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Abstract

This paper considers the state of charge (SoC) and parameter estimation of lithium-ion batteries.
Different from various prior arts, where estimation is based on local linearization of a nonlinear
battery model, nonlinear geometric observer approach is followed to design adaptive observers
for the SoC and parameter estimation based on nonlinear battery models. A major advantage of
the proposed approach is the possibility to establish the exponential stability of the resultant error
dynamics of state and parameter estimation. The proposed adaptive observers are shown to be
robust with respect to unmodeled process uncertainties. Analysis also shows the design tradeoff
between the convergence rate and the robustness of the estimation error dynamics with respect to
the measurement noise. Simulation and experimental results validate the effectiveness and main
advantages of the proposed approach. Error analysis is presented and explains the experimental
results.
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Abstract—This paper considers the State of Charge (SoC) counting [3]. Both methods have limitations such as the rm
and parameter estimation of Lithium-ion batteries. Different requires the battery to rest for a long period and cut off
from various prior art, where estimation is based on local fom the external circuit to measure the Open Circuit Vadtag

linearization of a nonlinear battery model, nonlinear geonetric S .
observer approach is followed to design adaptive observerfor (OCV), and the latter suffers cumulative integration esrand

the SoC and parameter estimation based on nonlinear battery NOISe corruption.

models. A major advantage of the proposed approach is the Recently model-based approaches have attracted a lot of
possibility to establish the exponential stability of the esultant gttention to improve the SoC estimation accuracy. For ntsa
error dynamics of state and parameter estimation. The propsed equivalent circuit models (ECMs) and extended Kalman filter

adaptive observers are shown to be robust with respect to EKE) t f hes h b d extensively t fi
unmodeled process uncertainties. Analysis also shows thesign ( ) type of approaches have been used extensively to esti-

tradeoff between the convergence rate and the robustness tfe Mate the SoC with approximate dynamic error bounds [4]-[6].
estimation error dynamics with respect to the measurement aise. Nonlinear observer design approaches have also been épplie
Simulation and experimental results validate the effectieness to construct ECM-based nonlinear SoC estimators, e.gnglid
and main advantages of the proposed approach. Error analysi mode observer [7], adaptive model reference observer [g],
is presented and explains the experimental results. Lyapunov-based observer [9] etc. ECM-based approaches hav
Index Terms—State of charge, batteries, adaptive estimation, the benefit of simplicity and low computation but sacrifice
geometric method, nonlinear systems. physical meaning of model parameters thus may limit their
uses for battery monitoring.
. INTRODUCTION Electrochemical or physics-based models, for instance the

ITHIUM-ION (Li *) batteries have been widely used ir{)seudo two dimensional model [10], [11] and single particle

o . ) . models [12], [13], are derived from electrochemical proies
numerous applications including consumer electronics, . S . e . :
Which describe intercalation and diffusion of lithium ions

automotive, and power tools, due to the high capacity but

reduced size. superior bower performance. and lona c agd conservation of charge within a battery. Electrochamic
» Sub P P ' 9 Yfdels have the merit of ensuring each model parameter to

life [1]. Nowadays battery management systems (BMSs) Y&tain a proper physical meaning; on the other hand, they tak

and discharging processes for real-time battery protectial the form of nonI|r_1ear partial dlf_fere_n_'ual _equa‘uons (F.)DES
. thus often necessitates model simplification or reductmn f

performance improvement [2], [3]. An accurate state of ghar o .
%ontrol and estimation purposes. A linear reduced-ordz-el

(SoC) of the battery, usually defined as the percentage r4{Schemical model is established in [14], to which the dizeds

of the present battery capacity to the maximum capacity, IS& s employed for the SoC estimation. In [15], the EKF

prerequisite to have a desirable BMS. is implemented to estimate the SoC via a nonlinear ordinary
timation is k hallenaing task. T trai htmdNa(gﬁ'ferential equation (ODE) model obtained from PDEs by
estimation Is known as a chatienging task. 1wo straig finite-difference discretization. The unscented Kalmateffil

SoC estimation methods are voltage translation and COUIO'PLH(F) is used in [16] to avoid model linearization for more
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@ o o prevents electrons from passing through. Electrons ars thu
forced to flow through the external circuit.

Negative Electrode | swver] Positive Electrode When the battery is being charged; lare extracted from
- particles at the positive electrode into the electrolyteyeth
by reaction at the particle/electrolyte interface, andtiplas
at the negative electrode absorbs Ifrom the electrolyte.
This process not only generates an influx of Within the
battery, but also builds up a potential difference betwéden t
positive and negative electrodes. When it is reversed, the
battery is discharging. The chemical reactions in the pesit

10103[]0)) JUSLIND)
10]03][00) JUDLIN;

Electrolyte Electrode particle

@) and negative electrodes are, respectively, described by
g g LigMn,0, —=s | Mn,0, +1Li* +le
2 g arzTa discharge q-1772=a
§ = . B charge i
g g gLi"+qe +C Li,C
g = discharge

A rechargeable battery has various features including rate

() capacity effect (RCE), recovery effect (RE), and hystearesi
Fig. 1. Schematic characterization of battery dynamic: tie battery effect (HE). A battery model capturing all these effects is
charging process; (b) the single-particle model. important for accurate SoC and state of health estimation.

It is however difficult to find practical models that interpre

. L . the RCE and the RE using electrochemical states [23]. A
for adaptive SoC estimation. The proposed nonlinear adapt{:ommonl used model for characterizing the electrochelmica
SoC estimators admit straightforward analysis of the taatl y 9

mechanism of a [i battery is presented in [10]. The model

error dynamics. Specifically, for the case where no mismatch - . . .
y P Y includes four quantities solid and electrolyte ldoncentration

between the battery model and the physical process is gresen

the error dynamics are exponentially stable; with bound%&;gggéezazl ‘2;asrtaéebvsgﬁ::aeséxhgzetg?’:;rg'Cslsljeg;'?l%t]e n
model uncertainties, the error dynamics are input-tcesta 9 ' P y '

stable. Extensive analysis, and simulation and experiahe zi\_dd|t_|on, these state vanable_s are coupled by a chgrgelhla
. : inetic resistance at the particle surface which is giverthey
results are provided to validate the methodology. .
. : . . utler-Volmer equations. Interested readers are refdoé¢d,
The rest of this paper is organized as follows. Section

introduces the working mechanism of*Lbatteries and sim- 0], [13] for details.

plified battery models. Section Ill presents adaptive okesr

for the SoC and parameter estimation, and robustness @alys. The Single Particle Model
Simulation and experiment results are provided in Section |
to verify the proposed design approach. The paperis coadluda
by Section V.

