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Abstract

This paper considers real-time energy-optimal trajectory generation for a servomotor system
which performs a single-axis point-to-point positioning task for a fixed time interval. The
servomotor system is subject to acceleration and speed constraints. The trajectory generation
is formulated as a linear constrained optimal control problem (LCOCP), and the Pontryagin’s
Maximum Principle is applied to derive necessary optimality conditions. Instead of solving
multi-point boundary value problems directly, this paper proposes a novel real-time algorithm
based on two realizations: solving the LCOCP is equivalent to determine an optimal time
interval of the speed constrained arc and solve a specific acceleration constrained optimal
control problem (ACOCP); solving an ACOCP is equivalent to determine optimal switch
times of acceleration constrained arcs and solve a specific two-point boundary value problem
(TBVP). The proposed algorithm constructs sequences of time intervals, ACOCPs, switch
times, and TBVPs, such that all sequences converge to their counterparts of an optimal
solution of the LCOCP. Numerical simulation verifies that the proposed algorithm is capable
of generating energy-optimal trajectories in real-time. Experiments validate that the use
of energy-optimal trajectories as references in a servomotor system does not compromise
tracking performance but leads to considerable less energy consumption.
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Abstract—This paper considers real-time energy-optimal tra-
jectory generation for a servomotor system which performs
a single-axis point-to-point positioning task for a fixed tme
interval. The servomotor system is subject to acceleratiorand
speed constraints. The trajectory generation is formulatd as a
linear constrained optimal control problem (LCOCP), and the
Pontryagin’s Maximum Principle is applied to derive necesary
optimality conditions. Instead of solving multi-point boundary
value problems directly, this paper proposes a novel realine
algorithm based on two realizations: solving the LCOCP is
equivalent to determine an optimal time interval of the sped
constrained arc and solve a specific acceleration constradd opti-
mal control problem (ACOCP); solving an ACOCP is equivalent
to determine optimal switch times of acceleration constraied
arcs and solve a specific two-point boundary value problem
(TBVP). The proposed algorithm constructs sequences of tim
intervals, ACOCPs, switch times, and TBVPs, such that all
sequences converge to their counterparts of an optimal sdion
of the LCOCP. Numerical simulation verifies that the proposel
algorithm is capable of generating energy-optimal trajecbries in
real-time. Experiments validate that the use of energy-optal
trajectories as references in a servomotor system does not
compromise tracking performance but leads to considerabldess
energy consumption.

Index Terms—Servomotor, motion planning, trajectory gener-
ation, minimum energy, constrained optimal control, boundary
value problem.

|I. INTRODUCTION

S

ing robotic manipulators, electromechanical systems sash
milling machines, cranes, lathes. In these applications,

trajectory generation problem, i.e., the servomotor fetica
well-defined path. More specifically, the servomotor system
performs point-to-point tasks in a single axis. Solvingsthi
problem on real-time is non-trivial due to various consttsi
and severe restriction on the computation time.

For decades, intensive efforts have been devoted to the tra-
jectory generation problem, and lead to numerous results, f
instance, time optimal or approximate time optimal trajegt
[3], [9]-[12], trapezoidal speed trajectory [13], energgtimal
trajectory [14], [15], maximum payload trajectory [16].n&
optimal trajectories lead to maximal productivity, but istce
energy efficiency. Recent trends on building greener indhsst
and widespread uses of mobile devices have attracted much
attention on trajectory generation to balance produgtiaitd
energy consumption e.g. [17]-[21]. Work [19] investigatied
minimization of motor’s resistant losses using optimaltcoin
techniques. Neither the friction effect nor the mechanigaik
is taken into account. Based on an optimal control formaiati
work [20], [21] proposed real-time minimum-energy tragegt
generation algorithms for mobile robots. Neverthelesstkwo
[19]-[21] did not address speed and acceleration consdrain
A three phase trapezoidal speed trajectory has been widely
used for energy efficiency, e.g. [13]. This method is capable
of dealing with both acceleration and speed constraintd, an
is appropriate for real-time applications, albeit the Hesu
trajectory is sub-optimal. More recently, [22] used gemeti

ERVOMOTOR systems are typically used for motiorlgorithms to generate trajectories which minimize resist
control and have a wide range of applications includosses of a motor-toggle servomechanism performing pwsiti

to-position tasks. This method is capable of addressingwsr
cgnstraints, but is not intended for real-time application

servomotor system performing a point-to-point positignin  This paper aims to develop real-time energy-optimal trajec
task prompts several problems: path planning and trajgctd®y generation algorithms for a servomotor system suliect

generation [1]-[3], tracking control [4], motor control][{§7]
and steady state optimization [8] etc. This paper focusd¢b@®n
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physical constraints. Main challenges come form the demand
ing computation time target and physical constraints. Thénm
contributions of this paper are as follows: first, a realdim
algorithm is proposed for energy-optimal trajectory getien;
second, the convergence of the proposed algorithm is estab-

dI'ished; finally, experiments are performed to verify thergge

saving advantage of using energy-optimal trajectories in a
servomotor system. The proposed algorithm can be readily im
plemented in motion controllers for real-time energy-oyati
trajectory generation. The rest of this paper is organized a
follows. Problem formulation is provided in Section Il. $iea

IIl presents algorithms for real-time computation of energ
optimal trajectories. Numerical results are given in Sgtti
IV to validate the proposed algorithm and its computational
efficiency. Experimental results in Section V demonstrate t
energy-saving benefits of using energy-optimal trajeesonmn
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a servomotor system. Section VI concludes this paper. Value Problems (MBVPs). Work [15] generalizes the conven-
tional PMP to deal with switching cost functions, and solves
[l. PROBLEM STATEMENT the resultant nonlinear constrained optimal control probl

For a Servomotor svstem performing boint-to-point positio by reducing NOCs to MBVPs. Interested readers are referred
y b ap P P to [15] and references therein for details. Generic sol¥ers

ing tasks in a single axis, its simplified dynamics are given l:iVIBVPs admit large scale nonlinear programming problems

Ji(t) = —dov(t) — cosgn(v) + Ku(t), (NLPs) thus have difficulty in meeting the computation time
) - ) target for real-time applications. Another disadvantade o
wherez is the angular position of the servomotor= i is the  esorting to an NLP formulation is lack of convergence ressul
angular speed, is the control current/ is the lumped inertia oyr main goal is to alleviate these limitations and develop
of the servomotor and an inertia load,is the amplitude of the gjiaple as well as computationally efficient algorithms fo
Coulomb friction force,dy is the viscous friction coefficient, solving Problem 1 in real-time.

and K is the torque constant. Note that in this paper the Remark 2.3:For every positioning task, there might exist
coulomb friction force is simply modeled as:cosgr(v) for = gp optimalt’ giving the best energy efficiency. The optimal

v # 0, otherwise zero. Also, since the servomotor always can be obtained by solving Problem 1 with the free final
rotates in one direction for each specific positioning tas me cost functionf — fgf P(u(t), u(t))dt.

