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Abstract—This paper considers the State of Charge (SoC)
and parameter estimation of Lithium-ion batteries. Different
from various prior art, where estimation is based on local
linearization of a nonlinear battery model, nonlinear geometric
observer approach is followed to design adaptive observersfor
the SoC and parameter estimation based on nonlinear battery
models. A major advantage of the proposed approach is the
possibility to establish the exponential stability of the resultant
error dynamics of state and parameter estimation. The proposed
adaptive observers are shown to be robust with respect to
unmodeled process uncertainties. Analysis also shows the design
tradeoff between the convergence rate and the robustness ofthe
estimation error dynamics with respect to the measurement noise.
Simulation and experimental results validate the effectiveness
and main advantages of the proposed approach. Error analysis
is presented and explains the experimental results.

Index Terms—State of charge, batteries, adaptive estimation,
geometric method, nonlinear systems.

I. I NTRODUCTION

L ITHIUM-ION (Li +) batteries have been widely used in
numerous applications including consumer electronics,

automotive, and power tools, due to the high capacity but
reduced size, superior power performance, and long cycle
life [1]. Nowadays battery management systems (BMSs) are
used to monitor the battery status and regulate the charging
and discharging processes for real-time battery protection and
performance improvement [2], [3]. An accurate state of charge
(SoC) of the battery, usually defined as the percentage ratio
of the present battery capacity to the maximum capacity, is a
prerequisite to have a desirable BMS.

The SoC of a battery is difficult to measure, and its accurate
estimation is known as a challenging task. Two straightforward
SoC estimation methods are voltage translation and Coulomb
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counting [3]. Both methods have limitations such as the former
requires the battery to rest for a long period and cut off
from the external circuit to measure the Open Circuit Voltage
(OCV), and the latter suffers cumulative integration errors and
noise corruption.

Recently model-based approaches have attracted a lot of
attention to improve the SoC estimation accuracy. For instance,
equivalent circuit models (ECMs) and extended Kalman filter
(EKF) type of approaches have been used extensively to esti-
mate the SoC with approximate dynamic error bounds [4]–[6].
Nonlinear observer design approaches have also been applied
to construct ECM-based nonlinear SoC estimators, e.g. sliding
mode observer [7], adaptive model reference observer [8],
Lyapunov-based observer [9] etc. ECM-based approaches have
the benefit of simplicity and low computation but sacrifice
physical meaning of model parameters thus may limit their
uses for battery monitoring.

Electrochemical or physics-based models, for instance the
pseudo two dimensional model [10], [11] and single particle
models [12], [13], are derived from electrochemical principles
which describe intercalation and diffusion of lithium ions
and conservation of charge within a battery. Electrochemical
models have the merit of ensuring each model parameter to
retain a proper physical meaning; on the other hand, they take
the form of nonlinear partial differential equations (PDEs)
thus often necessitates model simplification or reduction for
control and estimation purposes. A linear reduced-order elec-
trochemical model is established in [14], to which the classical
KF is employed for the SoC estimation. In [15], the EKF
is implemented to estimate the SoC via a nonlinear ordinary
differential equation (ODE) model obtained from PDEs by
finite-difference discretization. The unscented Kalman filter
(UKF) is used in [16] to avoid model linearization for more
accurate SoC estimation. Rather than using the ODE model,
nonlinear SoC estimators are also developed in [17], [18]
through direct manipulation of PDEs.

Adaptive SoC estimation, which enables the SoC estimation
with unknown model parameters, has been discussed for some
ECMs and electrochemical models, e.g., [6], [19]–[22]. This
paper is an extension of the work [22] by including alter-
native adaptive observer design, robustness and applicability
analysis of the proposed adaptive observers, and experimental
study. This paper makes new contributions to study of this
topic by proposing nonlinear geometric observer approach
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Fig. 1. Schematic characterization of battery dynamics: (a) the battery
charging process; (b) the single-particle model.

for adaptive SoC estimation. The proposed nonlinear adaptive
SoC estimators admit straightforward analysis of the resultant
error dynamics. Specifically, for the case where no mismatch
between the battery model and the physical process is present,
the error dynamics are exponentially stable; with bounded
model uncertainties, the error dynamics are input-to-state
stable. Extensive analysis, and simulation and experimental
results are provided to validate the methodology.

The rest of this paper is organized as follows. Section II
introduces the working mechanism of Li+ batteries and sim-
plified battery models. Section III presents adaptive observers
for the SoC and parameter estimation, and robustness analysis.
Simulation and experiment results are provided in Section IV
to verify the proposed design approach. The paper is concluded
by Section V.

II. SIMPLIFIED BATTERY MODELS

This section includes a brief introduction of the working
mechanism of Li+ batteries, the single particle model (SPM)
[2], and simplified models to which nonlinear geometric
observer approach can be applied for the SoC estimation.

A. The Working Mechanism of Li+ Batteries

A schematic visualization of a Li+ battery is presented
in Fig 1(a). The positive electrode is typically made from
Li compounds, e.g., LiqMn2O4 and LiqCoO2. Small solid
particles of the compounds are compressed to form a porous
structure. Similarly, the negative electrode, usually containing
graphite particles, is also porous. The interstitial poresat both
electrodes provide intercalation space, where the Li+ can be
moved in and out and stored. The electrolyte contains free
ions and is electrically conductive, where the Li+ can be
transported. The separator separates the electrodes apart. It
allows the exchange of Li+ from one side to the other, but

prevents electrons from passing through. Electrons are thus
forced to flow through the external circuit.

When the battery is being charged, Li+ are extracted from
particles at the positive electrode into the electrolyte, driven
by reaction at the particle/electrolyte interface, and particles
at the negative electrode absorbs Li+ from the electrolyte.
This process not only generates an influx of Li+ within the
battery, but also builds up a potential difference between the
positive and negative electrodes. When it is reversed, the
battery is discharging. The chemical reactions in the positive
and negative electrodes are, respectively, described by

LiqMn2O4

charge
−−−−−⇀↽−−−−−
discharge

Liq− lMn2O4+ l Li++ l e−

qLi++qe−+C
charge

−−−−−⇀↽−−−−−
discharge

LiqC

A rechargeable battery has various features including rate
capacity effect (RCE), recovery effect (RE), and hysteresis
effect (HE). A battery model capturing all these effects is
important for accurate SoC and state of health estimation.
It is however difficult to find practical models that interpret
the RCE and the RE using electrochemical states [23]. A
commonly used model for characterizing the electrochemical
mechanism of a Li+ battery is presented in [10]. The model
includes four quantities solid and electrolyte Li+ concentration
and potential as state variables, whose dynamics, e.g. material
balance and charge balance, are captured by PDEs [13]. In
addition, these state variables are coupled by a charge-transfer
kinetic resistance at the particle surface which is given bythe
Butler-Volmer equations. Interested readers are referredto [2],
[10], [13] for details.

B. The Single Particle Model

The single particle model (SPM) simplifies each electrode
as a spherical particle with area equivalent to the active
area of the electrode [24], [25]. The dynamics of electrolyte
concentration and potential are ignored. Although unable to
capture all electrochemical processes in batteries, the SPM
reduces complexities in identification, estimation and control
design to a large extent [15], [18]. To proceed further, a review
of the SPM is provided, with the nomenclature shown in
Table I.

