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Abstract
This paper considers real-time energy-optimal trajectory generation for a servomotor system
which performs a single-axis point-to-point positioning task for a fixed time interval. The
servomotor system is subject to acceleration and speed constraints. The trajectory generation
is formulated as a linear constrained optimal control problem (LCOCP), and the Pontryagin’s
Maximum Principle is applied to derive necessary optimality conditions. Instead of solving
multi-point boundary value problems directly, this paper proposes a novel real-time algorithm
based on two realizations: solving the LCOCP is equivalent to determine an optimal time
interval of the speed constrained arc and solve a specific acceleration constrained optimal
control problem (ACOCP); solving an ACOCP is equivalent to determine optimal switch
times of acceleration constrained arcs and solve a specific two-point boundary value problem
(TBVP). The proposed algorithm constructs sequences of time intervals, ACOCPs, switch
times, and TBVPs, such that all sequences converge to their counterparts of an optimal
solution of the LCOCP. Numerical simulation verifies that the proposed algorithm is capable
of generating energy-optimal trajectories in real-time. Experiments validate that the use
of energy-optimal trajectories as references in a servomotor system does not compromise
tracking performance but leads to considerable less energy consumption.
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Abstract—This paper considers real-time energy-optimal tra-
jectory generation for a servomotor system which performs
a single-axis point-to-point positioning task for a fixed time
interval. The servomotor system is subject to accelerationand
speed constraints. The trajectory generation is formulated as a
linear constrained optimal control problem (LCOCP), and the
Pontryagin’s Maximum Principle is applied to derive necessary
optimality conditions. Instead of solving multi-point boundary
value problems directly, this paper proposes a novel real-time
algorithm based on two realizations: solving the LCOCP is
equivalent to determine an optimal time interval of the speed
constrained arc and solve a specific acceleration constrained opti-
mal control problem (ACOCP); solving an ACOCP is equivalent
to determine optimal switch times of acceleration constrained
arcs and solve a specific two-point boundary value problem
(TBVP). The proposed algorithm constructs sequences of time
intervals, ACOCPs, switch times, and TBVPs, such that all
sequences converge to their counterparts of an optimal solution
of the LCOCP. Numerical simulation verifies that the proposed
algorithm is capable of generating energy-optimal trajectories in
real-time. Experiments validate that the use of energy-optimal
trajectories as references in a servomotor system does not
compromise tracking performance but leads to considerableless
energy consumption.

Index Terms—Servomotor, motion planning, trajectory gener-
ation, minimum energy, constrained optimal control, boundary
value problem.

I. I NTRODUCTION

SERVOMOTOR systems are typically used for motion
control and have a wide range of applications includ-

ing robotic manipulators, electromechanical systems suchas
milling machines, cranes, lathes. In these applications, a
servomotor system performing a point-to-point positioning
task prompts several problems: path planning and trajectory
generation [1]–[3], tracking control [4], motor control [5]–[7]
and steady state optimization [8] etc. This paper focuses onthe
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trajectory generation problem, i.e., the servomotor follows a
well-defined path. More specifically, the servomotor system
performs point-to-point tasks in a single axis. Solving this
problem on real-time is non-trivial due to various constraints
and severe restriction on the computation time.

