 < 0 (37)

the roots of the characteristic equation of (36) would be negative, which in turn would imply

lim
t→∞

z1 = z
ref
1 starting from any initial condition z1(t0). Furthermore, inequality (33) satisfies

(7), meaning that property 3a holds for (34). By the virtue of Lemma 4.2, we conclude that

system (34) is LiISS with respect to the input ∆̃, implying that there exist functions α ∈ K,
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β ∈ KL and γ ∈ K, such that, for all e(0) ∈ De and ∆̃ ∈ D∆̃, and

‖e(t)‖ ≤ β(‖e(0)‖, t) + α(

∫ t

0
γ(‖∆̃‖))ds (38)

for all t ≥ 0. �

In the rest of this paper, we will refer to the controller of Section 4.1 as the ISS-backstepping

controller.

Remark 2: We underline here that, in this paper we assume constant unknown parameters

k, η, fd. This is a realistic assumption since we are targeting the problem of aging, which

usually happens very slowly over long period of time. Hence, the slowly varying parameters can

be approximated by constant uncertain parameters.

The analysis of the dynamical behavior of estimated parameters is done via multi-variable

extremum seeking theory (Ariyur and Krstić (2003), Ariyur and Krstic (2002)). This analysis

is described in the next section.

4.2 Robustification of the ISS-backstepping Controller

We will now discuss how multi-variable extremum seeking scheme is utilized along with ISS-

backstepping controller to improve the controller robustness with respect to uncertainties in the

system parameters. We define a performance cost function for the dynamical system (19) as

Q(θ) = q1(z1(tf ) − z1(tf )ref )2 + q2(z2(tf ) − z
ref
2 (tf ))2, q1, q2 > 0 (39)

where, θ = (θ1, θ2, θ3)
T represents the vector of the learned parameters, defined such that

k̂(t) = knominal + θ1(t)

η̂(t) = ηnominal + θ2(t)

f̂d(t) = fd−nominal + θ3(t)
(40)

with knominal, ηnominal, fd−nominal being the nominal values of the parameters.

To be able to derive some closed-form analysis of the learning algorithm, we need the following

additional assumptions.

Assumption 4.3 The cost functionQ has a local minimum at θ∗ = [k−knominal η−ηnominal fd−
fd−nominal]

T .
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Assumption 4.4 The initial error ∆(t0) is sufficiently small, i.e., the original parameters esti-

mates vector [k̂ η̂ f̂d]
T is close enough to the actual parameters vector [k η fd]

T .

Assumption 4.5 The cost function is analytic and its variation with respect to the uncertain

variables is bounded in the neighborhood of θ∗, i.e., ‖∂Q
∂θ

(θ̃)‖ ≤ ξ2, ξ2 > 0, θ̃ ∈ V(θ∗), where

V(θ∗) denotes a compact neighborhood of θ∗.

Remark 3: Assumption 4.3 simply means that we assume that Q has at least a local

minimum at the true values of the coefficients k η, fd. Indeed, if we consider the iISS results

proven in Lemma 2, equation (38) shows that if we assume the ideal case where we have

k̂ = k, η̂ = η, f̂d = fd, we have convergence of the actual trajectories to the desired trajectories,

which means convergence of the cost function to zero. In other words, in the case of certain

model, the ISS backstepping control reduces to a classical backstepping controller which

achieves the desired trajectory tracking, i.e., minimum value for Q.

Remark 4: Assumption 4.4 indicates that our result will be of local nature, meaning that

our analysis holds in a small neighborhood of the actual values of the parameters. Indeed, this

assumption is realistic for the targeted application, i.e., estimation of uncertainties due to aging,

since in the context of aging the uncertain parameters vary slowly over a long period of time,

and the controller starts initially from a good guess of the parameters given by their nominal

values (before aging), and subsequently follows the drift of the parameters over time.

Remark 5: The choice of the cost function Q is not unique. Indeed, we choose the

form (39), because we are mainly interested in minimizing the position and velocity errors at

t = tf to improve the soft landing performance, however, if we were interested in improving

the tracking performance over the whole interval [0, tf ], we could choose the cost function

Q(θ) =
∫ tf

0 q1(z1(s) − z1(s)
ref )2ds+

∫ tf

0 q2(z2(s) − z
ref
2 (s))2ds, q1, q2 > 0.