Input and output of the battery:The external input to the
battery is the currentI(t) with I(t)< 0 for charge andI(t)>
0 for discharge. The measured output of the battery is the
terminal voltage, which is the potential difference between the
two electrodes, and given by

V(t) = Φs,p(t)−Φs,n(t). (1)

Conservation of Li+ in the electrode phase:The migration
of Li+ inside a particle is caused by the gradient-induced
diffusion. Its dynamics can be modeled from the Fick’s second
law and given by

∂cs, j(r, t)

∂ t
=

1
r2

∂
∂ r

(
Ds, j r

2 ∂cs, j(r, t)

∂ r

)
, (2)
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Variables
Φs electric potential in the solid electrode
Φe electric potential in the electrolyte
cs concentration of Li+ in the solid electrode
css concentration of Li+ at a particle’s spherical surface
J molar flux of Li+ at the particle’s surface
J0 exchange current density
η overpotential of reaction in the cell
U open-circuit potential
I external circuit current
V terminal voltage
x original system state (state of charge)
y measured terminal voltage of a battery
ξ transformed system state (terminal voltage of a battery)

Physical parameters
Ds diffusion coefficient of Li+ in the solid electrode
r̄ radius of the spherical particle
F Farady’s constant
S specific interfacial area
T temperature of the cell
αa anodic charge transport coefficient
αc cathodic charge transport coefficient
R universal gas constant
Rc phase resistance
Rf film resistance of the solid electrolyte interphase
α charge coefficient
β parameters in the OCV-SoC curve
γ1 battery internal resistance

Subscripts
s solid electrode phase
e electrolyte phase
n negative electrode
p positive electrode
j n or p

TABLE I
DEFINITIONS AND NOMENCLATURE.

with the following initial and boundary conditions

cs, j(r,0) = c0
s,

∂cs, j

∂ r

∣∣∣∣
r=0

= 0,
∂cs, j

∂ r

∣∣∣∣
r=r̄ j

=−
1

Ds, j
Jj .

It is noted thatJj is the molar flux at the electrode/electrolyte
interface of a single particle. Whenj = n and p, respectively,

Jn(t) =
I(t)
FSn

, Jp(t) =−
I(t)
FSp

.

Electrochemical kinetics:The molar fluxJj is governed by
the Butler-Volmer equation:

Jj(t) =
J0, j

F

[
exp

(
αaF
RT

η j (t)

)
−exp

(
−

αcF
RT

η j(t)

)]
, (3)

whereη j(t) = Φs, j (t)−Φe, j(t)−U(css, j(t))−FRf , jJj(t). The
electrolyte phase can be represented by a resistorRc, j in the
SPM, implying Φe, j can be expressed asΦe, j (t) = Rc, j I(t).
Hence,η j becomes

η j(t) = Φs, j(t)−U(css, j(t))−FR̄jJj(t), (4)

whereR̄j = SjRc, j +Rf , j .
The SPM is represented by (1)-(3), in whichI is the external

input,cs, j andΦs, j are the variables showing the battery status,
andV is the model output. The SPM could not fully capture
the RCE since assumptions used in its derivation are merely
valid at low charge-discharge rates.

C. A Simplified Battery Model

Nonlinear geometric observer approach assumes a system
represented by ODEs, thus the SPM should be further simpli-
fied. Many techniques have been proposed to meet this pur-
pose. One way is to introduce a volume average concentration
as a state variable thus eliminate the two diffusion PDEs of
Li+ concentration in particles.

Average Li+ concentration in the electrode phase:Through-
out the paper the average concentration of Li+ in the particle is
treated as the measure of the battery capacity, or equivalently,
the SoC. For an electrode particle, it is defined as

cavg
s, j (t) =

1
Ω

∫

Ω
cs, j(r, t)dΩ, (5)

whereΩ denotes the volume of the particle sphere. From (2),
it is obtained that

ċavg
s, j (t) =

1
Ω

∫

Ω

∂cs, j(r, t)

∂ t
dΩ

=
1
Ω

∫

Ω

1
r2

∂
∂ r

(
Ds, j r

2 ∂cs, j(r, t)

∂ r

)
dΩ

= ε j Ds, j
∂cs, j(r, t)

∂ r

∣∣∣∣
r=r̄ j

, (6)

whereε j is a constant coefficient. Depending on the electrode
polarity, (6) splits into

ċavg
s,n (t) =−

εn

FSn
I(t), (7)

ċavg
s,p (t) =

εp

FSp
I(t). (8)

It is noted from (7)-(8) that ˙cavg
s, j is linearly proportional to

the input currentI . In other words,cavg
s, j is equal to the initial

value cavg
s, j (0) plus integration ofI over time. This illustrates

that the change of SoC depends linearly onI as a result of
cavg

s, j indicating SoC. Such a relationship has not only been
presented for electrochemical models, e.g., [14], but has also
been justified in ECMs, e.g., [5], [26] and the references
therein.

Terminal voltage:Suppose there exists a functionϕ such
that css, j(t) = ϕ(cavg

s, j (t)) and defineŪ = U ◦ ϕ , where ‘◦’
denotes composition of two functions. Using (4), (1) becomes

V(t) = Ū(cavg
s,p (t))−Ū(cavg

s,n (t))+ηp(t)−ηn(t)+(R̄p− R̄n)I(t).

With αa = αc = 0.5, it follows from (3) that

ηn(t) =
2RT
F

sinh−1
(

Jn(t)F
2J0,n

)
=

2RT
F

sinh−1
(

εnI(t)
2J0,n

)
,

ηp(t) =
2RT
F

sinh−1
(

Jp(t)F

2J0,p

)
=

2RT
F

sinh−1
(
−

εpI(t)

2J0,p

)
.

ThusV(t) becomes

V(t) = Ū(cavg
s,p )−Ū(cavg

s,n )

+
2RT
F

[
sinh−1

(
−

εpI(t)

2J0,p

)
− sinh−1

(
εnI(t)
2J0,n

)]

+(R̄p− R̄n)I(t). (9)
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As such,V(t) consists of two parts. The first is the open-circuit
voltage (OCV) that relies on̄U(cavg

s, j ), and the second is the
direct feedthrough fromI to V.

System (7)-(9) provides a concise characterization of the
battery dynamics. As pointed out in [18], the SPM implies
the conservation of Lithium ions within two particles, or
equivalently, thatcavg

ss,p(t) can be represented as a linear func-
tion of cavg

ss,n(t). This fact allows the reduction of (7)-(8) into
one differential equation. Withcavg

ss,n(t) as the independent
variable, the battery dynamics is captured by (7) and (9).
As aforementioned,cavg

ss,n(t) is arguably equivalent to the SoC.
Denoting the SoC by a statex∈ [0,1], and defining the input
u and the outputy of the model as the charge currentI and
the terminal voltageV of the battery, respectively, we have the
battery model as follows

ẋ=−αu,

y= h(x,β )+g(u,γ),
(10)

whereα,β = (β1,β2,β3), andγ = (γ0,γ1,γ2,γ3) are unknown
parameters,h(x,β ), the part containingŪ in (9), takes the
parametric form ofh(x) = β1 ln(x+ β2) + β3, and g(u,γ)
corresponding to the part involvingI in (9) is expressed as
g(u,γ) = γ0

[
sinh−1(γ2u)− sinh−1(γ3u)

]
+ γ1u, where γi for

i = 0,1,2,3 are from (9).
Due to the negligence of diffusion in solid particles, the

battery model (10) have limited capability to represent the
RCE, the RE and the HE. This paper however uses the battery
model (10) mainly for illustration purpose, i.e., to demonstrate
how nonlinear geometric observer approach can be followed
to perform adaptive SoC estimation.