without loss of generality, we consider > 0 and have
the Coulomb friction force given by-c¢y. For notational i
convenience, letl = dy/J, ¢ = ¢o/J andb = K,/J. The A. Existence, Arcs and Smoothness

servomotor system dynamics are rewritten as The analysis of existence, NOCs, and structures of optimal
Lo solutions in [15] is also applicable to Problem 1. One can
&(t) = v(t), (1) conclude that Problem 1 has an optimal solution, and apply
0(t) = —dv(t) — ¢ + bu(?). the PMP and its extensions to derive NOCs. Interested rsader
The servomotor system is subject to the following speed aAf referred to [15] for details. Define a speed constrained a
acceleration constraints: as a segment of an optimal trajectory, whexe) = viyax
i.e., the speed constraint is active. Similarly, the atitiva
0 < v < Vmax, (2a) of constraintst < Apn.x and v > An, corresponds to
Amin < —dv — ¢+ bu < Apmax, (2b) acceleration and deceleration constrained arcs, resphcti

From NOCs of Problem 1, one knows that optimal trajectories
Where vmax, Amin < 0, and Amax > 0 are constants. The of problem 1 may contain as many as four types of arcs: the
cost functional, representing the energy consumption ®f (hcceleration constrained arc, the deceleration constiaanc,

captures the copper loss and mechanical work, i.e., the speed constrained arc, and the unconstrained arc.
ty The connection points between neighboring arcs are called
E= / (Ru? + Kyvu)dt, (3) junction points A corner points(or simply corner§ appears
0 when the control is discontinuous. For Problem 1, because th
where R is the motor resistance, ard is the final time. Hamiltonian is strictly convex with respect to the contitble
Remark 2.1:Equation (3) is a simplification of [15, Eqn. gptimal control is continuous along an optimal trajecta®y,[
(3)]. While the servomotor system deceleraté¥z,u) = Pprop. 4.3]. That is: an optimal trajectory does not contaiyp a

Ru® + Kyu could be negative, i.e., mechanical work igorner point, or the optimal speed trajectory for Problem 1
converted into electricity. Taking (3) as a cost functionam® s ¢!, The continuous differentiability of the optimal speed
that the regenerated electricity during decelerationdggaied. trajectory is essential to design computationally effitigo-

The energy-optimal trajectory generation problem is formyithms for energy-optimal trajectory generation.
lated as follows.

Problem 1:Given the servomotor system (1), constraints (2), 1. OPTIMAL SOLUTIONS AND ALGORITHMS
the initial statg(0, 0), the final statéz s, 0)”, and the final time

¢, find (2", v*, u*) which minimize the cost function (3), i.e., _ - nough the same approach in [15], [25] is followed to

'solve Problem 1, this paper proposes a real-time algorithm

) ty which comprises the following key steps
e E= o P(u(t), u(t))dt « define a linear unconstrained optimal control problem
subject to (1) and (2) (LUOCP), and find the optimal solution of each LUOCP
_ _ _ _ by solving the associated Two-point Boundary Value
0) =v(0) =v(ty) =0, x(tf) = zs. (4
2(0) = v(0) = vity) =0, a(ty) = ;. (4) Problem (TBVP);
Without loss of generality, we assume thgt > 0. « define an acceleration constrained optimal control prob-

Remark 2.2:Problem 1 is a linear constrained optimal lem (ACOCP), and construct sequences of switch times
control problem (LCOCP), and can be solved using numerical and LUOCPSs to solve the ACOCP;
optimization methods [23]. Alternative approaches inelud « construct sequences of time intervals of speed constrained
applying the Pontryagin’s Maximum Principle (PMP) and its  arcs and ACOCPs to solve Problem 1;
variants, e.g. [24], to derive necessary optimality cdodg « construct an optimal solution of Problem 1 from optimal
(NOCs), which are further reduced to Multi-point Boundary  solutions of LUOCPs and constrained arcs.
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The op_timal cont_rolu is uniquely determined because of the

convexity of H with respect tou. The NOCs of Problem 2
Analytic Solver consist of (1), (5), (6), and the BC (4). Substituting (6)oint
(Unconstrained) (1) and (5) yields a linear TBVP

() -
2
(d+ %) V= ) -

Acceleration
constraint violated 2R
No
Speed constraint
violated
No

Optimal
Solution

DK, ()

. K2
ult) = 500+ (a4 52 ) 20 = v
z(0) =0, z(t;) =z, v(0) =0, v(ty) =0.

where X\;, A,(0) and A,(t;) are unknown. DenoteX =
(z,v,\,)T. Differential equations in (7) can be written as

X = AX + B, (8)
Fig. 1. The flow chart of the proposed algorithm.
where
0 1 0 0
Fig. 1 illustrates the flow chart of the proposed algorithm, A=10 A Ay |, B=| —c|,
0 Az -4 -

where BC stands for boundary conditions. The analytical
solver block computes the optimal solution of an LUOCP. At . bK, b2 K2 .
each iteration of the inner loop, a new LUOCP is CONStructet with A, = —(d + 55 ), A> = QR’ A = 3 The analytic
with different BC, which is updated by examining the opti- jSolution to (8) is g|ven by

mal solution of the current LUOCP against the acceleration X(t) = M(t,t9) X (to) + G(t, to)B, 9)
constraints (2b). At each iteration of the outer loop, a new

ACOCP is constructed with different BC, which is updated bythere M (t,ty) = eA(t=%) and G(t,ty) = [. e*(t~") Bdr.
examining the optimal solution of the current ACOCP again§tonsidering (9), the BC takes the following linear expressi

the velocity constraints (2a). X(tf) = M(t;,0)X(0) + Glts,0)B. (10)

A. Solve Linear Unconstrained Optimal Control Problems Where three unknowns, (0), A, (¢f), and A, can be solved.
Thi i ¢ d | th vtical solof The optimal solution to the TBVP (8) and the optimal control
is section presents and analyzes the analytical solofion,, | ¢ getermined from (9) and (6), respectively.

the LUGCP as follows. The following two propositions characterize importantgpro

Problem 2: Given the servomotor system (1), the initial
T erties of the energy-optimal speed trajectory for Problem 2
state(0,0), the final statd(z, 0)*, and the final time, find Proposition 3.1:Let (z,v, Az, Ay) and(z, 7, Az, A, ) be two
(z*,v*,u*) which minimize the cost function (3), i.e.,

optimal solutions of Problem 2 with different BC and/or final

time ¢;. If v andv are not identical and defing(t) = v(t) —
mln E= / ))dt i(t), then
subject to (1) and (4) 1) the equatiorx(¢) = 0 has at most two roots;

2) if S = {t|z(t) = 0} is non-empty, equatio(t) = 0
Without loss of generality, the LUOCP takes the same BC )i {tl=(¢) b Pty equation(t)

] has at most one root.
as Problem 1. When applying the PMP to solve Problem 2, Proof- 1). Without | f litv. let. — 0 b
we first derive NOCs, then construct and solve the TBVP]c rc?(.) t)ﬁ It gut_qszo Fgenerz; 1y, % o esroot
corresponding to the NOCs. Define the Hamiltonian of 2(t) = 0, thenw(0) = 5(0). From (9),v(¢) is given by

H(.I(t), ’U(t), )\m (t), /\u (t), u(t)) _ ’U(t) :M21(t)26(0) =+ MQ_’Q(t)'U(O) =+ MQﬂg(t))\v(O)
Ru2(t) + Kw(t)u(t) + Ao (£)0(t) + Mo (£)(bult) — du(t) — o), — ¢G22(t) — G (t),

where M; ; and G;; are the elements in théM-row, and

where the co-stata, and A, have dynamics h . . -
j"-column of matricesM and G, respectively. Specifically,