The single particle model (SPM) simplifies each electrode
s a spherical particle with area equivalent to the active
area of the electrode [24], [25]. The dynamics of electelyt
concentration and potential are ignored. Although unable t

Il. SIMPLIFIED BATTERY MODELS capture all electrochemical processes in batteries, tHd SP
This section includes a brief introduction of the workingeduces complexities in identification, estimation andtean
mechanism of Li batteries, the single particle model (SPMylesign to a large extent [15], [18]. To proceed further, aenev
[2], and simplified models to which nonlinear geometriof the SPM is provided, with the nomenclature shown in

observer approach can be applied for the SoC estimation. Table I.
Input and output of the batteryfhe external input to the

A. The Working Mechanism of‘LBatteries battery _is the currenit(t) with 1(t) < O for charge and(t) >
0 for discharge. The measured output of the battery is the
A schematic visualization of a Libattery is presented terminal voltage, which is the potential difference betwéree
in Fig 1(a). The positive electrode is typically made fromwo electrodes, and given by
Li compounds, e.g., kMn,0, and L;CoO,. Small solid
particles of the compounds are compressed to form a porous V(t) = Psp(t) — Psp(t). 1)
structure. Similarly, the negative electrode, usuallytaoring
raphite particles, is also porous. The interstitial paelsoth o U . 9€
gle(?trodeps provide intercaF:ation space, where thE:adain pe Of Li" inside a particle is caused by the gradient-induced
moved in and out and stored. The electrolyte contains frggfusmn. I.ts dynamics can be modeled from the Fick's secon
ions and is electrically conductive, where the* Lian be law and given by
transported. The separator separates the electrodes Hpart acsj(r,t) 190 (D _rZaCSJ(rvt)) o
e \Ysilh — 35— |

Conservation of Li in the electrode phaséfhe migration

allows the exchange of Lifrom one side to the other, but ot r2oar
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Variables . .
®s  electric potential in the solid electrode C. A Slmpllfled Battery Model
®,  electric potential in the electrolyte Nonlinear geometric observer approach assumes a system
Cs concentration of Li in the solid electrode . .
css concentration of Li at a particle’s spherical surface represented by QDES, thus the SPM should be further §Impll—
J molar flux of Li* at the particle’s surface fied. Many techniques have been proposed to meet this pur-
Jo  exchange current density pose. One way is to introduce a volume average concentration
n overpotential of reaction in the cell . . . .
U  open-circuit potential as a state variable thus eliminate the two diffusion PDEs of
[ external circuit current Li* concentration in particles.
\ terminal voltage PR _
x  original system state (state of charge) Average LT concentration in the electrode phas‘Ehreugh
y  measured terminal voltage of a battery out the paper the average concentration dfihithe particle is
¢  transformed system state (terminal voltage of a battgry) treated as the measure of the battery capacity, or equilsglen
. the SoC. For an electrode particle, it is defined as
Physical parameters
Ds diffusion coefficient of L in the solid electrode
I radius of the spherical particle avg / Csj(r,t)d (5)
F Farady’s constant
S specific interfacial area
T  temperature of the cell whereQ denotes the volume of the particle sphere. From (2),
0,  anodic charge transport coefficient it is obtained that
oc cathodic charge transport coefficient
R universal gas constant avg 005 J r, t
R phase resistance 5 J Q
R¢  film resistance of the solid electrolyte interphase
a  charge coefficient / 2‘9051 (r,t) do
B parameters in the QCV—SoC curve Q r2 ar S or
i battery internal resistance
Subscripts R or =
s solid electrode phase r=rj
e electrolyte phase . .. .
n negaﬁvg elgctmde whereg;j is a constant coefficient. Depending on the electrode
p  positive electrode polarity, (6) splits into
j norp e
TABLE T ~avg n
DEFINITIONS AND NOMENCLATURE. CS,n (t) - FS, l (t) (7)
&
~av p
EHO = &1, (®)
with the following initial and boundary conditions It is noted from (7)-(8) thatavg is linearly proportional to
i i e input curren n other worasgc is equal to the initial
(1.0 = gcsi| o 9%i|  _ 1 th t t.In oth rd o | to the initial
GilhP) =% =5 o or |_r Ds; value c{'(0) plus integration ofl over time. This illustrates
- =] :

that the change of SoC depends linearly loas a result of
It is noted thaUJ is the molar flux at the eleCtrOde/eleCtrOIth:an |nd|Cat|ng SoC. Such a re|at|0nsh|p has not On|y been

interface of a single particle. Whejn=n and p, respectively, presented for electrochemical models, e.g., [14], but Ies a

() () been_Jusufled in ECMs, e.g., [5], [26] and the references
dn(t) = Fs p(t) = TFSy therein.
Terminal voltage:Suppose there exists a functignsuch
Electrochemical kineticsThe molar fluxJj is governed by that cssj(t) = ¢(c§‘;g(t)) and defineU = U o ¢, where ©’
the Butler-Volmer equation: denotes composition of two functions. Using (4), (1) beceme

310 = 2 Joxp( B8, 0) - - LEnw)] . @ VIO =00~ UEHO) 46l )+ Ro- R 1)
With a; = ac = 0.5, it follows from (3) that
wheren;(t) = Pgj(t) — Pg j(t) —U (Cssj(t)) — FRs jJj (t). The
electrolyte phase can be represented by a resitprin the | ¢y _ RT .t <Jn(t)F> RT 1 <£nl (t)

SPM, implying ®¢j can be expressed aBg(t) = Rl (t). [= 2Jon = 2%on )
Hence,n; becomes . IOF _ "
i - Np(t) = Z%I—Slnh*1 ( Zp\(lo) ) = Zg_smh’l (_ £2p‘]0( )) :
Nj(t) = @sj(t) —U (Cssj (1) — FRyJ; (1), 4) P ;
whereR; = SR + Ry - ThusV (t) becomes
The SPM is represented by (1)-(3), in whikcts the external V(t) = J(Cgvg) U( o)
[ i ; .p SN
input, cs j and®s j are the variables showing the battery status, ORT £l (1) el ()
andV is the model output. The SPM could not fully capture 4+ — [ inht (_ 29 > _a hl< sz )]
Oﬁp 0,n

the RCE since assumptions used in its derivation are merely -
valid at low charge-discharge rates. + (Ro— Rl (1). 9)
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As suchV(t) consists of two parts. The first is the open-circuipproach can also be applied to the switched model (11) for
voltage (OCV) that relies ot (cg‘jg), and the second is theadaptive SoC estimation. The resultant SoC estimation i mo