Remark 2.1:The thermodynamics of batteries are not cov-
ered by the SPM and the simplified model (10). Ignoring
thermodynamics however might not impose significant restric-
tion to the applicability of the proposed approach. Loosely
speaking, the effect of thermodynamics on both models can
be compensated by making parameters time-varying. Adaptive
state estimation based on (10) is possible for cases where pa-
rameters are either constant or time-varying but with bounded
time derivative [27]. If the thermodynamics evolves in a much
slower time scale than the estimation error dynamics, the
adaptive estimator generally can track the resultant slow time-
varying parameters and original system state with reasonable
accuracy.

D. A Switched Battery Model

An intuitive generalization of the model (10) can be done
by addressing the HE in the OCV-SoC relationship, which is
characterized byh(x,β ). We consider the following switched
battery model

ẋ=−αu,

y=

{
h(x,β )+g(u,γ), u> 0,

h(x, β̄ )+g(u,γ), u≤ 0,

(11)

whereβ̄ =(β̄1, β̄2, β̄3) is constant. Hereh(x,β ) andh(x, β̄ ) pa-
rameterize the discharge and charge OCV-SoC curves, respec-
tively. As will be shown later, nonlinear geometric observer

approach can also be applied to the switched model (11) for
adaptive SoC estimation. The resultant SoC estimation is more
accurate than that based on the model (10).

III. M AIN RESULTS

Similar to [21], a two-stage approach is used to perform
adaptive SoC estimation:

• Stage 1:As h(·) represents the OCV, it is determined
using the SoC-OCV data set to identify parametersβ for
the battery model (10), or to identify parametersβ and
β̄ for the battery model (11).

• Stage 2: After β and/or β̄ is identified, the statex
and parametersα,γ are estimated simultaneously by
nonlinear geometric observer approach.

The identification in Stage 1 has been well-studied in litera-
tures. As an example, one can formulate it as a nonlinear least
squares data fitting problem and solve the resultant nonlinear
programming problem. Interested readers are referred to [28],
[29] for further details. This paper focuses on the problem in
Stage 2, where parametersβ are treated as known constants,
and the state and parameter estimation is performed using
nonlinear geometric observer approach.

We first define a local adaptive observer for a general system

ζ̇ = f (ζ ,Θ),

y= h(ζ ),
(12)

whereζ ∈R
n is the system state,f :Rn×R

m→R
n is a smooth

vector field, Θ ∈ R
m is the unknown parameter vector, and

h :Rn →R
p is a vector of smooth functions. Here the notation

h is abused, which should not incur any confusion given the
context.

Definition 3.1: [30] A local adaptive observer for sys-
tem (12) with the presence of the unknown parameterΘ in
f is a finite dimensional system

ẇ= α1(w,Θ̂,y(t)), w∈ R
r , r ≥ n,

˙̂Θ = α2(w,Θ̂,y(t)), Θ̂ ∈ R
m,

ζ̂ = α3(w,Θ̂,y(t)), ζ̂ ∈ R
n

driven by y(t), such that for everyζ (0) ∈ R
n,w(0) ∈ Uw ⊂

R
r ,Θ̂(0) ∈UΘ ⊂ R

m, whereUw,UΘ are the neighborhoods of
ζ (0),Θ respectively, for any value of the unknown parameter
Θ and for any bounded‖ζ (t)‖ ,∀t ≥ 0:

1) ‖w(t)‖,‖Θ̂(t)‖ and‖ζ (t)− ζ̂(t)‖ are bounded,∀t ≥ 0.
2) limt→∞ ‖ζ (t)− ζ̂(t)‖= 0.

In Definition 3.1, a local adaptive observer is defined for
a system where the output functionh does not have explicit
dependence on unknown parameters. This is without loss of
generality because one can introduce a parameter dependent
state transformation to put a general system into the form (12).

A. Nonlinear Geometric Observer Approach

We first define some notation. Given a C∞ vector field f :
R

n →R
n, and a C∞ functionh :Rn →R, the functionL f h(x)=

∂h(x)
∂x f is the Lie derivativeof h(x) along f . Repeated Lie
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derivatives are defined asLk
f h(x) = L f (L

k−1
f h(x)), k ≥ 1 with

L0
f h(x) = h(x).
Nonlinear geometric observer approach generally requires

a system in some forms which enable the simplification of
observer design and establishment of the error dynamics sta-
bility. Typically, the first step for nonlinear geometric observer
approach is to put the original system into an observable
form by change of coordinates. As a next step starting from
the observable form, various techniques, for instance output
transformation [31], [32], state transformation [31], [33], time
scale transformation [34]–[36], dynamics extension [37],and
approximate transformation [38], can be considered to further
simplify the system dynamics. The transformed system typical
takes a certain special structure, e.g. observer form [31],[33],
[39], block triangular forms [40]–[43], time scaled observer
forms [34], [36], [44], and adaptive observer forms [45]–[47]
etc. As the final step, observer design for a system admitting
special coordinates can be readily performed, and usually have
properties: reduced design complexity, straightforward deter-
mination of the observer gain, and simplified estimation error
dynamics. Although nonlinear geometric observer approach
allows systematic and simple observer designs, and yields
stable estimation error dynamics, it suffers from limited range
of applicability.

For a locally uniformly observable single input single output
(SISO) system,

ζ̇ = f (ζ )+g(ζ )u,
y= h(ζ ),

whereu∈ R andh : Rn → R, the observable form exists and
is uniquely defined as follows [48]

ẋ=




x2
...

Ln
f h(ζ )


+




g1(x1)
...

gn(x),


u, (13)

where x = Φ(ζ ) = (h(ζ ), · · · ,Ln−1
f h(ζ ))T and ζ = Φ−1(x).

Observability ensures thatx defines new coordinates. For a
multi-output system, the observable form is not uniquely de-
fined due to the non-uniqueness of the observability definitions
and observability indices [40], [42]. Readers are referredto
[30], [40], [42], [48], [49] for details about observability and
observable forms. One can readily verify that the battery
model (10), SISO with one state, is locally observable. The
identifiability of parameters can be verified by performing
observability analysis on the augmented system which includes
(10) and the following dynamics

α̇ = 0,

γ̇1 = 0.

Readers are referred to [50] for detailed observability and
identifiability analysis.

Earlier work on adaptive observer with nonlinear parame-
terizations includes a local adaptive observer [51] based on
a nonlinearly parameterized observer form, and a semi-global
adaptive observer [47] etc. The battery model (10) does not
admit the nonlinearly parameterized observer form in [51].

This paper mainly performs adaptive SoC estimation based on
work [47]. The fact that this paper applies results of work [47]
however shall not prevent one from applying other relevant
works. For an SISO system, work [47] considered adaptive
observer design for a class of nonlinearly parameterized sys-
tem on the basis of the following form

ż= Az+ϕ(z,u,Θ),

y=Cz,
(14)

where (A,C) is in Brunovsky observer form,
z = (z1, . . . ,zn)

T =∈ R
n is the state vector,Θ ∈ R

m is
the unknown parameter vector,u∈R

s is the input vector, and
ϕ(z,u,Θ) takes the following form

ϕ(z,u,Θ) =




ϕ1(z1,u,Θ),
...

ϕn(z,u,Θ)


 .

Note thatϕ(z,u,Θ) has triangular dependence onz to enable
high gain observer design [48], [52].

Given a nonlinear system in the form (14), work [47]
proposed the following dynamical system

˙̂z= Aẑ+ ϕ̂ −θ∆−1
θ (S−1+ϒPϒT)CTK(y− ŷ),

˙̂Θ = θPϒTCTK(y− ŷ),

ϒ̇ =−θ (A−S−1CTC)ϒ+∆θ
∂ ϕ̂
∂ Θ̂

,

Ṗ=−θPϒTCTCϒP+θP, P(0) = P0 > 0,

(15)

where θ is a positive constant,ϕ̂ = ϕ(ẑ,u,Θ̂), ŷ = Cẑ,

∆θ = diag
[
1, 1

θ , . . . ,
1

θn−1

]
, andS is the unique solution of the

algebraic Lyapunov equation

S+ATS+SA−CTC= 0.