A (t) = _oHd -0 (5a) M4 (t) = 0, and the above equation can be simplified to
X 8:1:‘ )
) = =2 ) - Ky~ 2. gy T MO OMOF Gzl A Caal. G

Similarly, we have
According to (5a),\,(t) is constant. The optimal contraf*

shall satisfy the first-order optimality conditiah /du — 0,  (t)=Ma,2()3(0HMz 3(1) A, (0)-cGa2(t)-AeGoa(1). (12)
and be taken the following expression Subtracting (11) from (12) gives

u(t) =~ 5u(0) — gAu(t) ©  2(0)= Maa(®)((0) = M(0)) (e — Ar)Gaa 0
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= My 3(t) ANy, — AN G2 3(2). is proportional tov, it suffices to prove that’ is a strictly
monotone function.
If v'(71) > 0 andv’(12) < 0, then we must have;c; < 0,
Ma 3(T) ANy, — AN, G2 3(T) = 0, otherwise,w'(7) is either always positive or always negative,
] o . ‘which leads to a contradiction. Now consider the second
which can be further simplified according to the analytigerivative of v V(1) = ci1e” — cae~". Note thatv”(7) is

Let 7 # 0 be a non-zero root of(¢) = 0, thenT must satisfy

expressions of\/(¢) and G(t): continuous. Becausg ¢, < 0, we must have either’(r) > 0
245 for any 7 € R whene¢; > 0, or thatv”(7) < 0 for any
Ay, = AXy <A—2p> tanh (p7/4), (13) 7 € R whene; < 0, which implies that'(r) > 0 is either
a strictly monotonically increasing function when > 0 or
wherep = 2 A% + Ay As. ~ a strictly monotonically decreasing function whep < 0.
If A\x = X2y AN, = 0, then (13) holds only ifA,(0) = Similar conclusion holds when'(7;) < 0 andv/(72) > 0.
A (0), which further implies thati(t) = v(t) for anyt ac- Therefore, the proof is complete. [ ]
cording to (11) and (12)—a contradiction. Therefoxg,# A, Remark 3.3:Proposition 3.2 means that given an optimal
AX; # 0, and (13) can be written as solution of Problem Zz*, v*, u*), the largest acceleration and
Ay, _ 243 tanh (pr/4) 14 decelerationy*(t) appear at = 0 andt¢ = t, respectively.
A/\z A2p

Since the left hand side (LHS) of (14) is a constant, and tf Solve Acceleration Constrained Optimal Control Prokdem

right hand side (RHS) is a strictly monotonically incre@sin \we are ready to solve the following ACOCP.

function, (14) has at most one solution. Heneg;) has at  proplem 3:Given the servomotor system (1) subject to the

most one root other than= 0. The proof of 1) is completed. gcceleration constraints (2b), the initial stéte0), the final
2). By differentiating (11) and (12) with respect toand state (x,0)7, and the final timet, find (z*, v*, u*) which

subtracting one from the other, we obtain minimize the cost function (3), i.e.
. o 2A)\1A2 i ty
2(t) = ANy, Az cosh(pt/2) + — sinh(pt/2) m&n Eo /O Plo(t), u(t))dt
2AN A Ay, .
= # cosh(pt/2) (Z;A/E\ + tanh(pt/2)). subject to (1), (2b), and (4)

Remark 3.4:The ACOCP is different from Problem 2
by including acceleration constraints (2b). Work [15, Sec.
4] provides a complete analysis of possible structures of
optimal solutions for Problem 1. It is not difficult to condi
. . . ) that an optimal solution for Problem 3 in general exhibits

1 t.herg eX|sit1.,t2 e SUCh.thatU(t?)v(tz) <0 a three-phase structure: an acceleration constrainednarc i

2) o(t) is a strl_ctly monotonic fL.mCtIOI’].. _ the first phase, followed by an unconstrained arc, finally a
~ Proof: 1). It is clear thatv(t) is continuously differen- geceleration constrained arc in the third phase. The three-
tiable over[0,¢]. To ensurer; > 0, it is necessary to have phase structure is illustrated by Fig. 2, where three phases
Tl_such thatv(77) > 0. Considering the facty = 0, there e defined ovefto, t1], [t1, ta], [t2, L], respectively. Such a
existst, € [0,73] such thato(t,) > 0. On the other hand, {hree-phase structure is also inferred from Remark 3.3.
the factsv; = 0 and v(Ty) > 0 implies the existence of  an gptimal solution of the ACOCP may not contain the first
ta € [Th,ts] such thati(t) < 0. The proof of 1) is complete. 4nq/or the third phase, depending on problem data including

Sincecosh(pt/2) > 1, andtanh(pt/2) is strictly monotonic,
2(t) = 0 has at most one solution. 2) is proven.

Proposition 3.2:Let (x, v, A, A,) be the optimal solution
of Problem 2. The following facts hold

2). From (8), we have Apax and Ay, model parameters, initial and final states, and
(1) = Ayu(t) + Asdy (t) — c. (15 the final timet;. We _however f_ocus on the general case a_nd
S o assume that the optimal solution has all three phases. Given
Eliminatingv(#) from the RHS of (15) by considering (9) andt; andt,, the optimal solution in the first and third phases can
the expressions o/ (t,t,) andG(t, o), we have be determined explicitly as follows
0(t) =(A2Ay, — ¢ + A1vg) cosh(pt/2) 0i(t) = Amaxt, t € [0,8], (16a)
2(voA3 — cAy — Ag), + A2A inh(pt/2)/p.
+ (UO 1 CAp 2 + Ao 31)0) SIn. (p / )/p xl(t) _ %AmaxtQH te [O,tl], (16b)
Let 7 = pt/2. Noticing thatsinh(r) = (e” — e~ 7)/2 and B
cosh(t) = (e + e~7)/2, there exist constants;, c; € R vr(t) = Ami“(i —tp), tEftatyl, (16c)
such thato(t) can be rewritten as 2, (t) = x5 + §Amin(t — )2, tE[tats]: (16d)

/ T —T
= + 5 . H 1 1
v'(1) = c1e” + cpe Denoting X,, = (Zum, Vm,um)? the optimal solution in the

wherev’ denotes the derivative efwith respect tor. Besides, second phase defined over, ¢2], we have
with 71 = pt1/2 and 7o = pt3/2, we havev'(r)v' (1) <

0. Without loss of generality, assume that < 7. Sincev’ X (t) = M(t,t1) Xom (1) + G(t, 1) B. (17)
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Algorithm 1 Algorithm for Problem 3
1. e < 1, k < 1, and choose a small tolerance parameter
Um ekl
2: tg, <=0, tp, =ty
3: while e > ¢ do

acceleration constraints

v or 4. solve the unconstrained problem with B&(¢,,) =
vtay), Tu(tay) = wiltay), ve(te,) = vr(te,),
0 th t; 1 z(ty,) = x.(tp,), and denote the solution as
. . . o _ _ (zh, vk, ur) T
Fig. 2. Optimal speed trajectory with active acceleratiomstraints. 5: if 'Dk(tak) > Apax then
6: solvevi (1) = Amax for o,
Since no constraint is active in the second phase, the opt|7—: fapsr =70
. ) . 8. else
mal solution X, (t) over [t1,t2] can be obtained by solving o : Jp
Problem 2 with the following BC: ‘ Gkl @k
10 end if
Tm(t1) = z1(t1), vm(t1) = vi(t1), (18) 11 if O (ts, ) < Amin then
xm(t2) = fEr(tQ), 'Um(t2) = UT(tQ)- 12: solve vy, (TT) = A for 7,