Following Rotea (2000), Ariyur and Krstić (2003), we propose the following MES algo-

rithm for the system (19):

ẋp = apsin(ωpt+ π
2 )Q(θp)

θp = xp + apsin(ωpt− π
2 ), p = 1, 2, 3

(41)

where p = 1 corresponds to k, p = 2 corresponds to η and p = 3 corresponds to fd,

ap > 0, p = 1, 2, 3 and ωi 6= ωj , ωi + ωj 6= ωk, i, j, k ∈ {1, 2, 3}, ωi > ω∗, ∀i ∈ {1, 2, 3}, with

ω∗ large enough. The algorithm (41) is actually a special case of the algorithms proposed in

Rotea (2000), Ariyur and Krstić (2003), where we replace by a unit transfer function the filters
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used in the general algorithms presented in Rotea (2000), Ariyur and Krstić (2003). Indeed,

these filters are mainly introduced in Rotea (2000), Ariyur and Krstić (2003) to accelerate

the convergence of the MES algorithm. For simplicity of the presentation, we choose to use

a version of the algorithms without the filters. This version can be seen as an extension to

the multi-variable case of the single-variable extremum seeking algorithm used in Krstic and

Wang (2000), Peterson and Stefanopoulou (2004). The uncertain parameters estimates are then

updated following (40). Here due to the cyclic nature of the problem, the uncertain parameters

estimate vector (k̂, η̂, f̂d)
T is updated for each cycle, i.e., at the end of each cycle at t = tf ,

the cost function Q is updated. Then, the new estimate of the parameters is computed for the

next cycle, starting from the same states’ initial condition. The purpose of using MES scheme

along with ISS-backstepping controller is to improve the performance of the ISS-backstepping

controller by better estimating the system parameters over many cycles, hence decreasing the

error in the parameters over time to provide better trajectory following for the actuator.

Now we can state the main result about the MES-based adaptive controller.

Lemma 3

Consider the dynamical system (19) with the ISS-backstepping controller given by (20) and

(21). Moreover, consider the cycle-to-cycle multi-variable extremum seeking algorithm for

estimation of system parameters k, η, and fd, described by (39), (40) and (41). Then, under

Assumptions 4.3, 4.4 and 4.5, the norm of the error vector e := [z1 − z
ref
1 z2 − z

ref
2 z2

3 − ũ]T

admits the following bound

‖e(t)‖ ≤ β(‖e(0)‖, t) + α(

∫ t

0
γ(β̃(‖∆(0)‖, t) + ‖∆̃‖max))ds (42)

where, ‖∆̃‖max = ξ1

ω0
+

√

∑i=3
i=1 a

2
i (1 + ω0) + maxi∈{1,2,3} 0.5ξ2a

2
i , ξ1, ξ2 > 0, e(0) ∈ De, ω0 =

maxi∈{1,2,3} ωi, α ∈ K, β ∈ KL, β̃ ∈ KL and γ ∈ K.

Proof:

The first part of the proof relies on the result of Lemma 2. Indeed, based on Lemma 2, we know

that for the closed-loop dynamics given by (19), (20) and (21), there exist functions α ∈ K,

β ∈ KL and γ ∈ K, such that, for all e(0) ∈ De and ∆̃ ∈ D∆̃, the norm of the error vector

e := [z1 − z
ref
1 z2 − z

ref
2 z2

3 − ũ]T admits the following bound

‖e(t)‖ ≤ β(‖e(0)‖, t) + α(

∫ t

0
γ(‖∆̃‖))ds (43)

for all t ≥ 0.

Now, we need to evaluate the bound on the estimation vector ∆̃; to do so we use the results
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presented in Rotea (2000). First, based on Assumption 4.5, the cost function is locally Lipschitz,

i.e., ∃η1 > 0, s.t. |Q(θ1)−Q(θ2)| ≤ η1‖θ1−θ2‖, ∀θ1, θ2 ∈ V(θ∗). Furthermore, since Q is analytic

it can be approximated locally in V(θ∗) with a quadratic function, e.g. Taylor series up to second

order. Based on this and on Assumptions 4.3 and 4.4 , we can write the following bound (Rotea

(2000), pages 436-437):

‖∆(t)‖ − ‖d(t)‖ ≤ ‖∆(t) − d(t)‖ ≤ β̃(‖∆(0)‖, t) + ξ1

ω0

⇒ ‖∆(t)‖ ≤ β̃(‖∆(0)‖, t) + ξ1

ω0
+ ‖d(t)‖

⇒ ‖∆(t)‖ ≤ β̃(‖∆(0)‖, t) + ξ1

ω0
+

√

∑i=3
i=1 a

2
i

with β̃ ∈ KL, ξ1 > 0, t ≥ 0, ω0 = maxi∈{1,2,3} ωi, d(t) = [a1sin(ω1t + π
2 ), a2sin(ω2t +

π
2 ), a3sin(ω3t + π

2 )]T . Moreover, in (Rotea (2000), pages 434), the MES algorithm is shown

to be a gradient-based algorithm, such that the variation of θ over time is approximated by

θ̇ ' −R∂Q
∂θ

(θ) + ḋ(t) (44)

with R = limT→∞

∫ T

0 ‖d(s)‖2ds = 0.5 diag{a2
1, a

2
2, a

2
3}.