To show the system (15) is a semi-global adaptive observer of
the original system (14), the following technical assumptions
are assumed.

Assumption 3.2:[47, Assum. (A1)] The statez(t), the
controlu(t) and the unknown parametersΘ are bounded, i.e.,
z(t) ∈ Z,u(t) ∈U for t ≥ 0 andΘ ∈ Ω whereZ ⊂ Rn,U ⊂ Rs

andΩ ⊂ R
m.

Assumption 3.3:[47, Assum. (A2’)] The functionϕ(z,u,Θ)
is Lipschitz with respect toz and Θ, uniformly in u where
(z,u,Θ) ∈ Z×U ×Ω.

Assumption 3.4: [47, Assum. (A3’)] The nonlinear
parametrization functionϕ(z,u, ·) is one to one fromRm into
R

m.
Assumption 3.5:[47, Assum. (A4’)] The inputsu are

such that for any trajectory of system (15) starting from
(ẑ(0),Θ̂(0)) ∈ Z×Ω, the matrixCϒ is persistently exciting,
i.e., ∃δ1,δ2 > 0;∃T > 0;∀t ≥ 0,

δ1In ≤
∫ t+T

t
ϒTCTCϒdτ ≤ δ2In,

whereIn ∈R
n×n is the identity matrix.

[47, Thm. 4.2] established that the system (15) is a semi-
global adaptive observer of the original system (14). For
completeness of this paper, we recite the theorem as follows
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Theorem 3.6: [47, Thm. 4.2] under assumptions
(A1),(A2’),(A3’) and (A4’), system (15) is an adaptive
observer for system (14) with an exponentially error
convergence for relatively high values ofθ .

B. System Transformation

Following the nonlinear geometric observer approach in
Section III-A, we first transform the battery model (10) into
certain forms which facilitate adaptive observer design. To
simplify the presentation, this paper assumesg(u,γ) in system
(10) has a linear parametrization. Specifically, consider the
following battery model

ẋ= αu,

y= β1 log(x+β2)+β3+ γ1u,
(16)

wherex is the SoC of a battery,βi are known parameters, and
γ1,α are unknown parameters.

Remark 3.7:Assumingg(u,γ) = γ1u is mainly to simplify
the state transformation and the expression of the resultant
transformed system, and without loss of generality. With the
original g(u,γ), the state transformation is taken as follows

ξ (x,u,γ) = β1 log(x+β2)+β3+g(u,γ),

which is a diffeomorphism overR+. The inverse state trans-
formation can be similarly computed as follows

x+β2 = exp

(
y−β3−g(u,γ)

β1

)
.

The procedure followed in the sequel to develop adaptive
observers is therefore still applicable for the originalg(u,γ)
case. Simplifyingg(u,γ) as γ1u can also be justified by its
practical usefulness. That is: becauseγ2,γ3 are usually small
positive constants, the ignored termγ0(asinh(γ2u)-asinh(γ3u))
can be approximated by a linear function ofu, thus can be
lumped into the termγ1u. For a particular battery tested in
the experiment,γ1 is in the order of milliohms (m-Ohm). We
therefore takeγ2 andγ3 at the same order, i.e.,γ2 = 1e−3,γ3=
2e−3, and examine the plot of the ignored term versusu. As
shown in Figure 2, the ignored term is almost linear inu over
a wide range of input current: from -50Amps to 50Amps.
Note that the tested battery has a nominal capacity 5Amp-
hours (Ah) and the 50Amps current is quite large (10C). A
less rigorous interpretation of the aforementioned analysis is
that parametersγi ,0 ≤ i ≤ 3 are closely coupled and almost
indistinguishable, and can be lumped into one parameter.

Putting (16) into observable form (13) with unknown param-
eterizations requires the following parameter dependent state
transformation

ξ (x,u,γ1) = β1 log(x+β2)+β3+ γ1u, (17)

where ξ is the new state variable and denotes the terminal
voltage of the battery. We have

ξ̇ = β1
α

x+β2
u+ γ1u̇,

wherex+β2 can be solved as

x+β2 = exp

(
y−β3− γ1u

β1

)
.
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Fig. 2. Curves of asinh(γ2u), asinh(γ3u) and asinh(γ2u)-asinh(γ3u)

We rearrange the transformed system and have

ξ̇ = φ(y,u,γ,α)+ γ1u̇,

y= ξ ,
(18)

where

φ(·) = β1α exp

(
β3+ γ1u− y

β1

)
u.

Remark 3.8:The SoC, represented byx, is always positive,
alsox+β2 has to be positive if the model (16) is valid. One can
verify that the state transformation (17) is a diffeomorphism
overx∈R

+, i.e., the state transformation (17) is well-defined
in the domain where the model (16) is physically meaningful.

The system (18) in the observable coordinates has nonlinear
parameterizations ofα and γ1. The transformed system (18)
is already in the form (14), and thus no further transformation
is required to perform adaptive observer design.

C. An Adaptive Observer

The transformed system (18) is in the form of (14), where

ϕ(y,u, u̇,γ1,α) = β1α exp

(
β3+ γ1u− y

β1

)
u+ γ1u̇.

The transformed system (18) is linearly parameterized byα
but nonlinearly parameterized byγ1. Given all assumptions
in [47] satisfied for system (18), we could perform adaptive
observer design for adaptive SoC estimation.

For a physical battery, the stateξ or equivalently the
battery’s terminal voltagey, the external current inputu and
its time derivative ˙u, and model parametersγ1,α are bounded
in a compact setD ⊂ R

5. Assumption [47, Assum. (A1)] is
satisfied. Givenu, u̇,y are bounded by a compact setD , the
smooth functionϕ is Lipschitz with respect toρ = (α,γ1)

T

and uniformly in u, u̇,y, i.e., given any 3-tuple(y,u, u̇) ∈ D ,
there exists a constantL such that the following inequality
holds

∥∥ϕ(y,u, u̇,ρ1)−ϕ(y,u, u̇,ρ2)
∥∥≤ L

∥∥ρ1−ρ2
∥∥ , (19)

for any ρ1 = (α1,γ1
1),ρ2 = (α2,γ2

1) ∈ Ω ⊂ D .
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Remark 3.9:Using the state transformation (17) also implies
the differentiability ofξ , which requires the input currentu
is differentiable. In addition, ˙u has to be bounded in order to
satisfy Assumption 3.2. These conditions on the input current
u sound restrictive from theoretical perspective, but are not
really a restriction in reality. Performing observer design based
on system dynamics having explicit dependence on ˙u however
indeed makes the observer sensitive to the measurement noise.

Assumption [47, Assum. (A3’)] is however not satisfied
because given a fixed 3-tuple(y,u, u̇), one can easily find
two sets of parametersρ1 and ρ2 such thatϕ(y,u, u̇,ρ1) =
ϕ(y,u, u̇,ρ2). Notice that Assumption [47, Assum. (A3’)] is
not explicitly used to show the convergence, and the proof
of Theorem [47, Thm. 4.2] merely relies on Assumptions
(A1’),(A2’),(A4’). We may still be able to have an adaptive
observer as long as Assumption [47, Assum. (A4’)] is verified.