We use the term ATBVP to represent the TBVP defined bi/i elstgkﬂ =T
(1), (5), (6), and the BC (18). 1 b et
Remark 3.5The definition of the ATBVP is contingenton .. ond'if "
switch timest; andt,. This is because the BC (18) has explicitﬂ: kekal
dependence ofy andt,. As shown in [15], switch times can e <= |ta, — tar_ | + [ton — tor_,|

be determined from switch conditions which are part of NOC g: end while
For Problem 3, the optimal control is continuous, and switczb'

- . ) =ty =T
conditions are given by.(tf) = u(t;) andu(ty) = ulty), ;. réturnak:z:* 20* ;f Where
or equivalently ' o

xy(t), 0<t<ty,
u(ty) = om (), Om(ty) =0:(83). (19) 2 (t) = a(t), t1<t<ts
Clearly, the ACOCP is reduced to find and ¢, satisfying zr(t), ta <t <ty
switch conditions (19), and solve the resultant ATBVP. v(t), 0<t<ty,
Remark 3.6:An MBVP formulation for the ACOCP con- vi(t) = ¢ wuk(t), ti <t <ty
tains a total of thirteen equations—seven algebraic eopgmti ve(t), ta <t <ty,
(16)-(17), four BCs (18), two switch conditions (19)-and Apax +dvog(t) +¢) /b, 0<t<ty,
thirteen unknownst(, ta, Tm(t1), Tm(t2), vm(t1), vm(t2), u (t) =< up(t), ty <t <to,
(1), Au(te), zi(t1), vi(t1), @ (t2), vr(t2), Az). Hence, the (Amin + dve(t) +¢)/b, ta <t <ty,

MBVP is solvable. On the other hand, the MBVP is nonlinear
thus difficult to solve efficiently, because (16b) and (16d)
are nonlinear, and switch times and ¢, enter nonlinearly
into (17) throughM (t2 — t1) and G(t2 — t1) terms, and are
multiplied by other unknowns. We focus on algorithms to solv
the MBVP efficiently and reliably.

We propose Algorithm 1 to solve the ACOCP by identifying
optimal switch timest;, t.. Once the optimal switch times
t; and ¢, are obtained, the optimal solution of Problem 3
can be computed by combining (16) and the solution of o &,

the ATBVP. Algorithm 1 conducts the following steps in an
iterative manner Fig. 3. Update scheme of switch times.

1) given switch times(¢,t2), constructs an ATBVP de-

fined by (1), (5), (6), and the BC (18); Theorem 3.7The sequencef,, } and{t,, } as updated in

2) solves the optimal solution of the ATBVP; _Algorithm 1 converge monotonically to optimal switch times
3) updates the switch timés, , t2) according to the optimal #r andt3, respectively, a& — oo.

solution and switch conditions.
Fig. 3 briefly illustrates the construction of sequenceg;of
andt, at thekth iteration of Algorithm 1. More details can C- Solve Problem 1
be found in Algorithm 1. The convergence of Algorithm 1 is Earlier work [15] has shown that an optimal solution of
established by the following theorem. The proof of Theorefroblem 1 may contain as many as five phases and the
3.7 is given in Appendix. structure is as follows: an acceleration constrained arthén

Uk+1

te, ta,  ty,., t

b
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Umax  /

Algorithm 2 Algorithm for Problem 1
1.i< 1,6 < 0,n < 1, and choose a small tolerance
parameted < ¢ < 1
2: while |;| > ¢ do
3. apply Algorithm 1 to solve the acceleration constrained
problem on intervall0,¢; — J;] with BC v(0) = 0,
z(0) =0, v(ty — ) =0, z(ty — 6;) = Tf — Umax0i.

ty tp t

Denote the solution byz;, v;, u;).

Fig. 4. Optimal speed trajectory with speed constraint. 4. solve vi(tsi) =0 for bs;
5 1 < v(ts;) — Umax
6: if i=1 then
first phase, an unconstrained arc in the second phase, aih spee if n; <0 then
constrained arc in the third phase, another unconstraimed a g: N <=0
the forth phase, and an deceleration constrained arc infthe fi o: else

phase. We consider the general case, i.e., an optimal @oluti g
consists of all five phases. Given the structure of an optimag{.
solution, one can always formulate an MBVP and turn tg,.
NLP solvers. Solving the MBVP corresponding to Problem 3.
directly is more challenging than the ACOCP case due tg,.
increased number of variables. Further analysis of strastof
optimal solutions for Problems 3 and 1 enables us to recegnigg.
that the key to solving Problem 1 is to determine the timey.
interval when the speed constraint is active. In this sactiog.
we propose Algorithm 2 to deal with the speed constraini,
i.e., determine the time interval of the speed constraint ar
Algorithm 2 relies on a partial equivalence between an ogitim
solution to Problem 1 and an optimal solution to a particul

VUmax

(SL <=0, 6U <~ Aw = vi’;x
Siv1 < 5(6L + dv)

end if
else
if 7; <0 then
15: oy < 6;
else
(SL <~ 51
end if o
Oit1 <= 0; — (% Ni

if 5i+1 > 0y or 5i+1 < 6r, then
Siv1=3(0L + dv)

ACOCP, which can be solved using Algorithm 1. The parti 3j enzni? it
equivalence is established by Theorem 3.8, the proof ofhvhi%4j ieitl

is given in Appendix.

Theorem 3.8:Let (z*,v*,u*) be the optimal solution to
Problem 1 with final position:; and final timet;. Suppose
the speed constraint < v,,,« is active on the intervaks, ¢3],
wheret; andt} are the optimal switch times at whiefi enters

27:

25: end while
26 ts = ts,_,, AF < 0;

(5:*7{)*711*) <: (I’ /U, u)

28: return z*, v*, u*, where

Umax

2*’4min - 2Amax

and exits the speed constrained arc. Nt= ¢} — ¢3, and let (1), 0<t<t,
(i*,9*,4*) be the optimal solution to Problem 1 without the ~ #"(t) = ¢ Z*(ts) + vmax(t — ts), ts <t <ts+ A,
speed constraint and with the final positiop — A v,.x and TH(t = AF) + vmax A}, ts + A7 <t <y,
the final timet; — A}, then(z*,v*,u*) and (z*,0*,a*) are *(t), 0<t<t,,
related by v*(t) = Umax, te <t <ts+ AL,

z*(t) = T*(t) 0t — AY), te+AF <t <ty,

v (t) = *(t) , tel0,ty], (20) a*(t), 0<t<t,

u*(t) = a*(t) u*(t) =< (dvmax +¢)/b, t1 <t <ta,

w*(t) = T (t = A7) + Afvmax ur(t—Af),  ta <t <ty

v (t) = 0% (t — A)) et (21)

u*(t) = a*(t — A))

Algorithm 2 is essentially a bisection algorithm combineéithms 1-2 are implemented in Mat'\ln®. and tested on a
with the Newton's update to find the root to the equatiodesktop computer with an Intg) Core’'2 2.4GHz processor.
n(8) = 0. The Newton’s update can improve the convergenéddorithm 2, with Algorithm 1 embedded, is used to compute

rate when the current update is close to the roo§(@) = 0.

energy-optimal trajectories for 64 positioning tasks veher

We have the following theorem about the convergence f:!f, Amax; Amin, do, co, J are different.
Algorithm 2. The proof of Theorem 3.9 is given in Appendix.
Theorem 3.9Algorithm 2 converges to an optimal solutionA. Computation Speed

of Problem 1.