direct feedthrough fronh to V. accurate than that based on the model (10).
System (7)-(9) provides a concise characterization of the
battery dynamics. As pointed out in [18], the SPM implies 1. M AIN RESULTS
the conservation of Lithium ions within two particles, or )
equivalently, thatisp(t) can be represented as a linear func- Similar to [21], a two-stage approach is used to perform

tion of c2%J(t). This fact allows the reduction of (7)-(8) into@daptive SoC estimation:

one differential equation. Wittc3s3(t) as the independent < Stage 1:As h(:) represents the OCV, it is determined
variable, the battery dynamics is captured by (7) and (9). using the SoC-OCV data set to identify paramef@rr
As aforementioned;2¢3(t) is arguably equivalent to the SoC.  the battery model (10), or to identify parametg@sand
Denoting the SoC by a statec [0, 1], and defining the input B for the battery model (11).
u and the outpuy of the model as the charge currdnand ~ « Stage 2:After 3 and/or 3 is identified, the statex
the terminal voltag® of the battery, respectively, we have the =~ and parametersy,y are estimated simultaneously by
battery model as follows nonlinear geometric observer approach.
The identification in Stage 1 has been well-studied in litera

' (10) tures. As an example, one can formulate it as a nonlinearr leas

y=h(xB)+9(uy), squares data fitting problem and solve the resultant naadine
wherea, B = (B1, B2, Bs), andy = (Yo, V1, 5, y5) are unknown Programming problem. Interested readers are referreddp [2
parametersh(x, ), the part containing) in (9), takes the [29] for further details. This paper focuses on the problem i
parametric form ofh(x) = BiIn(x+ Bo) + B3, and g(u,y) Stage 2, where parameteisare treated as known constants,
corresponding to the part involvingin (9) is expressed asand the state and parameter estimation is performed using
g(U,y) = yo [sinhY(yau) — sinh (ysu)] + y1u, where y; for nonlinear geometric observer approach.

X=—au

i =0,1,2,3 are from (9). We first define a local adaptive observer for a general system
Due to the negligence of diffusion in solid particles, the Z: £(Z,0)

battery model (10) have limited capability to represent the h C (12)

RCE, the RE and the HE. This paper however uses the battery y=h(J).

model (10) mainly for illustration purpose, i.e., to demwate \hereZ € R" is the system statd,: R" x R™ — R" is a smooth

how nonlinear geometric observer approach can be followggctor field,® € R™ is the unknown parameter vector, and

to perform adaptive SoC estimation. h:R" — RP is a vector of smooth functions. Here the notation
Remark 2.1:The thermodynamics of batteries are not cows js abused, which should not incur any confusion given the

ered by the SPM and the simplified model (10). Ignoringontext.

thermodynamics however might not impose significant restri - Definition 3.1: [30] A local adaptive observer for sys-

tion to the applicability of the proposed approach. Loosebgm (12) with the presence of the unknown paraméen
speaking, the effect of thermodynamics on both models cans a finite dimensional system

be compensated by making parameters time-varying. Adaptiv

state estimation based on (10) is possible for cases where pa W= ag(w, O,y(t)), WeR', r>n,
r_ameters_, are either constant or time—var_ying but wit_h bewdnd 0— az(w,(:),y( ), AecRr™

time derivative [27]. If the thermodynamics evolves in a imuc - N A N
slower time scale than the estimation error dynamics, the {=a3(wo.y(t), {eR

adaptive estimator generally can track the resultant sio&-t 4 iven by y(t), such that for eveng (0) € R",w(0) € Uy, C
varying parameters and original system state with reas*.enaRr7c:)(0) € Ug c R™, whereU,,Ug are the neighborhoods of

accuracy. (0),0 respectively, for any value of the unknown parameter
© and for any bounded{(t)||,vt > 0:
D. A Switched Battery Model 1) w®)], 16| and|[{(t) — {(t)|| are boundedyt > 0.

An intuitive generalization of the model (10) can be done 2) liMte [|(t) —{(t)[| = 0.
by addressing the HE in the OCV-SoC relationship, which is In Definition 3.1, a local adaptive observer is defined for
characterized by(x, 3). We consider the following switched a system where the output functibndoes not have explicit
battery model dependence on unknown parameters. This is without loss of
generality because one can introduce a parameter dependent

X=-—au, state transformation to put a general system into the fo@h (1
_ {h(x@ +g(uy), u>o0, (12)
h(x,B)+9(u,y), u<o, A. Nonlinear Geometric Observer Approach

whereB = (By, B, Bs) is constant. Her(x, 8) andh(x, 8) pa-  We first define some notation. Given & ®ector field f :
rameterize the discharge and charge OCV-SoC curves, resget— R", and a C functionh: R" — R, the functionL th(x) =
tively. As will be shown later, nonlinear geometric observe‘%(xx)f is the Lie derivativeof h(x) along f. Repeated Lie



WANG et al: NONLINEAR ADAPTIVE SOC ESTIMATION FOR BATTERIES 5

derivatives are defined d%h(x) = Ly (L‘flh(x)), k> 1 with This paper mainly performs adaptive SoC estimation based on
Lo%h(x) = h(x). work [47]. The fact that this paper applies results of work][4

Nonlinear geometric observer approach generally requife@wever shall not prevent one from applying other relevant
a system in some forms which enable the simplification @forks. For an SISO system, work [47] considered adaptive
observer design and establishment of the error dynamies fiserver design for a class of nonlinearly parameterized sy
bility. Typically, the first step for nonlinear geometricsgsver tem on the basis of the following form

approach is to put the original system into an observable 7= Az+ ¢(zu,0)
form by change of coordinates. As a next step starting from _c U (14)
the observable form, various techniques, for instance ututp y==t2z

transformation [31], [32], state transformation [31], [38me where (A,C) is in  Brunovsky observer form,
scale transformation [34]-[36], dynamics extension [3#fld z = (z,...,z,)T =< R" is the state vector® € R™ is
approximate transformation [38], can be considered td&urt the unknown parameter vectarc RS is the input vector, and
simplify the system dynamics. The transformed system &lpicp (z,u, ©) takes the following form

takes a certain special structure, e.g. observer form [33],

[39], block triangular forms [40]-[43], time scaled observ 91(z1,u,0),
forms [34], [36], [44], and adaptive observer forms [45]]4 $(zu,0) = :
etc. As the final step, observer design for a system admitting ¢n(z,u,0)

special coordinates can be readily performed, and usuailg h .
properties: reduced design complexity, straightforwasted N_ote th§t¢(z7 u,©) has _trlangular dependence oo enable
mination of the observer gain, and simplified estimatiomerr 119N gain observer design [48], [52].