Using Assumption 4.5, we can write

‖θ̇‖ = ‖∆̇‖ ≤ 0.5 max
i∈{1,2,3}

a2
i ξ2 +

√

√

√

√

i=3
∑

i=1

(aiωi)2 ≤ 0.5 max
i∈{1,2,3}

a2
i ξ2 +

√

√

√

√

i=3
∑

i=1

(ai)2ω0

Finally, we can write the following bound on ‖∆̃‖:

‖∆̃‖ ≤ ‖∆‖ + ‖∆̇‖
⇒ ‖∆̃‖ ≤ β̃(‖∆(0)‖, t) + ξ1

ω0
+

√

∑i=3
i=1 a

2
i (1 + ω0) + maxi∈{1,2,3} 0.5ξ2a

2
i

which together with the bound (43) completes the proof. �

Remark 6: The estimated parameters upper bounds used in Lemma 3 are correlated to

the choice of the first order multi-variable extremum seeking (39), (40) and (41). However, these

bounds can be easily changed by using other MES algorithms, e.g. Noase (2011), Scheinker

(2013), which is due to the modular design of the controller, that uses the iISS robust part

to ensure boundedness of the error dynamics and the learning part to improve the tracking

performance.

Remark 7: To simplify the presentation, we choose here to use a first order extremum-

seeking algorithm, which has been shown in Rotea (2000) to be a gradient-based algorithm.
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Parameter Value

m 0.27 [kg]

R 6 [Ω]

η 7.53 [kg
s

]

x0 8 [mm]

k 158 [ N
mm

]

a 14.96 × 16−6 [Nm2

A2 ]

b 4 × 10−5 [m]

Table 1.: System Parameter Values

Note that this is not to be confused with optimization methods that need an explicit com-

putation or a numerical estimation of the gradient via numerical differentiation. Here, by

gradient-based we mean that the step of the optimized variables are shown to be taken in

the direction of the cost function’s gradient without the need of an explicit computation of

the gradient. However, due to the modular design of the proposed approach, one could use

other non-gradient based extremum seekers, e.g. Nesic (2013), which achieve global extremum

seeking on compact sets in the presence of local extrema.

5 Simulations

In this section, we illustrate our approach on a nonlinear electromagnetic actuator modelled

by (9), using the system parameters given in Table 1 (Kahveci and Kolmanovsky (2010)).

The reference trajectory is designed to be a 5th order polynomial, xref (t) =
∑5

i=0 ai(
t
tf

)i

where the coefficients ai are selected such that the following conditions are satisfied: xref (0) =

0.2 mm, xref (0.5) = 0.7 mm, ẋref (0) = 0, ẋref (0.5) = 0, ẍref (0) = 0, ẋref (0.5) = 0. We

present hereafter two cases to illustrate the performance of the proposed controller.

We consider the following uncertainty in the mechanical parameters k, η and fd: ∆k = −4.5,

∆η = −0.7 and ∆fd = −7.5. To make the simulation case more challenging, we also introduced

an initial error x(0) = 0.01 mm on the armature position. We implemented the controller (20)

and (21) with the coefficients c1 = 100, c2 = 100, c3 = 2500, κ1 = κ2 = κ3 = 0.25, together

with the learning algorithm (39), (40) and (41) with the coefficients ak = 0.5, ωk = 7.5, aη =

0.2, ωη = 7.4, afd
= 1, ωfd

= 7.3, q1 = q2 = 500. For more details about the tuning of the

MES coefficients we refer the reader to Ariyur and Krstic (2002), Rotea (2000), Ariyur and

Krstić (2003), however, we underline here that the frequencies ωi, i = 1, 2, 3 have been selected

high enough to ensure efficient exploration of the search space and ensure convergence and that
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Figure 1.: Obtained trajectories vs. Reference Trajectory- Case with uncertain k, η, fd

the amplitudes ai of the dither signals have been chosen such that the search, i.e., the gradient

descent slope in (44), is fast enough for this application. As can be seen in Figures 1(a) and

1(b), the robustification of the backstepping control via extremum seeking greatly improves the

tracking performance. Figure 2(a) shows that the cost function decreases below 1 within 20

iterations. It can be seen in Figure 2(b) that the cost starts at an initial value around 9, and

decreases rapidly afterwards. Moreover, the estimated parametric uncertainties ∆k, ∆η and ∆fd

converge to regions around the actual parameter values, as shown on Figure 3. The number of

iterations for the estimates to reach the actual value of the parameters may appear to be high.