IV. VALIDATION OF ALGORITHMS

For Algorithm 2, among all test cases, the shortest compu-
tation time for a single task is 3.1msec, which corresponds t
solving the LUOCP; the longest computation time is 33.7msec

The computation speed of Algorithm 2 and its capabilitfor a task involving active acceleration and speed comgBai
to deal with constraints are evaluated in this section. Algthe average computation time of all 64 cases is 6.9msec. One



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 7

Zr ._.tot‘“’M T ‘,...m"""‘-‘“ -
h e E pees i ‘ S e
) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ) 0.01 0.02 0.03 0.04 0.05 0.06 0.07
i““ --- oo e - - . 1 2200 ) o perrrmm e ™ ‘“";":‘;“\
? o ‘H“"':‘\ 1 —§ 1001 - - \
= sor & B = “‘ .
0.01 0.02 0.03 0.04 0.05 0.06 0.07 O‘DS.\Q\;OQ Dé)l 0.02 0.03 0.04 0.05 0.06 0.07
= 5:’:‘:‘;-«‘ ‘ ‘ f~ 5 "“".;:‘ ;' R
N R R L T 4 g, fmmmmeE ""“"?..ZN;
< T — < T,
0 0.01 0.02 0.03 OQA; (sec; 05 0.06 0.07 0.08 0.09 0 0.01 0.02 003( (sec> 0.04 0.05 0.06 0.07
Fig. 5. Trajectoriegx, v, u) for task #1. Fig. 6. Trajectoriegx, v, u) for task #2.
60 T T
can argue that Algorithm 2 is suitable for real-time energy- g e
optimal trajectory generation. As a comparison, Problem 1 = U
is also solved via numerical optimization methods inclgdin e obi ot ow o1 o oW ok o
the mesh refinement method in [26]. Numerical optimization- e ‘

based algorithms typically take 2.5-4.8sec to solve a singl
task with acceptable accuracy. For all cases, Algorithm@ an
various numerical optimization algorithms produce the sam T
energy-optimal trajectories. This confirms that Algoritiim — A
indeed solves Problem 1. For illustration purposes, Fig&re '
7 give trajectories generated by using different methodsfo S

test cases. Particularly, the green solid and the blue sprer S T
sent energy-optimal trajectories computed using Algarith

and the mesh refinement method, respectively. The red d&&h’- Trajectories(z, v, u) for task #3.

depicts trajectories generated by the trapezoidal methie.

main -ad\(antage of Algor|.thrn 2, as compar_ed to numer'cé’l‘&ceIeration constrained arc, unconstrained arc, speed co
optimization approaches, is its low computational burden.

strained arc, another unconstrained arc, and deceleradion
strained arc.

v (rad/sec

w(Amp)
o
I
4

/

| ]
.

B. Satisfaction of Constraints
It is not difficult to verify Algorithm 2 produces traject@s V. EXPERIMENTAL VALIDATION

satisfying all constraints for all cases. Figures 5-7 pmese Experiments are conducted to compare energy consump-

trapezoidal and energy-optimal trajectories for threemgde tions of the following two systems: the energy-optimal syst

tasks. To simplify the presentation, let the final time bghich uses energy-optimal trajectories as referencesttand

parameterized by; = Ty(1 + o), whereT; is constant and conventional system which uses trapezoidal speed traiesto

a is a relaxation factor. The three example tasks share t4¢ references. Experimental results verify that the erergy

following problem data optimal system achieves comparable tracking performante b
A = 13260rad /sec?,  Apin = —13260rad /sec?, consumes less energy than the conventional system.

Vinax = 314.16rad/sec, J = 7.2 x 10~ °kgm?,
R =5.060hm, K, =0.2723Nm/A,
co =6.37x 107N, dy = 1.01 x 10~ 3Nsec/m,

A. The Testbed

The testbed comprises a Mitsubishi Electric's AC servomo-
tor HF-MP43K with a flexible inertia load, an amplifier MR-

and have the following different problem data J3-40A1, dSPACE) ACE Kit 1104, and Matlab/Simulin®).

The testbed is illustrated by Fig. 8 where the black solid and
task #1:To = 0.0592sec, xy =11.2rad, a=0.5, the red dash represent signal and power flows, respectively.
task #2:Tp = 0.0592sec, =z =11.2rad, o =0.1, The input signal of the testbed is the position trajectetyt)
task #3:Ty = 0.166sec, z; = 44.7rad, a = 0.05. which is generated offline using either Algorithm 2 or the

trapezoidal method according to a positioning task data Th
Optimal trajectories shown in Figures 5-7 exhibit differerposition trajectoryz*(¢) is fed through a low pass filter to
structures. For task #1, the energy-optimal trajectoryetyer eliminate high frequency components and produce the refer-
consists of an unconstrained arc. For task #2, the energyce position, speed and acceleration trajectories detmte
optimal trajectory does not have speed constrained args. kg, v, anda,, respectively; the tracking controller produces
task #3, the energy-optimal trajectory contains five phaséke torque reference,.(t), linearly proportional to current,
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filter H‘ontmllu Amplifie v Motor > =

I

— x, (ra

%y 0.05F _
1 - —— Trapezoidal
1’7 Energy-optimal

Fig. 8. Architecture of the testbed.

based on the references, v,., a,, and the measured position
signalz; the amplifier MR-J3-40A1 runs in the torque control

'
@

v* — v, (rad/sec)

Trapezoidal
Energy-optimal

mode and drives the servomotor by generating three-phase b e sor eos e o1 om om om om0

t(sec)

voltagesV,, V;,, V.. according tou,.(t). The amplifier acts as

the power supply of itself and the motor, and the torqueg. 9. Difference betweelw*,v*) and (zr, vr), task #3.

controller. Since the amplifier runs in the torque controdeo

the testbed including the amplifier and the motor is consiste

with the model (1). The tracking controller consists of a feed-forwarg; and
The dSPACE executes the data acquisition and real-tiaefeedbackuy,. The uys is based on the dynamics (1) and

tracking control tasks. For data acquisition, the dSPACEKes the following form

collects three signals: the motor positian the voltageV

and current/. The motor position is sensed by the encoder upp = 1 (kfaa, + kpadv, + kfec), (22)

and the measured signal enters the dSPACE through the b

Digital Incremental Encoder Interface (DIEI); the voltaget)  wherek,, k4, k. are constants. They, is a PD control and

and currentl(t) are measured by Fluke DP120 and Flukgjyen py

i30s, respectively. Botl/ and I are fed into the dSPACE

through Analog Input (Al) ports. The control signal drives ufp = ko (zr = 2) + ko (v, = v), (23)

the amplifier through an Analog Output (AO) port. While ) ) )

performing a real-time positioning task, the dSPACE Opﬂ‘atWher_ek””’ kv_ are constant, and is the speed signal obtained

at a sampling frequency of 10kHz, i.e., all DIEVAI/AO sigaa oY differentiatingz. All constantskya, kya, ke, kz, and k, -

are sampled every 100s. Note that the position signal to are o_btamed by trial and error to achieve satisfactorytjposi

the DIEI is relayed by the amplifier; the interface betweefiacking performance.