dynamics. Although nonlinear geometric observer approachG'Ven a nonhnea_\r system n the form (14), work [47]
allows systematic and simple observer designs, and yieRf?pOSEd the following dynamical system

stable estimation error dynamics, it suffers from limitatige 2=PAo+p— 9A51(51+ YPYTCTK (y—9),

of applicability. - T ~
For a locally uniformly observable single input single auttp ©=0PY' C'K(y—9),

. 15
(SISO) system, V= _9(A-SICTO)YV+ Aej_g (15)
(=10 +gdu, P—_6PY'CTCYP+ 6P, P(0)=Py>0,

=h({), -
y="hd) where 6 is a positive constantp = ¢(2,u,0), y = CZ
whereu € R andh:R" — R, the observable form exists anda, — diag|1, 1, ﬁ , andSis the unique solution of the
is uniquely defined as follows [48] algebraic Lyapunov equation
X2 G1(X1) S+ATs+SA-C'C=o0.

+1 | (13) : : .
. To show the system (15) is a semi-global adaptive observer of

o
L#h(Z) 9n(X), the original system (14), the following technical assuiopsi

where x = ®(7) = (h({),-,L™h(Z))T and { = d-1(x). are assumed.

Observability ensures that defines new coordinates. For a ASsumption 3.2047, Assum. (Al)] The state(t), the
multi-output system, the observable form is not uniquely d&ontrolu(t) and the unknown paramete@sare bounded, i.e.,
fined due to the non-uniqueness of the observability degimsti 2(t) € Z;u(t) €U fort >0 and® € Q whereZ CR".U C R®
and observability indices [40], [42]. Readers are refered andQ C R™. .

[30], [40], [42], [48], [49] for details about observabjiiand  ASSumption 3.3[47, Assum. (A2')] The functiorp(z u,©)
observable forms. One can readily verify that the battefy LiPSchitz with respect ta and ©, uniformly in u where
model (10), SISO with one state, is locally observable. TH& U, ©) € ZxU x Q. _
identifiability of parameters can be verified by performing ASsumption 3.4:[47, Assum. (A37] The non?l_mear
observability analysis on the augmented system which éresu Ipéantqrametrlzatlon functiog (z u,-) is one to one fromR™ into

(10) and the following dynamics

X:

Assumption 3.5:[47, Assum. (A4’)] The inputsu are
a=0, such that for any trajectory of system (15) starting from
i =0. (2(0),6(0)) € Z x Q, the matrixCY is persistently exciting,

i.e., 301,85 > 0;3T > 0;vt >0,
Readers are referred to [50] for detailed observability and T
identifiability analysis. Hln < / Y'cTeydr < &y,
Earlier work on adaptive observer with nonlinear parame- t

terizations includes a local adaptive observer [51] based wherel, € R™" is the identity matrix.

a nonlinearly parameterized observer form, and a semiagjlob[47, Thm. 4.2] established that the system (15) is a semi-

adaptive observer [47] etc. The battery model (10) does rgibbal adaptive observer of the original system (14). For

admit the nonlinearly parameterized observer form in [51¢ompleteness of this paper, we recite the theorem as follows
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Theorem 3.6: [47, Thm. 4.2] under assumptions
(A1),(A2),(A3) and (A4’), system (15) is an adaptive

o
[
L,

A . asinh(y,*u) /".
observer for system (14) with an exponentially errc 008f _ _ asinh(yz*u) -
. . 3 K4
convergence for relatively high values 6f 0.06}| = = = asinh(y,*u)-asinh(y,"v) ot

o
o
=

B. System Transformation

Following the nonlinear geometric observer approach
Section IlI-A, we first transform the battery model (10) intc
certain forms which facilitate adaptive observer desiga. 1
simplify the presentation, this paper assurg@s y) in system
(10) has a linear parametrization. Specifically, consider t

Voltages (V)
o

o

o N

1
©
o
o

-0.04

following battery model -0.06f
X=au -0.08|

’ 16 :
y = Bulog(x+ B2) + Bz + y1u, (16) e

u(A)

wherex is the SoC of a batter; are known parameters, and
y1,a are unknown parameters.
Remark 3.7:Assumingg(u, y) = y1u is mainly to simplify
the state transformation and the expression of the regultan
transformed system, and without loss of generality. With th\e rearrange the transformed system and have
original g(u, y), the state transformation is taken as follows : .
§=0oy.u,y,a)+nu,

Fig. 2. Curves of asinfyu), asini{ysu) and asinlfy,u)-asini{ysu)

E(x,u,y) = Bulog(x+ Bo) + B+ g(u, ), y=¢. (18)
which is a diffeomorphism oveR*. The inverse state trans-yyhere
X e Lwu—
formation can be similarly computed as follows () = pia exp(ﬁ3 23/1 Y) u
X By — exp y—Bs—g(u.y) !
2= B1 ’ Remark 3.8The SoC, represented by is always positive,

The procedure followed in the sequel to develop adaptiféSOX+ P2 has to be positive if the model (16) is valid. One can

observers is therefore still applicable for the origigl,y) Ve that+th_e state transformation (17) is a diffeomogphi
case. Simplifyingg(u,y) as yiu can also be justified by its OVEX € R™, i.e., the state transformation (17) is well-defined

practical usefulness. That is: becayseys are usually small N the domain where the model (16) is physically meaningful.

positive constants, the ignored teyg(asint(yu)-asint{ysu)) The syst_em_(18) in the observable coordinates has nonlinear

can be approximated by a linear function wfthus can be Parameterizations ofr and y;. The transformed system (18)

lumped into the termyu. For a particular battery tested iniS @ready in the form (14), and thus no further transfororati

the experimenty; is in the order of milliohms (m-Ohm). We IS réquired to perform adaptive observer design.

therefore takegsr andy; at the same order, i.gg =1e— 3,3 =

2e— 3, and examine the plot of the ignored term versugs C. An Adaptive Observer

shown in Figure 2, the ignored term is almost lineauiaver The transformed system (18) is in the form of (14), where

a wide range of input current: from -50Amps to 50Amps.