We consider the following system

˙̂ξ = θ (y− ŷ)+ ϕ̂ +θ 2ϒPϒT(y− ŷ), ξ̂ (0) = ξ0 ∈ Z,

ϒ̇ =−θϒ+
∂ ϕ̂
∂ ρ̂

, ϒ(0) = ϒ0 ∈ R
2,

˙̂ρ = θPϒT(y− ŷ), ρ̂(0) = ρ̂0 ∈ Ω,

Ṗ=−θPϒTϒP+θP, P(0) = P0 ∈R
2×2,

(20)

whereρ̂ = [α̂, γ̂1]
T ,

ϕ̂ = ϕ(y,u, u̇,sat(ρ̂)), (21)

θ is a sufficiently large positive constant,ξ̂0 is constant,ϒ0 is
bounded and constant,P0 is positive definite, and

∂ ϕ̂
∂ ρ̂

=

(
∂ϕ(y,u, u̇, ρ̂)

∂ ρ̂

∣∣∣∣
ρ̂=sat(ρ̂)

)T

.

The notation sat(·) performs an element-wise saturation if its
argument is a vector, for instance,

sat(ρ̂) =
[

sat(α̂)
sat(γ̂1)

]
.

If its argument is a scalar, the sat(·) operation is exemplified
by the sat(α̂) as follows

sat(α̂) =





α, if α̂ ≤ α,

α̂, if α̂ ∈ (α,α),

α, if α̂ ≥ α,

whereα andα are the lower and upper bounds ofα. Similarly,
sat(ξ̂ ) and sat(γ̂1) saturateξ̂ and γ̂1, based on bounds of
ξ and γ1, respectively. Givenϕ̂ = ϕ(y,u, u̇,sat(ρ̂)), Assump-
tion 3.3, when applied to the system (18), reads: the function
ϕ(y,u, u̇,ρ) is Lipschitz with respect toρ , uniformly in y, u
and u̇, i.e., (19) holds for anyρ1,ρ2 ∈ Ω and (y,u, u̇) ∈ D .

Remark 3.10:The termϕ̂ can be taken as

ϕ̂ = ϕ(sat(ξ̂ ),u, u̇,sat(ρ̂)), (22)

and Assumption 3.3 is modified accordingly: the function
ϕ(ξ ,u, u̇,ρ) is Lipschitz with respect to(ξ ,ρ), uniformly in
u and u̇, i.e., there exists a constantL such that the following
inequality holds

∥∥ϕ(u, u̇,X1)−ϕ(u, u̇,X2)
∥∥≤ L

∥∥X1−X2
∥∥ , (23)

for any X1 = (ξ 1,ρ1),X2 = (ξ 2,ρ2) ∈ Z×Ω.
As pointed out in [47], the saturation of̂ξ and ρ̂ in (21)

and (22) is required to apply the Lipschitz conditions, e.g.
(19) and (23), which is critical in the stability proof. For the
case wherêϕ is given by (22), although the original state and
parameters are bounded in the domainZ×Ω, the trajectories
of ξ̂ , ρ̂ in (20) may escape from the domainZ×Ω. Thus
Assumption 3.3 should be extended to a large domain to prove
the error dynamic stability, which is not obvious. A natural
treatment is to prevent the state and parameter estimates in
ϕ̂ from leaving the bounded domainZ×Ω, by saturating the
argumentsξ̂ and ρ̂ in (22), which consequentially guarantees
the satisfaction of Assumptions 3.2-3.3. By the aforementioned
saturation definition, the Lipschitz condition (23) still holds
because

‖ϕ − ϕ̂‖ ≤ L
∥∥X− sat(X̂)

∥∥≤ L
∥∥X− X̂

∥∥ ,

whereX = (ξ ,ρ) and X̂ = (ξ̂ , ρ̂) for any X ∈ Z×Ω and X̂ ∈
R

3. Similar saturation technique has been applied to obtain the
semi-globally stable estimation error dynamics in [43], [53].

Assumption [47, Assum. (A4’)], restricted to system (18),
is written as follows

Assumption 3.11:The inputu is such that for any trajectory
of system (20),ϒ(t) are persistently exciting i.e., , there exist
δ1,δ2,T > 0, for anyt ≥ 0, the following inequalities hold

δ1I2 ≤
∫ t+T

t
ϒT(t)ϒ(t)dτ ≤ δ2I2, (24)

whereI2 is the 2×2 identity matrix.
We have the following result on the adaptive observer design

for system (18). Proof of Proposition 3.12 is omitted due to
its similarity to that of [47, Thm. 4.2].

Proposition 3.12:Provided thatu, u̇,y∈D , and the Lipschitz
condition (19) and Assumption 3.11 hold, (20) witĥϕ given
by (21) is an adaptive observer of system (16), whereθ is a
sufficiently large positive constant.

Next we verify that Assumption 3.11 may still hold for (20)
even if Assumption [47, Assum. (A3’)] is not satisfied. The
ϒ-dynamics is excited by the following input

∂ ϕ̂
∂ ρ̂

=

[
β1exp(β3+sat(γ̂1)u−y

β1
)u

sat(α̂)exp(β3+sat(γ̂1)u−y
β1

)u2+ u̇

]
.

Given θ a sufficiently large positive constant, we have the
approximationϒ ≈ 1

θ
∂ ϕ̂
∂ ρ̂ . Hence, (24) is approximated by

δ1θ 2I2 ≤
∫ t+T

t




(
∂ ϕ̂
∂ α̂

)2 ∂ ϕ̂
∂ α̂

∂ ϕ̂
∂ γ̂1

∂ ϕ̂
∂ α̂

∂ ϕ̂
∂ γ̂1

(
∂ ϕ̂
∂ γ̂1

)2


dt

=



∫ t+T
t

(
∂ ϕ̂
∂ α̂

)2
dt

∫ t+T
t

∂ ϕ̂
∂ α̂

∂ ϕ̂
∂ γ̂1

dt
∫ t+T
t

∂ ϕ̂
∂ α̂

∂ ϕ̂
∂ γ̂1

dt
∫ t+T
t

(
∂ ϕ̂
∂ γ̂1

)2
dt


≤ δ2θ 2I2

Since any two square-integrable real-valued functionsχ1 and
χ2 on an interval[a,b] have an inner product

〈χ1,χ2〉=

∫ b

a
χ1(t)χ2(t)dt,
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if assuming∂ ϕ̂/∂α̂ and∂ ϕ̂/∂ γ̂1 are integrable over[t, t +T]
for any t ≥ 0, we rewrite (24) as follows

δ1θ 2I2 ≤

[
〈 ∂ ϕ̂

∂ α̂ ,
∂ ϕ̂
∂ α̂ 〉 〈 ∂ ϕ̂

∂ α̂ ,
∂ ϕ̂
∂ γ̂1

〉

〈 ∂ ϕ̂
∂ α̂ ,

∂ ϕ̂
∂ γ̂1

〉 〈 ∂ ϕ̂
∂ γ̂1

, ∂ ϕ̂
∂ γ̂1

〉

]
≤ δ2θ 2I2 (25)

We can further verify that the space consisting of all integrable
functions over[t, t+T] for anyt ≥ 0 is a pre-Hilbert space and
the inner product is a norm of the space, thus the Cauchy-
Schwarz inequality holds. Denoting

‖χ‖2 = 〈χ ,χ〉=
∫ t+T

t
χ2(t)dt,

we have

〈
∂ ϕ̂
∂ α̂

,
∂ ϕ̂
∂ γ̂1

〉 ≤

∥∥∥∥
∂ ϕ̂
∂ α̂

∥∥∥∥×
∥∥∥∥

∂ ϕ̂
∂ γ̂1

∥∥∥∥ .