the amplifier and the DIEI is compatible because the DIEI

expects its inputs from incremental encoders, and the &empli )

only outputs incremental encoder signals in the torquerobntC- Experimental Results

mode. The amplifigr runs in the setting that the resolution of Experiment is performed to validate that the energy-opitima

the relayed signat is 12500 pulses per revolution. system can achieve comparable position tracking perfocsan
as the trapezoidal system but consume less energy. During

B. The Low Pass Filter and Tracking Controller the validation, both the energy-optimal and trapezoidat sy

) ) ) o tems complete 18 positioning tasks parameterizedayy o)
A third order low pass filter, smoothing(t), is given by i vy € F = {1.86,11.2,447}, and o € T =

£ =&, {0.05,0.1,0.2,0.3,0.4,0.5}. Since all tasks lead to similar

i qualitative conclusion, we take the positioning task #3 s a
2 = &3, example and look into detailed experimental results. Task #
€3 = —A3& — 30265 — 3N + NP2 (1), has been used in Section IV to verify the proposed algorithm,

and the corresponding trajectory generation results aye/rsh
in Fig. 7. In lining up with experiment, concise simulation
where¢ = (&1,62,&)T, y = (2, v, a,)T, and\ = 5000. The is conducted for verification. Simulation diagram is given
low pass filter implicitly imposes jerk constraints on refece in Fig. 10, where the tracking control is given by (22)-
trajectories which are easier to track. Since all poles ef tlj23), the motor model is given by (1), andis to mimic
low pass filter, located at-5000, are much larger than thethe measurement noise. The simulation diagram is slightly
bandwidth of the servomotor systert3(rad/sec), the phase different from Fig. 8 since the low pass filter and the amplifie
shift of the reference trajectory introduced by the low paddocks are not simulated. Parameters of the tracking ctheitro
filter is negligible. Fig. 9 shows differences between igpartd take different values during simulation and experimente B
outputs of the low pass filter for task #3 for both the energyhe perfect modeling assumption, almost perfect positiwh a
optimal and trapezoidal cases. The amplitudeof x,. is less velocity tracking performance is achieved during simolai
than0.25rad, or 0.56% of =y — thus negligible. The amplitude That is: position and velocity tracking errors are almosbze
of v* — v, is relatively large, which is not critical since theHereinafter, reference trajectories are thus omitted inrég
position tracking performance is of interest. to avoid redundance.

y=¢,
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Fig. 10. Simulation diagram of the testbed.
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Fig. 13. Speed tracking errors for task #3.
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w
&

z, —x (rad)
s 8
2 8 o
- - 3
/
N
X
.
'
1
'
'
:
i
'
'
'
1
'
'
'
'
i
1
:
SO
"
\
¥
1/
Y

. . . . . . . . .
002 004 006 008 01 012 014 016 018 02
t (sec)

Energy saving (%)
8

Fig. 11. Position trajectories for task #3. a
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Fig. 14. Energy efficiency.

in Fig. 14, where the horizontal axis is the relaxation factp

v (rad/sec)

Trapezoidal: experiment
= = =Energy-optimal: simulation
- - =Energy-optimal: experiment

and the vertical axis denotes energy saving percentages of

the energy-optimal system versus the trapezoidal case. As
shown in Fig. 14, the energy-saving percentages vary case by
case. For all 18 cases, the energy-optimal system consumes
16.2% less energy than the conventional system. The energy
saving percentage in experiment are however slightly @t th

1) Position Tracking Performancefig. 11 gives the sim- predicted by simulation. The discrepancy is due to factors
ulation and experimental position trajectories for task #®cluding uncertainties of the system and energy consumpti
According to Fig. 11, the energy-optimal and trapezoidahodels. Although the energy efficiency varies case by case,
position trajectories are distinct from each other but thexperimental results however corroborate consistendy tte
difference is not remarkable. Given the referengeand the energy-optimal system achieves similar tracking perforcea
position trajectories from simulation and experimentg,. Bil but consumes less energy than the conventional system.
also shows the position tracking errors for the trapezcadal  4) Design Tradeoff:For positioning systems, the tracking
the energy-optimal cases. Since experimental positiakilng accuracy of the final position is crucial. The position tiagk
errors for both cases are withinl5rad, both systems have error during transient is also important to ensure certaipp
similar position tracking performance. erties, for instance satisfaction of all constraints, mpfity,

2) Velocity Tracking Performancefig. 12 shows the speedetc. The tracking performance of the testbed system is influ-
trajectoriesv for task #3, where, for simplicityp are ob- enced by references, measurement noises, motor dynamics,
tained by differentiatingz. More elegant solutions to infer the tracking controller, etc. There exists a well-knownigles
unmeasured states from measured outputs in practice megleoff between fast tracking and robustness to measmteme
available e.g. Kalman filters and Luenberger observersign Fnoises. In experiments, we weight the tracking performance
12, the energy-optimal and trapezoidal speed traject@ries more than robustness, which necessarily results in relgtiv
remarkably different from each other, andor both cases can large PD gains. Accordingly, the resultant testbed is yikel
roughly track their individual reference.. Fig. 13 plots the sensitive to measurement noises.
speed tracking errors. Both the energy-optimal and tragako 5) Harmonics inv: Although harmonics analysis can be
systems yield similar speed tracking errd28rad/sec. carried out systematically, we merely give brief discussio

3) Energy Efficiencyfor each positioning task, the energyn the large harmonics in, which are given by Figures 12-
consumptions of the entire testbed for both the energyw@dti 13. This is because first, the presence of harmonics does not
and trapezoidal cases are compute@dy = fot V(r)I(r)dr, affect conclusions, and second, the harmonics analysistis n
wheret is the time when the testbed settles. For task #3, expére main focus of this paper. To find out the factors inducing
iment shows that the energy-optimal system consume2% large harmonics in the speed we examine the experimental
less energy than the trapezoidal case. For all 18 positionispeed tracking error as shown in Fig. 15 where the solid black
tasks, energy consumption comparison results are sumedariand blue lines represent the signals obtained by feeding the

0 002 004 006 008 01 012 014 016 018 02
t (sec)

Fig. 12. Speed trajectories for task #3.
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Fig. 17. Speed tracking errors for task #3, trapezoidal .case

Fig. 15. Speed tracking errors for task #3.

——— to the large harmonics in speed trajectories. It is undedsto
10 ‘ — ‘ ‘ that the large harmonics can be presumably suppressed by
] choosing a lower sample frequency, for instarié€hz, in-
creasing the encoder resolution, and designing sophistica
ST, ' | speed estimators instead of a differentiator to obtaietc.