Note that the tested battery has a nominal capacity SAmp- ¢ (y,u,u,y1,a) = Bra exp<w) u+ yiu.

hours (Ah) and the 50Amps current is quite large (10C). A P

less rigorous interpretation of the aforementioned aigligs The transformed system (18) is linearly parameterizedhby

that parameterg,0 <i < 3 are closely coupled and almostbut nonlinearly parameterized by. Given all assumptions

indistinguishable, and can be lumped into one parameter. in [47] satisfied for system (18), we could perform adaptive
Putting (16) into observable form (13) with unknown paransbserver design for adaptive SoC estimation.

eterizations requires the following parameter dependet¢ s For a physical battery, the sta#® or equivalently the

transformation battery’s terminal voltage, the external current input and

its time derivativeu, and model parameteys, a are bounded

$(%,U,y1) = Brlog(x+ B2) + B3+ L, 17 ina compact setZ C R®. Assumption [47, Assum. (Al)] is
where ¢ is the new state variable and denotes the terminsdtisfied. Giveru,u,y are bounded by a compact st the
voltage of the battery. We have smooth functiong is Lipschitz with respect t = (a,y;)"
;o a _ and uniformly inu,u,y, i.e., given any 3-tupléy,u,u) € 2,
§ _le+ ﬁ2u+y1u, there exists a constartt such that the following inequality
wherex+ 3, can be solved as holds
i exp<y—[33—y1u) [o(v,u,0,0M) = (yu,u,p9) || <L|p*=p%|,  (19)
2= — |-
B for any p! = (al,yi),p? = (a% y}) eQC 2.
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Remark 3.9Using the state transformation (17) also implieor any X' = (§%,p%),X2 = (£2,p2) € Zx Q.
the differentiability of &, which requires the input current As pointed out in [47], the saturation & and p in (21)
is differentiable. In additiony has to be bounded in order toand (22) is required to apply the Lipschitz conditions, e.g.
satisfy Assumption 3.2. These conditions on the input euirre(19) and (23), which is critical in the stability proof. Fdret
u sound restrictive from theoretical perspective, but are ncase where is given by (22), although the original state and
really a restriction in reality. Performing observer desimsed parameters are bounded in the domair Q, the trajectories
on system dynamics having explicit dependence twowever of &,p in (20) may escape from the domaiix Q. Thus
indeed makes the observer sensitive to the measuremest nddssumption 3.3 should be extended to a large domain to prove
Assumption [47, Assum. (A3’)] is however not satisfiedhe error dynamic stability, which is not obvious. A natural
because given a fixed 3-tuplg,u,u), one can easily find treatment is to prevent the state and parameter estimates in
two sets of parameters® and p? such that(y,u,u, pt) = ¢ from leaving the bounded domaihix Q, by saturating the
¢ (y,u,0,p?). Notice that Assumption [47, Assum. (A3")] isarguments andp in (22), which consequentially guarantees
not explicitly used to show the convergence, and the protife satisfaction of Assumptions 3.2-3.3. By the aforenoemil
of Theorem [47, Thm. 4.2] merely relies on Assumptionsaturation definition, the Lipschitz condition (23) stilblds
(A1"),(A2),(A4"). We may still be able to have an adaptivebecause
observer as long as Assumption [47, Assum. (A4')] is verified

We consider the following system I¢ =@l < L[|X—satX)[| < L[|X = X]|,
ézg(y_y)+¢+92prT(y_y)’ 3(0)250627 whereX = (&,p) andX = (£,p) foranyX € Zx Q andX €

) Y] ) RR3. Similar saturation technique has been applied to obtain th
Y=-0Y+ p’ Y(0) = Yo € R%, (20) semi-globally stable estimation error dynamics in [43B][5

. T N . . Assumption [47, Assum. (A4")], restricted to system (18),
p=06PY (y=9), p(0)=poecQ, is written as follows

P=—0PY' YP+6P, PO)=R € R?*2, Assumption 3.11The inputu is such that for any trajectory

A A T of system (20),Y(t) are persistently exciting i.e., , there exist
wherep = [a, ", . A 01,5, T > 0, for anyt > 0, the following inequalities hold
¢ = (y,u.u,sa(p)), (21)

t+T
N T
0 is a sufficiently large positive constary is constant)y is &ul2 < /t Y (OY()dT < &2, (24)

bounded and constar®, is positive definite, and wherels is the 2x 2 identity matrix.

Bk A (y,u,u,p) T We have the following result on the adaptive observer design

p = o | X for system (18). Proof of Proposition 3.12 is omitted due to
p=satp) its similarity to that of [47, Thm. 4.2].

The notation s&t) performs an element-wise saturation if its Proposition 3.12Provided thati, i,y € 2, and the Lipschitz

argument is a vector, for instance, condition (19) and Assumption 3.11 hold, (20) wifhgiven
R sa(d) by (21) is an adaptive observer of system (16), whirie a
sa(p) = {Sa(f’l)] . sufficiently large positive constant.

] ) o - Next we verify that Assumption 3.11 may still hold for (20)
If its argument is a scalar, the ¢gtoperation is exemplified o\ an it Assumption [47, Assum. (A3')] is not satisfied. The

by the sata) as follows Y-dynamics is excited by the following input

sa(a) = g’ :: gi(g(; a) 20 [ Blexp(%%)“*y)u
=<a, a,a), 9p  |sata)exp(Petsalu-yy 2 4 |-
a, ifa>a, p (@) exp( By

)

Given 6 a sulfficiently large positive constant, we have the

wherea anda are the lower and upper boundsafSimilarly, s 109 ) -
z z f approximationY ~ 595 Hence, (24) is approximated by

sa{é) and safy;) saturateé and 1, based on bounds o
& and yy, respectively. Givenp = ¢ (y,u,u,safp)), Assump- 2
tion 3.3, when applied to the system (18), reads: the functio ) t+T (a_@) g—g%‘%
¢ (y,u,u,p) is Lipschitz with respect t@, uniformly iny, u 31612 </t 9

andd, i.e., (19) holds for anp?,p? € Q and(y,u,u) € 2.