That is to say, given‖∂ ϕ̂/∂α̂‖ and ‖∂ ϕ̂/∂ γ̂1‖ nonzero, the
matrix in (25) is not positive definite if and only if∀t ≥ 0,

∂ ϕ̂(τ)
∂α̂

= k
∂ ϕ̂(τ)

∂ γ̂1
, ∀k∈ R, τ ∈ [t, t +T]. (26)

An intuitive interpretation of (26) is that the sensitivityfunc-
tions of ϕ with respect to parametersα and γ1 are linearly
independent, otherwise,α andγ1 are not distinguishable.

Remark 3.13:The fact that [47, Assum. (A3’)] does not
hold for the transformed system (18) partially justifies theuse
of the two-stage approach for SoC and parameter estimation.
For the one-stage approach whereβi are unknown parameters
as well, [47, Assum. (A3’)] and the PEC [47, Assum. (A4’)]
are much more difficult to satisfy.

A similar result to Proposition 3.12, based on a different
definition ofϕ̂ and the Lipschitz condition, is given as follows.

Proposition 3.14:Provided thatu, u̇,y∈D , and the Lipschitz
condition (23) and Assumption 3.11 hold, (20) witĥϕ given
by (22) is an adaptive observer of system (16), whereθ is a
sufficiently large positive constant.

D. Alternative Adaptive Observer

In the observer (20), the priori knowledge about the bounds
of the state and parameters is used to saturate the estimatesin
ϕ̂ such that the error dynamic stability can be established. The
observer statêξ and ρ̂ however can unnecessarily leave the
domainZ×Ω, i.e., the observer (20) does not fully exploit the
priori knowledge of the state and parameter bounds. We may
improve this by considering the following alternative adaptive
system

˙̂ξ = θ (y− ŷ)+ ϕ̂ +θϒProj(κ , ρ̂), ξ̂ (0) = ξ0 ∈ Z,

ϒ̇ =−θϒ+
∂ ϕ̂
∂ ρ̂

, ϒ(0) = ϒ0 ∈R
2,

˙̂ρ = Proj(κ , ρ̂), ρ̂(0) = ρ̂0 ∈ Ω,

Ṗ=−θPϒTϒP+θP, P(0) = P0 ∈ R
2×2,

(27)

where κ = (κ1,κ2)
T = θPϒT(y − ŷ), Proj(κ , ρ̂) =

(Proj(κ1, α̂),Proj(κ1, γ̂1))
T , and ϕ̂ is given by (21). The

projection operator Proj(·, ·) is defined as follows

Proj(κ1, α̂) =





0, if κ1 ≤ 0 and(α̂ −α)≤ 0,

0, if κ1 ≥ 0 and(α̂ −α)≥ 0,

κ1, otherwise,

Proj(κ2, γ̂1) =





0, if κ2 ≤ 0 and(γ̂1− γ)≤ 0,

0, if κ2 ≥ 0 and(γ̂1− γ)≥ 0,

κ2, otherwise,

(28)

whereγ,γ are lower and upper bounds ofγ1. The projection
operator can be chosen differently, e.g. [54, Eqn. (A.25)].We
have the following result about the system (27).

Proposition 3.15:Provided thatu, u̇,y∈D , and the Lipschitz
condition (23) and Assumption 3.11 hold, the system (27) with
ϕ̂ given by (21) is an adaptive observer of the system (16),
whereθ is a sufficiently large positive constant.

A detailed proof of Proposition 3.15 is omitted, since it
is can be readily established by considering the proof of
Proposition 3.12 and the following fact:

According to the proof of [47, Thm. 4.2], there exists a
time-varying quadratic Lyapunov function candidateV(t, x̃)
such that its time derivative along the the error dynamics
corresponding to observer (20), denoted byV̇(20), satisfies

V̇(20)=
∂V
∂ t

+
∂V
∂ x̃

f̃(20) ≤−k4V, (29)

where x̃ is the estimation error,̃f(20) is the estimation error
dynamics corresponding to (20), andk4 > 0. Next we show
that the time derivative ofV along the error dynamics corre-
sponding to observer (27), denoted byV̇(27), is upper-bounded
by V̇(20), i.e., that satisfies the following inequality

V̇(27)≤ V̇(20)≤−k4V,

Essentially, we need to show

∂V
∂ x̃

f̃(27) ≤
∂V
∂ x̃

f̃(20), (30)

where f̃(27) is the estimation error dynamics corresponding
to (27). SinceV is a time-varying and quadratic function of
estimation errors, we take a Lyapunov functionVα = 0.5(α −
α̂)2 as an example to illustrate the proof. We have the time
derivative ofVα along (27)

V̇α = k1(α−α̂)Proj(κ1, α̂)=





0, if κ1 ≤ 0 and(α̂ −α)≤ 0,

0, if κ1 ≥ 0 and(α̂ −α)≤ 0,

k1(α − α̂)κ1, otherwise.

With the same Lyapunov function, its time derivative along
(20) is

˙̄Vα = k1(α − α̂)κ1 =





≥ 0, if κ1 ≤ 0 and(α̂ −α)≤ 0,

≥ 0, if κ1 ≥ 0 and(α̂ −α)≤ 0,

k1(α − α̂)κ1, otherwise.

We know
V̇α ≤ ˙̄Vα . (31)

This fact holds for the estimation errorsξ − ξ̂ andγ1− γ̂1. We
therefore prove (30). We therefore conclude that the adaptive
observer (27) also yields exponentially stable error dynamics.
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Remark 3.16:Assumption 3.11 imposes different constraints
on the systems (20) and (27), respectively. That is to say, the
satisfaction of Assumption 3.11 for the system (20) does not
necessarily concur with its satisfaction for the system (27).

Similar to Proposition 3.15, we have the following state-
ment.

Proposition 3.17:Provided thatu, u̇,y∈D , and the Lipschitz
condition (23) and Assumption 3.11 hold, the system (27) with
ϕ̂ given by (22) is an adaptive observer of the system (16),
whereθ is a sufficiently large positive constant.

Remark 3.18:Another form of adaptive observer can be
taken by applying projection operator to the right hand side
of the dynamic equation of̂ξ , i.e., the first equation of (27)
is replaced with the following equation

˙̂ξ = Proj(ψ , ξ̂ ),

whereψ = θ (y− ŷ)+ ϕ̂ +θϒProj(κ , ρ̂). Error dynamics sta-
bility can be established by using the same technique as in the
sketched proof of Proposition 3.15.

E. Robustness and Applicability

Given Assumption 3.11, both of adaptive observers (20) and
(27) yield error dynamics of the state and parameter estimation
which are exponentially convergent. We analyze the robustness
of the adaptive observer (20) with respect to the process model
uncertainty and the measurement noise. The adaptive observer
(27) enjoys similar robustness property as (20) thus its analysis
is omitted.