Y u ~—~prefiltored
! ) . ——filtered

10 L
0.0835 0.084 0.0845 0.085 0.0855 0.086 0.0865

Energy-optimal V I . C ONCLUSION

v, — v (rad/sec)

s ] This paper proposed computationally efficient algorithms
to generate energy-optimal trajectories for a servomoger s
M tem subject to acceleration and speed constraints. Instead
‘ ‘ ‘ ‘ solving the MBVP directly, the linear constrained optimal
' ' tlseo) ' control problem (LCOCP) was transformed to determine the
optimal time interval of the speed constrained arc by solv-
ing a sequence of acceleration constrained optimal control
problems (ACOCPs). Each ACOCP is parameterized by a
speed tracking errors. — v through a first-order low aSSspeciﬁc choice of the time interval of the speed constrained
fiﬁer' 1000 9 " 9 P arc and equivalent to the LCOCP. The ACOCP was further
Si.ncf;ut)ﬁg fitered speed error sianals are quite smooL% duced to determine optimal switch times of acceleration
P 9 4 nstrained arcs by solving a sequence of two-point boyndar
one can see that the harmonics lies in the high frequenc
lue problems (TBVPs), whose BC is uniquely defined by
range. Fig. 16, obtained by zooming in Fig. 15 , shows thi
: . i e switch times. It was proved that the proposed algorithm
the harmonic frequencies are half of the sampling frequen g
guaranteed to converge to an optimal solution, and incurs
It is a reasonable conjecture that the quantization error |In | burd d |
the measured positiom might be the main factor for the ow computational burden as compared to various numerica
optimization methods. Experiments were performed to yerif

harmonics. Indeed, all speadare obtained by differentiat- : . ;
: - : e that the servomotor system using an energy-optimal traqjgct
ing the measured positiop, which apparently amplifies the . .

as reference indeed leads to less energy consumption.

measurement noise including quantization errors. Corisigle
that the sample frequency i©Khz, the measurement noise
at the frequencysKHz could be amplifiedr x 10* times. APPENDIX
Assuming the quantization error #80.5 pulse in the position A pefinitions ofA/ and G
measurement, with the encoder resoluti@$00 pulses per
revolution, the induced speed error 457.90rad/sec. This

v, — v (rad/sec)

Fig. 16. Zoomed speed tracking errors for task #3.

With A, = ¢ — t,

calculation result is roughly consistent with the ampléad My, Mys M3
of curves shown in Figures 13 and 16. M(ts, to) = Myy Mss Mas
The aforementioned analysis can also be validated by sim- Mg'1 Msy Mss
ulation, where a pulse signal is injected into the measunéme M1 —
. The pulse signat(t) has an amplitude dfr/12500rad, a bl
frequency ofskHz, and its pulse width i$0% of the period. [3 : ( ) + A; cosh ( PA ) — A1:| :
Simulation results are summarized by Fig. 17, where the 2 2
induced harmonics im has an amplitude close frad/sec. ( <_> 3 1>
One can therefore conclude that the measurement noise in- 13

cluding quantization error in the position measurementd an 24 A
. . . . . M. h ! sinh =AW
the differentiation ofr in order to obtain the speed, contribute 2,2 = COS + sin ;
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Mys = %sinh (p_At> Tk € (tays,»t,,) such thatvg(ry) < wvpyi1(7). Sincewy
2 andvy1 are continuous, and we have shown that,, ,,) >
Mg,l =0 Uk+1(tak+1) and 'Uk(tbk+1) > ”k+1(tbk+1)1 Vk and Vi1 must
245 . pA, intersect at two points oft,, ., ., ,] following the first part
Mj2 = — sinh <—> ) of Proposition 3.1. Without loss of generality, denote &g
points byt., andtg, with ¢,, ., <tc, <7k <ta, < lpe,,-
Mg_]g = cosh <ZA> — 2—Al sinh (Iﬁ) Becausevk(tck) — Vg1 (tc;j) =0, vg (tdk) — UkJrl(td:) =
0, there must exists., € (i, tq,) such thatog(te,) —
Gi1 = Ay Ug+1(te, ) = 0 following the Mean Value Theorem. According
Gy = 4 (Moo —1— A1A]; to the second part of Proposition 3.4, is the only real
’ p? ’ ’ solution of 9y (te,) — Vkt1(te,) = 0, therefore we have
Grs— %sinh <;ﬁ> 3 ﬁAt' Up(t) < Op4a(t) for any t < te, and vk (t) > Upt1(t)
' p3 p2 for any t > t.,. Specifically, att,,, , andt,,_,, we have
G271 — O’ Amax = i}k(takﬁl) < @k+1(tak+1) and Amin = Uk(tbk+1) >
1A, oA, 5 oA, v,ggrl(tbkﬂ)_, which guarantees tr:}?t the same condition in the
Gao=— (cosh (—> - 1) + Zsinh (—) k*™™ step still holds for thek + 1) step.
p Algorithm 1 generates two monotone sequengies} and
Gaog =M {tv,} with t,, < to, ., andt,, > t,,, foranyk € N,
G31=0; k > 1. Since{t,, } and{t;, } are bounded from both below
As and above, they must converge monotonicallytas co.
G2 = A—2M1,3 Lett; = limy o0 tq, @ndty = limy o &y, . SiNcety, to are

the fixed-point of Algorithm 1, we must havt;) = Apax
4A A 2 A
G333 =— L (cosh (p t) - 1) + ]—3 sinh (Q) ando(ta) = Amin- Then the solution with switch timg and

to satisfies all NOCs, hence, is optimal.

If only the acceleration constraint is active at the begigni
of the optimal solutiont;, = t; for all k € N, and it can
B. Proof of Theorem 3.7 be shown similarly tha{t,, } is a monotone increasing se-

] . . guence. A similar conclusion holds when only the decelenati
Proof: Suppose that the acceleration constraints (2b) are L ) . .
constraint is active. In these two cases, Algorithm 1 cah sti

active in the optimal solution to the ACOCP. We first Shovivdentif the ootimal switch time. The proof is complete.m
that Algorithm 1 ensures,,, , > t,, andt,,, <t . Let y P ) P P '

(x5, vk, ux) be the optimal solution at the'" step with BC C. Proof of Theorem 3.8
T (ta,) = Ti(ta,), v(te,) = vilta,), Tr(te,) = @i(ty,), '
v (ty,,) = vi(ty, ). Whent,, < Apax, ta,,, = ta, holds since
ta,.. = ta, Dy Algorithm 1. Therefore, it suffices to conside
only the case thaty(t,,) > Amax, andog(ts, ) < Amin-

Becauseiy(tq,) > Amax > 0, 0% (ts,) < Amin < 0, @ando
is continuous, both,(7;) = Amax and o (7)) = Amin have
at least one root of¥,, , ty, ). Because (t., )k (tp, ) < 0, g Ao(t) = —2Ru*(t) — Kw*(t), € [t],t5) U[ts,t5).
is strictly monotone according to Proposition 3.2. This g
that bothv, (1) = Amax and og () = Amin have a unigue
solution, which can only be oft,,, t;, ). Therefore, we must
havet,,,, > tq, andty, ., <tp,.