]
Remark 3.10The term¢ can be taken as T ‘w)zdt ft+T 08 96
Jt o

B A . . _| a 94 9 < 5,02
¢_¢(Sa(s)auauasa(p))a (22) t+T@ﬁdt T (Q)Zdt _629 |2
and Assumption 3.3 is modified accordingly: the function ot aon ot N

¢(&,u,0,p) is Lipschitz with respect td&, p), uniformly in - since any two square-integrable real-valued functignand

inequality holds b
¢ (u,0,XY) — d(u,uX?)| <L|XE-X?||,  (23) <X1,Xz>=/a Xa(t)xz(t)et,
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if assumingd¢/0a anddd /d are integrable ovelt,t +T| projection operator Pr6j ) is defined as follows

for anyt > 0, we rewrite (24) as follows 0, if k<0 and(@—a) <0,

5,621, < (55,58 <%‘§,§§>] csel, @5 Tolkn®=10 ifx>0and@-a)>0
2> |,0¢ 09 0§ 0 = 2 .
(5630 (G o K1, .otherW|se ) 29)
We can further verify that the space consisting of all inddde o 0, ff k2 <0 and(Yl _g) <0,
functions overt,t+T] for anyt > 0 is a pre-Hilbert space and ~ Proi(k2,%1) = ¢ 0, if k2 >0 and(j1—y) >0,
the inner product is a norm of the space, thus the Cauchy- Ko, otherwise

Schwarz inequality holds. Denoting wherey,y are lower and upper bounds gf. The projection

) T, operator can be chosen differently, e.g. [54, Eqn. (A.2B4.
IXI°= X X) = X (e, have the following result about the system (27).
' Proposition 3.15Provided that, u,y € &, and the Lipschitz
we have condition (23) and Assumption 3.11 hold, the system (27h wit
o 09 L) o ¢ given by (21) is an adaptive observer of the system (16),
<(3—a’ 0_91> = EE] X Ha_Vl : where8 is a sufficiently large positive constant.

. . A . A detailed proof of Proposition 3.15 is omitted, since it
That is to say, giver|d$/da|| and||dd/dyi|| nonzero, the is can be readily established by considering the proof of

matrix in (25) is not positive definite if and only ift > 0, Proposition 3.12 and the following fact:
96 (1) 96 (1) . Accord?ng to the proof of [47, Thm._ 4.2], thgre exists a
o9& = kd—“’ VkeR, Te[t,t+T]. (26) time-varying quadratic Lyapunov function candidatét,X)
" such that its time derivative along the the error dynamics
An intuitive interpretation of (26) is that the sensitivitync- corresponding to observer (20), denotedVpy), satisfies
tions of ¢ with respect to parameters and y; are linearly ) N oV -
independent, otherwise, and y; are not distinguishable. Vo) = at + % fr0) < —KaV, (29)

Remark 3.13:The fact that [47, Assum. (A3’)] does not » . . L ) )
hold for the transformed system (18) partially justifies tise where>_< is the esumapon errorfig) is the estimation error
of the two-stage approach for SoC and parameter estimatigfnamics corresponding to (20), aig > 0. Next we show
For the one-stage approach wheere unknown parametersthat th_e time derivative o¥ along the error dynamics corre-
as well, [47, Assum. (A3)] and the PEC [47, Assum. (A4")EPonding to observer (27), denotedWyy), is upper-bounded
are much more difficult to satisfy. Y Vo) i.€., that satisfies the following inequality

A similar result to Proposition 3.12, based on a different \'/(27)§\'/(20)§ —kaV,
definition of and the Lipschitz condition, is given as follows. _

Proposition 3.14Provided thati, u,y € &, and the Lipschitz Essentially, we need to show
condition (23) and Assumption 3.11 hold, (20) wifhgiven 0_Vf~ - 0_Vf~ 30
by (22) is an adaptive observer of system (16), wherie a g% @0 = T5x 0y (30)

sufficiently large positive constant. where f(27) is the estimation error dynamics corresponding

to (27). SinceV is a time-varying and quadratic function of
estimation errors, we take a Lyapunov functdpn= 0.5(a —

@)? as an example to illustrate the proof. We have the time
In the observer (20), the priori knowledge about the boungdgrivative ofV, along (27)

of the state and parameters is used to saturate the estiimates

D. Alternative Adaptive Observer

¢ such that the error dynamic stability can be established. Th 0, if kk<0and(ad—a)<0,
observer staté€ and p however can unnecessarily leave th¥a =ki(a—a&)Projk1,a) =10, if k1 >0 and(éd —a) <0,
domainZ x Q, i.e., the observer (20) does not fully exploit the ki(a —@)ky, otherwise
priori knowledge of the state and parameter bounds. We ”Wth h L functi its i derivati |
improve this by considering the following alternative atie® 2:) ((he same Lyapunov function, 1ts ime derivative aiong
system (20) is

X . o - . >0, if ky<O0and(d—a)<O,

E:G(y—y)—l-(ﬁ—l-GYPrOJ(K,p), E(O):EOEZ, Va:kl(a—&);q: >0, if Klzoand(a_g)go’

Y=_0Y+ %, Y(0) =Y € R?, 27 ki(a — &)k, otherwise

We know

p =Projk,p), P(0)=po<Q,

_ R - Va <Va. (31)
P=—-0PY'YP+0P, P(0)=PR R, _ o A R
This fact holds for the estimation errofs- & andy; — y1. We

where k = (ki,k2)T = OPY'(y — ¥), Projk,p) = therefore prove (30). We therefore conclude that the adapti

(Proj(k1,@),Proj(k1,v1))", and ¢ is given by (21). The observer (27) also yields exponentially stable error dyinam



WANG et al: NONLINEAR ADAPTIVE SOC ESTIMATION FOR BATTERIES 9

Remark 3.16Assumption 3.11 imposes different constrainteepresents the measurement noise. Under the new coolinate
on the systems (20) and (27), respectively. That is to sa&y, ttefined by (17), the system (33) is rewritten as follows
satisfaction of Assumption 3.11 for the system (20) does not - A . dit
necessarily concur with its satisfaction for the system).(27 ¢ =(y—n(t),u,up)+d(),

Similar to Proposition 3.15, we have the following state- y=2¢&-+n(t),
ment. . . _ ~ With adaptive observer (20), the resultant error dynamies a

Proposition 3.17Provided that, i,y € &, and the Lipschitz .  _ . . A .
condition (23) and Assumption 3.11 hold, the system (27hwiX = fu(y—n(t),u,0,sa(&),sa(p), 6, Y,P,X) + En(t) + Fd(t),
¢ given by (22) is an adaptive observer of the system (1%

. .. o ere
where0 is a sufficiently large positive constant.
Remark 3.18:Another form of adaptive observer can be [9 + 62YPYT] 5 [1]
E= eR? F=

(34)

taken by applying projection operator to the right hand side oPYT 0.
of the dynamic equation of, i.e., the first equation of (27) 0

is replaced with the following equation Assuming inequalities (32) still hold with replaced byf,,

s = LN F L En) +Ed(t
wherey = 6(y—Y) + ¢ + 6YProj(k,p). Error dynamics sta- T ot + 3)2( utEn(t) +Fd(t)
. . ) . : s .
bility can be established by using the same technique a%in th < —c3 ||X|| +c4||X|| -(IEN(t) + Fd()]),

sketched proof of Proposition 3.15. ~ 112 ~
< —ca|X[|+ca[X|| - (IE - Il + I | - (1) )

~ 2 ~ ~

E. Robustness and Applicability < —|[X[["+ cacs(6) [In(®) [l - [[X[| +ca A}l - [ X

Given Assumption 3.11, both of adaptive observers (20) affi€"® s is positive, and|n(t)]l, ., [d(t)]|,, are the infinity
(27) yield error dynamics of the state and parameter esomat "0'M Of signalsn(t) andd(t), respectively. From the expres-
which are exponentially convergent. We analyze the rolasstn SI°n 0fV, we have the following conclusions
of the adaptive observer (20) with respect to the processmod 1) The error dynamics are ISS with respect to unmodeled
uncertainty and the measurement noise. The adaptive @yserv ~ process dynamics and the measurement noise, i.e., given
(27) enjoys similar robustness property as (20) thus ittyaisa bounded unmodeled process dynamiti$) and the
is omitted. measurement noisgt), the estimation error is bounded.