The reason is that the allowed uncertainties in the parameters are large, hence the extremum

seeking scheme requires a lot of iterations to improve performance. Furthermore, we purposely

tested the challenging case of three simultaneous uncertainties, which makes the space search

for the learning algorithm large (note that this case of multiple uncertainties could not be solved

with other classical model-based adaptive controllers (Benosman and Atinc (2013)). However,

in real-life applications uncertainties accumulate gradually over a long period of time, while

the learning algorithm keeps tracking these changes continuously. Thus, the extremum seeking

algorithm will be able to improve the controller performance quickly, meaning that it will enhance

the backstepping control in fewer iterations. Finally, the control voltage is depicted on Figure 4,

which shows an initial high value due to the relatively large simulated initial condition error on

the armature position.

Finally, to make the simulation tests closer to a real test-bed validation, we performed the

same tests as above, but we introduced more uncertainties on the measured signals and the

direct simulation model. We assume that a white noise with a maximum excursion of 0.01 mm

is added to the measured position signal. Indeed, in practical setting the armature position can

be measured by precise position sensors, e.g. laser sensors, which can generate noisy signals

due to electrical noises or mechanical vibrations of the armature. We also added a random
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Figure 3.: Parameters estimates- Case with uncertain k, η, fd

white noise to the current measurements with an excursion of 2 × 10−6 A. This is a reasonable

approximation of the electrical noises in the presently available current sensors, e.g. hall-effect

sensors, since these sensors, if properly shielded, have practically very small noise appearing

on their output signal. We assumed that the armature velocity is computed from the position

signal by direct differentiation. All the measurements are simulated with a sampling rate of 1 ms.

Furthermore, we imposed saturations on the voltage signal between 0 and 60 volts. Finally, to
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Figure 4.: Control voltage- Case with uncertain k, η, fd

test the controller performance when dealing with model structural uncertainties, we added

in the direct model used in the simulations, the effect of eddy currents on the coil. Following

Chladny (2005), eddy current effect was modelled by adding a Reddy-Leddy circuit in parallel

with the coil’s electrical circuit. In this case, the model (9) is modified as follows:

md2x
dt2

= k(x0 − x) + η dx
dt

− ai2

2(b+x)2 + fd

u = R(ieddy + i) + a
b+x

di
dt

− ai
(b+x)2

dx
dt

dieddy

dt
= 1

Leddy
(u−R(i+ ieddy) −Reddyieddy)

(45)

where, ieddy denotes eddy current. It was shown in Chladny (2005), via experimental tests,

that the model (45) is a good approximation of eddy current effect. We tuned the values of the

resistance Reddy and the inductance Leddy to have an eddy current maximum amplitude corre-

sponding to 10% of the coil current i at a nominal functioning of the actuator. The obtained

results are shown on Figures 5, 6, 7, and 8, which show a good performance of the proposed con-

troller even in the case of unstructured uncertainties (Eddy-current effect), noisy measurements

and input saturation.

6 Conclusion

We have studied in this paper the problem of adaptive control for electromagnetic actuators. We

have proposed an adaptive controller based on a nonlinear backstepping and a model-free multi-

variable extremum seeking algorithm. We have proven that the nonlinear backstepping ensures

integral input-to-state stability, when considering uncertain parameters appearing linearly in

the model. We have also analyzed the stability of the combined backstepping and multi-variable

extremum seeking controller, in term of upper-bounds of the tracking error signals. We have

shown the performance of the proposed adaptive controller on a numerical example. Future work

will include: Applying this approach to other systems and comparing the performance of this
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Figure 5.: Obtained trajectories vs. Reference Trajectory- Case with uncertain k, η, fd- Direct

model including Eddy-current effect
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effect

type of learning-based adaptive controllers to classical adaptive control methods , e.g. Benosman

and Atinc (2013), using different MES algorithms with semi-global convergence properties, e.g.

Tan (2006), Noase (2011), Scheinker (2013), or other learning paradigms, e.g. reinforcement

learning approaches, and comparing the resulting controllers in terms of parameters estimation

and tracking performances.
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Ariyur, K., and Krstić, M., Real-time optimization by extremum-seeking control, Wiley-Blackwell

(2003).