For decades, intensive efforts have been devoted to the tra-
jectory generation problem, and lead to numerous results, for
instance, time optimal or approximate time optimal trajectory
[3], [9]–[12], trapezoidal speed trajectory [13], energy-optimal
trajectory [14], [15], maximum payload trajectory [16]. Time
optimal trajectories lead to maximal productivity, but sacrifice
energy efficiency. Recent trends on building greener industries
and widespread uses of mobile devices have attracted much
attention on trajectory generation to balance productivity and
energy consumption e.g. [17]–[21]. Work [19] investigatedthe
minimization of motor’s resistant losses using optimal control
techniques. Neither the friction effect nor the mechanicalwork
is taken into account. Based on an optimal control formulation,
work [20], [21] proposed real-time minimum-energy trajectory
generation algorithms for mobile robots. Nevertheless, work
[19]–[21] did not address speed and acceleration constraints.
A three phase trapezoidal speed trajectory has been widely
used for energy efficiency, e.g. [13]. This method is capable
of dealing with both acceleration and speed constraints, and
is appropriate for real-time applications, albeit the resultant
trajectory is sub-optimal. More recently, [22] used genetic
algorithms to generate trajectories which minimize resistant
losses of a motor-toggle servomechanism performing position-
to-position tasks. This method is capable of addressing various
constraints, but is not intended for real-time applications.

This paper aims to develop real-time energy-optimal trajec-
tory generation algorithms for a servomotor system subjectto
physical constraints. Main challenges come form the demand-
ing computation time target and physical constraints. The main
contributions of this paper are as follows: first, a real-time
algorithm is proposed for energy-optimal trajectory generation;
second, the convergence of the proposed algorithm is estab-
lished; finally, experiments are performed to verify the energy-
saving advantage of using energy-optimal trajectories in a
servomotor system. The proposed algorithm can be readily im-
plemented in motion controllers for real-time energy-optimal
trajectory generation. The rest of this paper is organized as
follows. Problem formulation is provided in Section II. Section
III presents algorithms for real-time computation of energy-
optimal trajectories. Numerical results are given in Section
IV to validate the proposed algorithm and its computational
efficiency. Experimental results in Section V demonstrate the
energy-saving benefits of using energy-optimal trajectories in
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a servomotor system. Section VI concludes this paper.

II. PROBLEM STATEMENT

For a servomotor system performing point-to-point position-
ing tasks in a single axis, its simplified dynamics are given by

Jẍ(t) = −d0v(t)− c0sgn(v) +Ktu(t),

wherex is the angular position of the servomotor,v = ẋ is the
angular speed,u is the control current,J is the lumped inertia
of the servomotor and an inertia load,c0 is the amplitude of the
Coulomb friction force,d0 is the viscous friction coefficient,
and Kt is the torque constant. Note that in this paper the
coulomb friction force is simply modeled as:−c0sgn(v) for
v 6= 0, otherwise zero. Also, since the servomotor always
rotates in one direction for each specific positioning task,
without loss of generality, we considerv ≥ 0 and have
the Coulomb friction force given by−c0. For notational
convenience, letd = d0/J , c = c0/J and b = Kt/J . The
servomotor system dynamics are rewritten as

ẋ(t) = v(t),

v̇(t) = −dv(t)− c+ bu(t).
(1)

The servomotor system is subject to the following speed and
acceleration constraints:

0 ≤ v ≤ vmax, (2a)

Amin ≤ −dv − c+ bu ≤ Amax, (2b)

where vmax, Amin < 0, and Amax > 0 are constants. The
cost functional, representing the energy consumption of (1),
captures the copper loss and mechanical work, i.e.,

E =

∫ tf

0

(Ru2 +Ktvu)dt, (3)

whereR is the motor resistance, andtf is the final time.
Remark 2.1:Equation (3) is a simplification of [15, Eqn.

(3)]. While the servomotor system decelerates,P (x, u) =
Ru2 + Ktvu could be negative, i.e., mechanical work is
converted into electricity. Taking (3) as a cost function means
that the regenerated electricity during deceleration is recycled.

The energy-optimal trajectory generation problem is formu-
lated as follows.