Robustness analysis is performed based on the input-state-
stability (ISS) [55, Def. 4.7]. To facilitate the analysis,we
introduce the notation of estimation errors:X̃ = X− X̂. Given
the system (18) and the adaptive observer (20), it is not difficult
to derive that the error dynamics can be written as follows

˙̃X = f̃ (y,u, u̇,sat(ξ̂ ),sat(ρ̂),θ ,ϒ,P, X̃),

where y,u, u̇,sat(ξ̂ ),sat(ρ̂),θ ,ϒ,P are bounded. Considering
f̃ is continuously differentiable andϕ is Lipschitz overD ,
we know that∂ f̃ /∂ X̃ is bounded overZ×Ω, uniformly in
y,u, u̇,sat(ξ̂ ),sat(ρ̂),θ ,ϒ,P. Also since the zero solution of the
X̃-dynamics is exponentially stable, [55, Thm. 4.14] applies,
i.e., there exists a functionV(t, X̃) satisfying the inequalities:

c1
∥∥X̃
∥∥2

≤V ≤ c2
∥∥X̃
∥∥2

,

∂V
∂ t

+
∂V

∂ X̃
f̃ ≤−c3

∥∥X̃
∥∥2

,
∥∥∥∥

∂V

∂ X̃

∥∥∥∥≤ c4
∥∥X̃
∥∥ ,

(32)

whereci ,1≤ i ≤ 4 are positive constants. Now assume instead
of (16), the true battery model is given by

ẋ= αu+d(t),

y= β1 log(x+β2)+β3+ γ1u+n(t),
(33)

where d(t) is bounded and represents the unmodeled pro-
cess dynamics, andn(t) is continuously differentiable and

represents the measurement noise. Under the new coordinates
defined by (17), the system (33) is rewritten as follows

ξ̇ = ϕ(y−n(t),u, u̇,ρ)+d(t),

y= ξ +n(t),
(34)

With adaptive observer (20), the resultant error dynamics are

˙̃X = f̃u(y−n(t),u, u̇,sat(ξ̂ ),sat(ρ̂),θ ,ϒ,P, X̃)+En(t)+Fd(t),

where

E =

[
θ +θ 2ϒPϒT

θPϒT

]
∈ R

3, F =




1
0
0


 .

Assuming inequalities (32) still hold with̃f replaced by f̃u,
we have

V̇ =
∂V
∂ t

+
∂V

∂ X̃
( f̃u+En(t)+Fd(t))

≤−c3
∥∥X̃
∥∥2

+ c4
∥∥X̃
∥∥ · (‖En(t)+Fd(t)‖),

≤−c3
∥∥X̃
∥∥2

+ c4
∥∥X̃
∥∥ · (‖E‖ · ‖n(t)‖∞ + ‖F‖ · ‖d(t)‖∞)

≤−c3
∥∥X̃
∥∥2

+ c4c5(θ )‖n(t)‖∞ ·
∥∥X̃
∥∥+ c4‖d(t)‖∞ ·

∥∥X̃
∥∥ ,

where c5 is positive, and‖n(t)‖∞ ,‖d(t)‖∞ are the infinity
norm of signalsn(t) andd(t), respectively. From the expres-
sion of V̇, we have the following conclusions

1) The error dynamics are ISS with respect to unmodeled
process dynamics and the measurement noise, i.e., given
bounded unmodeled process dynamicsd(t) and the
measurement noisen(t), the estimation error is bounded.

2) Sincec5 is a function ofθ , the termc4c5(θ )‖n(t)‖∞ ·∥∥X̃
∥∥, due to the measurement noise, could be quite large.

On the other hand, the termc4‖d(t)‖∞ ·
∥∥X̃
∥∥, due to the

unmodeled process dynamics, is independent fromθ .
Hence, the adaptive observer (20) is more robust to the
unmodeled process dynamics than to the measurement
noise. This is not surprising due to the high gain essence
of the adaptive observer (20).

3) The adaptive observer (27) is more robust with respect
to the measurement noise than (20) because the adaptive
law in (20), i.e., theρ̂-dynamics, do not use the projec-
tion operator, thus the termθ 2ϒPϒT always appears in
the ξ̃ -dynamics. Instead, for the adaptive observer (27),
during the period of Proj(κ , ρ̂) = 0, the termθ 2ϒPϒT ,
representing the effect of the measurement noise, is
absent from thẽξ -dynamics.

4) There exists a tradeoff between the convergence rate
of the error dynamics and the robustness with respect
to the measurement noise. Given the PEC satisfied for
someδ1,δ2 and a sufficiently largeθ , a largerθ , from
theoretical perspective, leads to faster convergence at
the expense of more sensitivity to the measurement
noise. Making the gainθ time varying might help
to improve the transience of the error dynamics, for
instance, adjusting the gainθ according to the amplitude
of the estimation errory− ŷ.

Both of adaptive observers (20) and (27) rely on the trans-
formed system (18), which implies continuous differentiability
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of the transformed stateξ . Equivalently both the adaptive
observers (20) and (27) assume the continuous differentiability
of the terminal voltage. This assumption may not be valid in
certain scenario. For instance, the input currentu may not be
differentiable or even continuous, so does the terminal voltage.

The system’s failure to satisfy the differentiability prerequi-
site does not mean the adaptive observers (20) and (27) are not
applicable to that system. The adaptive observer (20) or (27)
is essentially an filter which tries to track the terminal voltage.
The discontinuities in the terminal voltage can be viewed as
various step inputs at different time instants. Since the filter has
a limited bandwidth controlled by the gainθ , it cannot track
the step input perfectly and a transient response of the esti-
mated terminal voltage is resulted. Since the terminal voltage
estimation is clearly not accurate, thus the SoC and parameter
estimates deviate from the true values during the transience.
The applicability of the proposed adaptive observers can be
summarized as follows:

1) The proposed approach is applicable for the cases where
the terminal voltage is continuously differentiable. This
scenario includes applications where the charge and dis-
charge processes are completely separate. For instance
portable electronic devices. For these applications, the
proposed approach leads to an adaptive observer which
provides reliable estimation of both the SoC for control
and parameters for battery diagnosis.

2) Similarly, the proposed approach is applicable to cases
where charge and discharge periods are much longer
than the transient period due to jumps in the terminal
voltage. Note that the transient period can be made
arbitrarily small, theoretically, by choosing a sufficiently
large observer gainθ . In practice this is not possible
because of the design tradeoff between the gainθ and
the noise level of the measurements, and the constraint
on θ to satisfy the PEC. Measurements with higher
resolution and quality allow a largerθ which leads
to a shorter transient time. A variable gain strategy,
for instance based on the amplitude of the estimation
error of the terminal voltage, however could relax the
fundamental limitation.

3) The proposed approach can complement other auxiliary
estimators, which are insensitive to jumps in the input
current, to produce a good estimate. Such an auxiliary
estimator can be based on Coulomb counting or Kalman
Filtering.

It is worth pointing out that the proposed approach is generic
and not limited to the specific model (12). Generalization of
the proposed approach to other models might also be possible,
for instance equivalent circuit models with or without the
hysteresis voltage as a state variable.

F. A Switched Adaptive Observer

This section includes a brief illustration of the adaptive SoC
estimation based on the switched battery model (11). Similar
to the procedure in Section III-C, we introduce state trans-
formations ξ1 = h(x,β ) + g(u,γ) and ξ2 = h(x, β̄) + g(u,γ)
corresponding to discharge and charge modes, respectively,

and have the transformed system given by

Σd :

{
ξ̇1 = ϕ1(·,β ), t ≥ ti ,

y= ξ1,

Σc :

{
ξ̇2 = ϕ2(·, β̄ ), t ≥ t j ,

y= ξ2,

(35)

whereti , t j are the time instants when the sign ofu changes. To
enforce the continuity of the SoC, we allow jumps of the state
ξ1 or ξ2 at switch timesti and t j , i.e., the following switch
conditions hold

ξ1(t
+
i ) = h(x(t−i ), β̄ )+g(u(t+i ),γ(t

+
i )),

ξ2(t
+
j ) = h(x(t−j ),β )+g(u(t+j ),γ(t

+
j )).

(36)

The system (35) is impulsive and the observer design for these
systems is out of main focus of this paper. Given system (35)-
(36), one can apply the proposed approach toΣd and Σc

respectively. Ifu switches sign slowly enough, the stability
results in Propositions 3.12-3.15 can be similarly established
for the adaptive system consisting of two adaptive observers
which are designed on the basis ofΣd andΣc, respectively.