Robustness analysis is performed based on the input-state2) Sincecs is a function of6, the termcacs(6) [[n(t)]|, -

stability (ISS) [55, Def. 4.7]. To facilitate the analysise
introduce the notation of estimation errok= X — X. Given
the system (18) and the adaptive observer (20), it is notdlffi

|X]|, due to the measurement noise, could be quite large.
On the other hand, the term||d(t)||,, - || X||, due to the
unmodeled process dynamics, is independent fhm

Hence, the adaptive observer (20) is more robust to the
unmodeled process dynamics than to the measurement
noise. This is not surprising due to the high gain essence
R R o of the adaptive observer (20).
wherey,u,u,sat§),sa(p),0,Y,P are bounded. Considering 3) The adaptive observer (27) is more robust with respect
f is continuously differentiable ang is Lipschitz over?, to the measurement noise than (20) because the adaptive
we know thatdf/dX is bounded oveZ x Q, uniformly in law in (20), i.e., thep-dynamics, do not use the projec-
y,u,u,saté),sa(p), 6,Y,P. Also since the zero solution of the tion operator, thus the ter@?YPYT always appears in
X-dynamics is exponentially stable, [55, Thm. 4.14] applies  the &-dynamics. Instead, for the adaptive observer (27),
i.e., there exists a functiovi(t, X) satisfying the inequalities: during the period of Prgi,p) = 0, the term62YPYT,

<12 representing the effect of the measurement noise, is

to derive that the error dynamics can be written as follows

X = f(y,u,u,s5até),sa1p),6,Y,P.X),

c[|X[" <V < |[X]7, absent from the -dynamics.

0_V+0_Vf~< c ||)~(H2 4) There exists a tradeoff between the convergence rate
ot ax — ’ (32) of the error dynamics and the robustness with respect

Hﬁ_ < c|X to the measurement noise. Given the PEC satisfied for
ax| = ’ somedy, &, and a sufficiently largé, a larger, from

theoretical perspective, leads to faster convergence at
the expense of more sensitivity to the measurement
noise. Making the gainf time varying might help
to improve the transience of the error dynamics, for
(33) instance, adjusting the gathaccording to the amplitude

of the estimation erroy — .

where d(t) is bounded and represents the unmodeled pro-Both of adaptive observers (20) and (27) rely on the trans-
cess dynamics, and(t) is continuously differentiable and formed system (18), which implies continuous differentigb

wherec;,1 <i <4 are positive constants. Now assume instead
of (16), the true battery model is given by

%= au+d(t),
y = B1log(x+ B2) + B3+ yau+n(t),
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of the transformed staté. Equivalently both the adaptive and have the transformed system given by

observers (20) and (27) assume the continuous differefitiyab .
of the terminal voltage. This assumption may not be valid in 54 §1=¢1(-B), t=t,
certain scenario. For instance, the input curremtay not be y=4¢1, 35
differentiable or even continuous, so does the terminabgel. — Py , (35)
D ) . S : J&=02(,8), t=>t,
The system’s failure to satisfy the differentiability pequi- Zciq
site does not mean the adaptive observers (20) and (27) aire no y=2&2,

applicable to that system. The adaptive observer (20) o (Z¥heret;,t; are the time instants when the signuxhanges. To
is essentially an filter which tries to track the terminaltage. enforce the continuity of the SoC, we allow jumps of the state

The discontinuities in the terminal voltage can be viewed &$ or &, at switch timest; andtj, i.e., the following switch
various step inputs at different time instants. Since tierfilas conditions hold

a limited bandwidth controlled by the ga#h it cannot track o o 4 4
the step input perfectly and a transient response of the esti El(tiJr) - h(x(tt)’ﬁ)+g(u(ti+)’y(ti+))’
mated terminal voltage is resulted. Since the terminalagat EZ(tJ )= h(x(tj ):B) +g(u(tj )’y(tj ))-

estimation is clearly not accurate, thus the SoC and pa@mefpe system (35) is impulsive and the observer design foethes
estlmates_ dey|_ate from the true values QUnng the tranelengystems is out of main focus of this paper. Given system (35)-
The app_hcabﬂny of the proposed adaptive observers can t:g;s), one can apply the proposed approachzoand .
summarized as follows: respectively. Ifu switches sign slowly enough, the stability
1) The proposed approach is applicable for the cases whegsults in Propositions 3.12-3.15 can be similarly esshiel
the terminal voltage is continuously differentiable. Thisor the adaptive system consisting of two adaptive observer
scenario includes applications where the charge and djghich are designed on the basisXf and =, respectively.
charge processes are completely separate. For instance
portable electronic devices. For these applications, the IV. EXAMPLES
proposed approach leads to an adaptive observer which
provides reliable estimation of both the SoC for contr(ﬁ'
and parameters for battery diagnosis. Consider the battery model (10) and assume that there is no
2) Similarly, the proposed approach is applicable to casBismatch between the model and the battery dynamics. The
where charge and discharge periods are much longepdel parameters are given as folloves:= 4.7496x 10°°,
than the transient period due to jumps in the termin& = 1.0480,6, = 0.2208,33 = 3.9998,y; = —5x 10"3. Here,
voltage. Note that the transient period can be madiee values ofo andy; are reckoned according to [24], [25],
arbitrarily small, theoretically, by choosing a sufficignt [56] and may have little applicability to a specific battery.
large observer gaif. In practice this is not possible The values off3’s are determined by fitting the SoC-OCV
because of the design tradeoff between the gaand data of the battery from experiments. The input to the model
the noise level of the measurements, and the constrdfm@ sinusoid waves = 10sin10t). We take8 = 20 and the
on 6 to satisfy the PEC. Measurements with highdpllowing initial conditions (ICs)
resolution and quglity gllow a Iarge@ Whigh leads £(0) = 0.5, 3(0):0;
to a shorter transient time. A variable gain strategy, N -
for instance based on the amplitude of the estimation Y(0) =(0,0), p(0)=(0,0)", P(0)=I>.
error of the terminal voltage, however could relax thgimulation results are given in Figures 3-5, which show that
fundamental limitation. adaptive observer (20) can provide convergent estimatfon o
3) The proposed approach can complement other auxiliafé transformed system state and parameters. This further
estimators, which are insensitive to jumps in the inpyinplies the state of the original system (16), or the SoC,
current, to produce a good estimate. Such an auxiliaggn also be estimated exponentially. We also verify that the
estimator can be based on Coulomb counting or Kalma@iaptive observer provides convergent estimation of th@ So
Filtering. and parameters over a fairly large domain. Details are ethitt
It is worth pointing out that the proposed approach is genedue to space limitation. Interested readers are referr¢2i2fo
and not limited to the specific model (12). Generalization dbr details.
the proposed approach to other models might also be possible
for insta_nce equivalent circuit models with or without they Experiment
hysteresis voltage as a state variable.