Problem 1:Given the servomotor system (1), constraints (2),
the initial state(0, 0), the final state(xf , 0)

T , and the final time
tf , find (x∗, v∗, u∗) which minimize the cost function (3), i.e.,

min
u

E =

∫ tf

0

P (v(t), u(t))dt

subject to (1) and (2),

x(0) = v(0) = v(tf ) = 0, x(tf ) = xf . (4)

Without loss of generality, we assume thatxf > 0.
Remark 2.2:Problem 1 is a linear constrained optimal

control problem (LCOCP), and can be solved using numerical
optimization methods [23]. Alternative approaches include
applying the Pontryagin’s Maximum Principle (PMP) and its
variants, e.g. [24], to derive necessary optimality conditions
(NOCs), which are further reduced to Multi-point Boundary

Value Problems (MBVPs). Work [15] generalizes the conven-
tional PMP to deal with switching cost functions, and solves
the resultant nonlinear constrained optimal control problem
by reducing NOCs to MBVPs. Interested readers are referred
to [15] and references therein for details. Generic solversfor
MBVPs admit large scale nonlinear programming problems
(NLPs) thus have difficulty in meeting the computation time
target for real-time applications. Another disadvantage of
resorting to an NLP formulation is lack of convergence results.
Our main goal is to alleviate these limitations and develop
reliable as well as computationally efficient algorithms for
solving Problem 1 in real-time.

Remark 2.3:For every positioning task, there might exist
an optimalt∗f giving the best energy efficiency. The optimal
t∗f can be obtained by solving Problem 1 with the free final

time cost functionE =
∫ tf
0

P (v(t), u(t))dt.

A. Existence, Arcs and Smoothness

The analysis of existence, NOCs, and structures of optimal
solutions in [15] is also applicable to Problem 1. One can
conclude that Problem 1 has an optimal solution, and apply
the PMP and its extensions to derive NOCs. Interested readers
are referred to [15] for details. Define a speed constrained arc
as a segment of an optimal trajectory, wherev(t) = vmax ,
i.e., the speed constraint is active. Similarly, the activation
of constraintsv̇ ≤ Amax and v̇ ≥ Amin corresponds to
acceleration and deceleration constrained arcs, respectively.
From NOCs of Problem 1, one knows that optimal trajectories
of Problem 1 may contain as many as four types of arcs: the
acceleration constrained arc, the deceleration constrained arc,
the speed constrained arc, and the unconstrained arc.

The connection points between neighboring arcs are called
junction points. A corner points(or simply corners) appears
when the control is discontinuous. For Problem 1, because the
Hamiltonian is strictly convex with respect to the control,the
optimal control is continuous along an optimal trajectory [24,
Prop. 4.3]. That is: an optimal trajectory does not contain any
corner point, or the optimal speed trajectory for Problem 1
is C1. The continuous differentiability of the optimal speed
trajectory is essential to design computationally efficient algo-
rithms for energy-optimal trajectory generation.

III. O PTIMAL SOLUTIONS AND ALGORITHMS

Although the same approach in [15], [25] is followed to
solve Problem 1, this paper proposes a real-time algorithm
which comprises the following key steps

• define a linear unconstrained optimal control problem
(LUOCP), and find the optimal solution of each LUOCP
by solving the associated Two-point Boundary Value
Problem (TBVP);

• define an acceleration constrained optimal control prob-
lem (ACOCP), and construct sequences of switch times
and LUOCPs to solve the ACOCP;

• construct sequences of time intervals of speed constrained
arcs and ACOCPs to solve Problem 1;

• construct an optimal solution of Problem 1 from optimal
solutions of LUOCPs and constrained arcs.
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Fig. 1. The flow chart of the proposed algorithm.

Fig. 1 illustrates the flow chart of the proposed algorithm,
where BC stands for boundary conditions. The analytical
solver block computes the optimal solution of an LUOCP. At
each iteration of the inner loop, a new LUOCP is constructed
with different BC, which is updated by examining the opti-
mal solution of the current LUOCP against the acceleration
constraints (2b). At each iteration of the outer loop, a new
ACOCP is constructed with different BC, which is updated by
examining the optimal solution of the current ACOCP against
the velocity constraints (2a).

A. Solve Linear Unconstrained Optimal Control Problems

This section presents and analyzes the analytical solutionof
the LUOCP as follows.