IV. EXAMPLES

A. Simulation

Consider the battery model (10) and assume that there is no
mismatch between the model and the battery dynamics. The
model parameters are given as follows:α = 4.7496× 10−5,
β1 = 1.0480,β2 = 0.2208,β3 = 3.9998,γ1 =−5×10−3. Here,
the values ofα and γ1 are reckoned according to [24], [25],
[56] and may have little applicability to a specific battery.
The values ofβi ’s are determined by fitting the SoC-OCV
data of the battery from experiments. The input to the model
is a sinusoid waveu = 10sin(10t). We takeθ = 20 and the
following initial conditions (ICs)

ξ (0) = 0.5; ξ̂ (0) = 0;

ϒ(0) = (0,0), ρ̂(0) = (0,0)T , P(0) = I2.

Simulation results are given in Figures 3-5, which show that
adaptive observer (20) can provide convergent estimation of
the transformed system state and parameters. This further
implies the state of the original system (16), or the SoC,
can also be estimated exponentially. We also verify that the
adaptive observer provides convergent estimation of the SoC
and parameters over a fairly large domain. Details are omitted
due to space limitation. Interested readers are referred to[22]
for details.

B. Experiment

The experimental validation of the proposed approach is
given as follows. For the case where the adaptive SoC estima-
tion is performed based on the adaptive observer (20) and the
model (10), we use both charge and discharge curves to iden-
tify parametersβ in h(x,β ). For the case where the adaptive
SoC estimation is performed based on adaptive observer (27)
and the switched model (11), we use the charge and discharge
curves to identify parametersβ and β̄ , respectively. Both the
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charge and discharge curves depict the relationship between

the SoC and the terminal voltage of the battery in charge
and discharge modes, respectively, where the SoC is obtained
by coulomb counting. Instead of having the battery rest for
a long time to measure the OCV, we measure the terminal
voltage continuously as the battery is in charge or discharge
modes. Particularly, the charge curve is obtained by applying
a small charge current to the battery and the discharge curveis
obtained by applying a small discharge current to the battery.

The rest experiment to validate the SoC estimation algo-
rithm is conventional. That is: the battery is subject to a
charge and discharge current; both the current and the terminal
voltage are measured. The input current profile is shown in
Figure 6. The battery has a nominal capacity 4.903Ah. The
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Fig. 6. The input current of the battery

input current and terminal voltage are sampled every second.
Thus the nominal value of the parameterα is 5.63421e×10−5.
The ICs of adaptive observers are taken as follows

ξ̂ (0) = 3,

ϒ(0) = (0,0), ρ̂(0) = (0,0)T , P(0) = I2.
(37)

The gain tuning parameterθ is taken as 0.08 for adaptive
observer (20) and 0.025 for adaptive observer (27). The vali-
dation results are shown in Figures 6-10, where red solid lines
correspond to results of adaptive observer (20) and the black
line corresponds to adaptive observer (27). The transformed
system state, the state estimate, and their error are shown in
Figure 7. Overall the state estimateξ̂ tracks the true stateξ
except spikes at time instants when the input current jumps.
It is worth pointing out that the estimation error approaches
zero over time interval between two adjacent current jumps.

The estimation of the parameterα is shown in Figure 8,
where the blue solid line represents the nominal value ofα.
Consistent with the trajectory of the state estimation error
ξ − ξ̂ , the trajectory ofα̂ has spikes when the current changes
directions. The appearance of spikes inα̂ is understood
because the proposed adaptive observer updates its estimates
according to the spiky output errorξ − ξ̂ . The spikes in
the trajectory ofξ − ξ̂ , interpreted as step inputs into the
adaptive observer, necessarily induce spikes inα̂. Although the
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amplitude ofα̂ around spikes may be several times larger than
the nominal value ofα, the trajectory ofα̂ seems convergent
to some extent during the interval between jumps, and is
still useful. This is because the trajectory ofα̂ stays in a
small neighborhood of the nominal value at most of time, and
functions ofα̂, e.g. the mean value, might indicate the State
of Health in the long run. The estimation of the parameter
γ1 is given in Figure 9. Again the parameter estimateγ̂1 has
spikes. It should be realized that the estimateγ̂1 is not so
valuable during periods with zero input current, because the
effect ofγ1 is literally ignored by the model. If we ignore those
zero current intervals, it is not difficult to see that duringthe
intervals between two adjacent current jumps, theγ̂1 trajectory
approaches to some value between 2.5m-Ohm and 3m-Ohm.
Overall, the estimatêγ1 is quite reasonable in the sense that
the average of the estimate trajectory has a small variation.

The estimates of the SoC using Coulomb counting and the
proposed approach are presented in Figures 10, where the red
solid line is the SoC estimate produced by adaptive observer
(20) designed based on (18), and the black solid line is the SoC
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estimate produced by adaptive observer (27) designed based
on (35). The implemented adaptive observer (27) however
still enforces the continuity of the terminal voltage instead
of the SoC. This is to examine how the introduction of the
hysteresis in the OCV-SoC curve can improve the accuracy
of the SoC estimation. Consistent with trajectories of the state
and parameter estimates, the estimated SoC trajectory alsohas
spikes which at the worst case could shoot up to 10% for
the case ignoring hysteresis. A number of factors contribute
to the appearance of spikes. First factor is the presence of
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Ŝ
o
C
(%

)

Time (sec)
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Ŝ oC–Proposed 1
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the discontinuity of the input current. We illustrate this by
considering the scenario where the input current switches from
non-zero to zero at timet1. At time t−1 , the terminal voltage is
y(t−1 ) =OCV(t−1 )+γ1u(t−1 ); at the time instantt+1 , the terminal
voltage is y(t+1 ) = OCV(t+1 ). Since the proposed approach
assumes the continuity of the terminal voltage, i.e.,

y(t−1 ) = OCV(t−1 )+ γ1u(t−1 ) = y(t+1 ) = OCV(t+1 ),

the OCV, consequently the SoC, att+1 has to be discontinuous.
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In the experiment, the amplitude of the current is around 50A.
Given γ1 = 2.5m-Ohm, the jump of OCV fromt−1 to t+1 will
be ±0.125Volts. According to the average SoC-OCV curve,
variations of the OCV with such an amplitude corresponds to
around 5-10% variation of the SoC. In a realistic scenario,
it is unlikely that the input current is discontinuous thus the
proposed algorithm might be still applicable. One solutionto
this issue is to modify the proposed algorithm to be free of
time derivative.

The second factor is the model mismatch, i.e., the model
(10) fails to capture the RCE, the RE, and the HE. The HE
on the SoC estimation has been alleviated by applying the
proposed approach to the switched battery model (11). As
shown in Figure 10, the SoC estimation error corresponding
to the switched model is within 4.5%. Further improvement
of the SoC estimation accuracy by enforcing the continuity of
the SoC is possible.

V. CONCLUSION AND FUTURE WORK

This paper considered adaptive State of Charge (SoC)
and parameter estimation of Lithium-ion batteries. A well-
established nonlinear geometric observer approach was applied
to simplified and nonlinear battery models for estimating
the SoC and parameters. The resultant error dynamics of
state and parameter estimation are exponentially convergent
under the model matching condition. The proposed adaptive
observers were shown robust to process uncertainties. Ro-
bustness analysis also indicated the design tradeoff between
the convergence rate of the error dynamics and robustness
to the measurement noise. Simulation and experiments were
carried out to validate the effectiveness and main advantages
of the proposed approach: capability to provide relatively
reliable estimates of the SoC and parameters. Experiments also
revealed that the proposed approach may not work well if the
input current has many discontinuous points. Error analysis
was presented to explain experimental results. Future work
will focus on the modification of the proposed algorithm to be
free of input derivative, and its generalization to other models.
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