Next we show thati,, ., > Apax, and vy, ., < Amin, X*(t) = M(t,t1) X (t]) + G(t,t7)B, t € [t1,t5),  (25)
which ensure that the same conditions in the current itarati (g% e T T s
still holds in the next iteration. Sincey(t.,) = vi(ta,), iggrfal(?gllﬂié\g(its%?/)eﬁ é§1)+G(t3’tl)B' Onlti; 1), the
and v (t) > Amax = o for t € [tq,,ta,.,), We have
Ok(tagss) > Oilta.,) = Vrti(tay,,) by the Comparison — X*(t) = M(t,t3) X" (1) + G(t,t1)B, t€ [t} t5]. (26)
Lemma. Similarly, we have (t, .,) > vi(ty,,.,)- With a change of the time variable, (26) can be written as

Becausexy(tq,) = i(tq,) and vi(t) > v(t) for t €
(tag, tag,), We havewy(ta,,,) > @i(ta,,,) by the Com- X' (t+ A7) =M(t+Af 1) X"(t3) + Gt + Ay, 13)B

Proof: On the speed constrained arc, we havé¢t) =
(dvmax +¢)/b, t € [t3,1]). Without loss of generality, we may
assume that the acceleration constraints are activf) g
and[t3,t¢] with switch timest} andt5. From (6), the costate
A, on the unconstrained arcs is given by

Since u*, x* and v* are continuous with respect th
we have)\! (t37) = A:(¢;). According to (10), the optimal
solution on[t},t%) is given by

parison Lemma. Similarly, we havey(t,.,) < z(ty,.,)- ¥ (t5) + Af Umax
Therefore, the following is true, = M(t,t3) v*(t%) + G(t,t5)B, t €[ty t5—A}].
A(t37)

xk(tbk+1) - xk(tak+1) < xT(tkaA) - xl(t‘lkJrl)

SinceMl,l =1, M271 = Mg,l =0, we have
= Ik+1(tbk+1) - xk+1(tak+1)’ (
L _ ¥ (t+ AF) — Afvmax z*(t3)
which implies that the average of on[t,,_ ,,t,. ] is smaller v (t+ AF) = M(t,t5) | v (t5) | + G(t,t5)B

than that ofwv,i1, which further implies that there exists N (t+ AF) A5 (857)
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= M(t,t3) (M(t5,t7) X" (t]) + G(t5,t7)B) + G(¢,t5)B to Proposition 3.2 is monotonically decreasing o, ]

— ML, E)X(E) + Gt t)B, tetit;— A, (27) With 0(ta) > 0 and(t;) < 0. Therefore, by solving fot,
from 4(t,) = 0 as in Algorithm 2, we can obtain the maximum
Because the right-hand-side of (27) is identical to thal&, value of, which iSO(ts).

one can see that fare [¢3, 15 — A], Let 1(8) = ©(ts) — vmax. Note thaty(s) depends continu-
* *\ A * Yy X ously ond, sincev depends continuously on the associated BC,
(@7t + A7) = Afvma, v (E+ A0), A+ A7) which further depends continuously én Since Algorithm 2
is an extension of the optimal solutiofx*,v*, A\¥) from includes a bisection search with updated bounds, in order to
[t3,t5) to [t5,t5 — AY]. prove the convergence of Algorithm 2, we only need to prove
Let (Z*(t),0*(t),u*(t)) = (a*(t),v*(t),u*(t)) for ¢ € thatn(0) >0, n(A,) <0, and there is a uniqué € (0, A,)
[t3,t3), and (Z*(t),0*(t),a* ()) = (2*(t + A}) — such thaty(d) =
AfUmax, V(6 + A7), u*(t + A})) for t e [t5,t5 — Af], When§ = 0, the relaxed problem share the same BC and

then (:E*(t),f;*(t),ﬁ*( )) is the optimal solution to the un-final time with Problem 1 except that the relaxed problem
constrained problem with initial conditiof*(¢;) = =;(¢;), has no speed constraint.f0) < 0, thenv does not violate
0*(t7) = wv(t7) at the initial time¢f, and final condition the speed constraint. Hencejs also the optimal solution to
*(t5 — AF) = z.(83), v*(t5 — AF) = v.(¢3) at the final Problem 1. Buty does not contain any speed constrained arc,

time ¢t — A}, which is a contradiction. Therefore we must hax@) > 0.
Extending the definition of Z*(¢), o*(¢), a*(t)) to [0,}) In order to show thaty(A,) < 0, consider a second
and[t; — A¥, t; — Aj] with minimum-time problem with a new final position; —
. UmaxQw- Then the second minimum-time problem and the
T (t) = { z(t), . [O*’t i), . relaxed energy-optimal problem with= A,, share the same
wr(t+ A7), teft; - At 'ty — A7, final position. It is easily seen that the optimal speed smiut
. v (t), clo,t; wo(t) to this second minimum-time problem is a triangle, and
v(t) = { ve(t+ AF), tets— A;‘,tf At max{wz(t)|0 < t < Vmax/Amax — Umax/Amin} = Umax, @S
illustrated in Fig. 18. Because for both problems the positi
Tt (t) = { wi(t), € [0,17), . . increases monotonically with respect to the time, we may
ur(t+ A7), tets — Aty — A, parameterize the speed using the position, and wiriteand

wherew;(t) = (Amax + dvi(t) + ¢)/b, andu, (t) = (A + 0 @Sw2(z) ando(z). Sincew, is a minimum-time solution,
dv,(t) +¢)/b. Then(&*,5*,a*) is the optimal solution to the We must havew(z) > o(z) for all z € (0,27 — vmaxAu]-
acceleration constrained energy-optimal motor contrebpr L€tz be the position at whickv; (z,,) = vmax. Suppose, ad
lem with initial condition z(0) = 0, v(0) = 0 and final @absurdum, that there exists € [0, 2; — vmaxA.] such that
conditionz(ty — A}) = x5 — Afumax. (8%, 0%, @*) is indeed (xs) > vmax. Without loss of generality, we may assume that
optimal because it satisfies all NOCs. Note that junctiofs € [0, ). If 2, € [Oaffm): theno(zs) > ws(z;), which
conditions are satisfied because(t) = o (t]) = Amay and Means thai(z) > ws(x) = Amax for somer € [0, z), which

o*(t5 — A7) = 0*(t3) = Ami. The proof is complete sinceis a contradiction. Hence, we can only havge= z,,. Since
the relation betwee(m*,v*,u*) and(i*,7*,a*) as described in 0, the acceleration arc and the deceleration constrained arc
by (20) is ensured by the construcuon(@m LY. m are connected by an unconstrained drds not constrained

by the acceleration constraints in a neighborhoodzof It
follows that?’ > wh in [zs — €, x5 + €] for somee > 0, where
D. Proof of Theorem 3.9 the prime denotes the derivative with respectrtoHowever,

Proof: Consider a trapezoidal speed trajectory defined By integratings’ forward we havei(zs 4 €) > wh(zs + €),

Apaxt 0 <t < Ymax which is a contradiction to the fact that, is the minimum-
_ Vimax m‘“‘umx time solution. Therefore, we must havér) < vy for all
w(t) = Umax a2 <t < + Ay, T . N
o At vr‘;‘:: 1A, < e <t x € [0,z — vmaxAw), Which is equivalent tai(¢) < vyax for
e T T Amax Juo all t € [0,¢t; — A,]. Hence we have shown thatA,,) < 0.

whereA,, is defined in Algorithm 2, and;, = vmax/Amax + Suppose there exist two solutioas and d, to n(d) = 0.
Ay — Vmax/Amin- Then it can be easily verified that suchMVe can recover two different solutions to Problem 1 using
a trapezoidal speed trajectory is the optimal solution tothe two partially equivalent solutions corresponding &o
minimum-time motor position control problem with the samand é.. Theorem 3.8 ensures both recovered solutions are

dynamics, BC, and constraints as those of Problem 1. optimal, which contradicts the fact that Problem 1 has aumiq
Let © denote the energy-optimal solution to the accelerati@olution. Hencey)(d) = 0 has an unique root. ]

constrained, but not speed constrained motor positionraont

problem with the final time; — ¢ and the BCx(ty — 0) = REFERENCES
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