Atinc, G., and Benosman, M. (2013), “Nonlinear Learning-based Adaptive Control for Electro-

magnetic Actuators with Proof of Stability,” in IEEE, Conference on Decision and Control,



July 29, 2014 11:4 International Journal of Control TCON-2014-0005˙revision

pp. 1277–1282.

Benosman, M., and Atinc, G. (2013a), “Multi-Parametric Extremum Seeking-based Learning

Control for Electromagnetic Actuators,” in American Control Conference, pp. 1914–1919.

Benosman, M., and Atinc, G. (2013), “Nonlinear Adaptive Control of Electromagnetic Actua-

tors,” in SIAM Conference on Control and Applications, pp. 29–36.

Benosman, M., and Atinc, G. (2013b), “Nonlinear Learning-based Adaptive Control for Elec-

tromagnetic Actuators,” in European Control Conference, pp. 2904–2909.

Chladny, R., Koch, C., and Lynch, A. (2005), “Modeling automotive gas-exchange solenoid valve

actuators,” IEEE Transactions on Magnetics, 41, 1155–1162.

Eyabi, P., and Washington, G. (2006), “Modeling and sensorless control of an electromagnetic

valve actuator,” Mechatronics, 16, 159–175.

Haddad, W., and Chellaboina, V., Nonlinear dynamical systems and control: a Lyapunov-based

approach, Princeton University Press (2008).

Hoffmann, W., Peterson, K., and Stefanopoulou, A. (2003), “Iterative learning control for soft

landing of electromechanical valve actuator in camless engines,” IEEE, Transactions on Con-

trol Systems Technology, 11, 174–184.

Ito, H., and Jiang, Z. (2009), “Necessary and sufficient small gain conditions for integral input-

to-state stable systems: A Lyapunov perspective,” IEEE Transactions on Automatic Control,

54, 2389–2404.

Kahveci, N., and Kolmanovsky, I. (2010), “Control design for electromagnetic actuators based

on backstepping and landing reference governor,” in 5th IFAC Symposium on Mechatronic

Systems, September, Cambridge, pp. 393–398.

Krstic, M., Kanellakopoulos, I., Kokotovic, P. , Nonlinear and adaptive control design, John

Wiley & Sons New York (1995).

Krstic, M., and Wang, H. (2000), “Stability of extremum seeking feedback for general nonlinear

dynamic systems,” Automatica, pp. 595–601.

Nesic, D., Nguyen, T., Tan, Y., and Manzie, C. (2013), “A non-gradient approach to global

extremum seeking: An adaptation of the Shubert algorithm,” Automatica, 49, 809–815.

Noase, W., Tan, Y., Nesic, D., and Manzie, C. (2011), “Non-local stability of a multi-variable

extremum-seeking scheme,” in IEEE, Australian Control Conference, November, pp. 38–43.

Peterson, K., and Stefanopoulou, A. (2004), “Extremum seeking control for soft landing of

electromechanical valve actuator,” Automatica, 40, 1063–1069.

Peterson, K., and Stefanopoulou, A. (2003), “Rendering the electromechanical valve actuator

globally asymptotically stable,” in Proceedings of 42nd IEEE Conference on Decision and

Control, December, Maui, HI, pp. 1753–1758.



July 29, 2014 11:4 International Journal of Control TCON-2014-0005˙revision

Rotea, M.A. (2000), “Analysis of Multivariable Extremum Seeking Algorithms,” in American

Control Conference, June, pp. 433–437.

Scheinker, A. (2013), “Simultaneous stabilization of and optimization of unkown time-varying

systems,” in American Control Conference, June, pp. 2643–2648.

Sontag, E., and Wang, Y. (1996), “New characterizations of input-to-state stability,” IEEE

Transactions on Automatic Control, 41, 1283–1294.

Tai, C., and Tsao, T. (2002), “Control of an electromechanical camless valve actuator,” in

American Control Conference, May, pp. 262–267.

Tan, Y., Nesic, D., and Mareels, I. (2006), “On non-local stability properties of extremum seeking

control,” Automatica, pp. 889–903.

Tsai, J., Koch, C., and Saif, M. (2008), “Cycle adaptive feedforward approach control of an

electromagnetic valve actuator,” in IEEE, Conference on Decision and Control, December,

Cancun, Mexico.


	Title Page
	Title Page
	page 2


	Extremum Seeking-based Adaptive Control for Electromagnetic Actuators
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24