(36)

Simulation

The experimental validation of the proposed approach is
) . given as follows. For the case where the adaptive SoC estima-
F. A Switched Adaptive Observer tion is performed based on the adaptive observer (20) and the
This section includes a brief illustration of the adaptiaCS model (10), we use both charge and discharge curves to iden-
estimation based on the switched battery model (11). Similify parameters3 in h(x, 3). For the case where the adaptive
to the procedure in Section III-C, we introduce state tranSoC estimation is performed based on adaptive observer (27)
formations & = h(x,8) + g(u,y) and & = h(x,8) + g(u,y) and the switched model (11), we use the charge and discharge
corresponding to discharge and charge modes, respectivelyves to identify parametefs and 3, respectively. Both the
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11

the SoC and the terminal voltage of the battery in charge
and discharge modes, respectively, where the SoC is oltaine
by coulomb counting. Instead of having the battery rest for
a long time to measure the OCV, we measure the terminal
voltage continuously as the battery is in charge or disaharg
modes. Particularly, the charge curve is obtained by apglyi
a small charge current to the battery and the discharge tsirve
obtained by applying a small discharge current to the hatter
The rest experiment to validate the SoC estimation algo-
rithm is conventional. That is: the battery is subject to a
charge and discharge current; both the current and thertatmi
voltage are measured. The input current profile is shown in
Figure 6. The battery has a nominal capacity 4.903Ah. The
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Fig. 6. The input current of the battery

input current and terminal voltage are sampled every second
Thus the nominal value of the parameteis 5.6342%x 10~°.
The ICs of adaptive observers are taken as follows

£(0)=3
Y(O) = (07 0)7 ﬁ(O) = (O’ O)T’ P(O) =1z

The gain tuning parameted is taken as 0.08 for adaptive
observer (20) and 0.025 for adaptive observer (27). The vali
dation results are shown in Figures 6-10, where red solaslin
correspond to results of adaptive observer (20) and thekblac
line corresponds to adaptive observer (27). The transfdrme
system state, the state estimate, and their error are shown i
Figure 7. Overall the state estimafetracks the true staté
except spikes at time instants when the input current jumps.
It is worth pointing out that the estimation error approache
zero over time interval between two adjacent current jumps.
The estimation of the parameter is shown in Figure 8,
where the blue solid line represents the nominal valuer .of
Consistent with the trajectory of the state estimation rerro
& — &, the trajectory ofr has spikes when the current changes
directions. The appearance of spikes anis understood
because the proposed adaptive observer updates its estimat
according to the spiky output erraf — &. The spikes in
the trajectory ofé — &, interpreted as step inputs into the

(37)

charge and discharge curves depict the relationship betweelaptive observer, necessarily induce spikes.iAlthough the
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x10” ‘ estimate produced by adaptive observer (27) designed based
a on (35). The implemented adaptive observer (27) however
3r 1 still enforces the continuity of the terminal voltage iresde

of the SoC. This is to examine how the introduction of the
2 1 hysteresis in the OCV-SoC curve can improve the accuracy

of the SoC estimation. Consistent with trajectories of tiaes

< J\_A\_L.—J\ AN _Lh and parameter estimates, the estimated SoC trajectorjasso

< T L | o I spikes which at the worst case could shoot up to 10% for
the case ignoring hysteresis. A number of factors contibut
b | to the appearance of spikes. First factor is the presence of

80

SoC-Coulomb counting
— SoC Proposed 1
—_— STO\CLProposcd 2

Y L L L L L L L L
200 400 600 800 1000 1200 1400 1600 1800 2000
Time (sec) 70

Fig. 8. Estimate of the parameter 60

amplitude ofa around spikes may be several times larger the (3
the nominal value ofx, the trajectory ofér seems convergent

to some extent during the interval between jumps, and

still useful. This is because the trajectory of stays in a

40

small neighborhood of the nominal value at most of time, ar s0r

functions ofé@, e.g. the mean value, might indicate the Stat

of _Hea_\lth in thg long run. '!'he estimation of th_e riarametn O e a0 1090 1290 1490 1690 1890 2000
y1 is given in Figure 9. Again the parameter estimgtehas Time (sec)

spikes. It should be realized that the estimgieis not so

valuable during periods with zero input current, because thig. 10. SoC estimateSoCusing various methods

effect ofy is literally ignored by the model. If we ignore those

zero current intervals, it is not difficult to see that durithg the discontinuity of the input current. We illustrate thig b

intervals between two adjacent current jumps, thirajectory ~ considering the scenario where the input current switctues f

approaches to some value betweeBn®Ohm and 3m-Ohm. Non-zero to zero at timg. At time t;, the terminal voltage is

Overall, the estimatd is quite reasonable in the sense that(ty ) = OCV(t; ) +yiu(t; ); at the time instart;’, the terminal

the average of the estimate trajectory has a small variationvoltage isy(t;") = OCV(t;"). Since the proposed approach
The estimates of the SoC using Coulomb counting and tAgSumes the continuity of the terminal voltage, i.e.,

proposed approach are presented in Figures 10, where the red -\ _ — N by +

solid line is the SoC estimate produced by adaptive observer ylty) = 0CV(ty ) +yaulty) =y(ty) = OCV(t ),

(20) designed based on (18), and the black solid line is ti@ Sthe OCV, consequently the SoC,tathas to be discontinuous.
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