Problem 2: Given the servomotor system (1), the initial
state(0, 0), the final state(xf , 0)

T , and the final timetf , find
(x∗, v∗, u∗) which minimize the cost function (3), i.e.,

min
u

E =

∫ tf

0

P (v(t), u(t))dt

subject to (1) and (4).

Without loss of generality, the LUOCP takes the same BC
as Problem 1. When applying the PMP to solve Problem 2,
we first derive NOCs, then construct and solve the TBVP
corresponding to the NOCs. Define the Hamiltonian

H(x(t), v(t), λx(t), λv(t), u(t)) =

Ru2(t) +Ktv(t)u(t) + λx(t)v(t) + λv(t)(bu(t)− dv(t) − c),

where the co-stateλx andλv have dynamics

λ̇x(t) = −
∂H

∂x
= 0, (5a)

λ̇v(t) = −
∂H

∂v
= dλv(t)−Ktu(t)− λx(t). (5b)

According to (5a),λx(t) is constant. The optimal controlu∗

shall satisfy the first-order optimality condition∂H/∂u = 0,
and be taken the following expression

u(t) = −
Kt

2R
v(t) −

b

2R
λv(t). (6)

The optimal controlu is uniquely determined because of the
convexity ofH with respect tou. The NOCs of Problem 2
consist of (1), (5), (6), and the BC (4). Substituting (6) into
(1) and (5) yields a linear TBVP

ẋ(t) = v(t),

v̇(t) = −

(

d+
bKt

2R

)

v(t)−
b2

2R
λv(t)− c,

λ̇v(t) =
K2

t

2R
v(t) +

(

d+
bKt

2R

)

λv(t)− λx,

x(0) = 0, x(tf ) = xf , v(0) = 0, v(tf ) = 0.

(7)

where λx, λv(0) and λv(tf ) are unknown. DenoteX =
(x, v, λv)

T . Differential equations in (7) can be written as

Ẋ = AX +B, (8)

where

A =





0 1 0
0 A1 A2

0 A3 −A1



, B =





0
−c
−λx



,

with A1 = −(d + bKt

2R ), A2 = − b2

2R , A3 =
K2

t

2R . The analytic
solution to (8) is given by

X(t) = M(t, t0)X(t0) +G(t, t0)B, (9)

whereM(t, t0) = eA(t−t0) and G(t, t0) =
∫ t

t0
eA(t−τ)Bdτ .

Considering (9), the BC takes the following linear expression

X(tf ) = M(tf , 0)X(0) +G(tf , 0)B. (10)

where three unknownsλv(0), λv(tf ), andλx can be solved.
The optimal solution to the TBVP (8) and the optimal control
can be determined from (9) and (6), respectively.

The following two propositions characterize important prop-
erties of the energy-optimal speed trajectory for Problem 2.

Proposition 3.1:Let (x, v, λx, λv) and(x̃, ṽ, λ̃x, λ̃v) be two
optimal solutions of Problem 2 with different BC and/or final
time tf . If v and ṽ are not identical and definez(t) = v(t)−
ṽ(t), then

1) the equationz(t) = 0 has at most two roots;
2) if S = {t|z(t) = 0} is non-empty, equatioṅz(t) = 0

has at most one root.

Proof: 1). Without loss of generality, lett0 = 0 be a root
of z(t) = 0, thenv(0) = ṽ(0). From (9),v(t) is given by

v(t) =M2,1(t)x(0) +M2,2(t)v(0) +M2,3(t)λv(0)

− cG2,2(t)− λxG2,3(t),

where Mi,j and Gi,j are the elements in theith-row, and
j th-column of matricesM and G, respectively. Specifically,
M2,1(t) ≡ 0, and the above equation can be simplified to

v(t)=M2,2(t)v(0)+M2,3(t)λv(0)−cG2,2(t)−λxG2,3(t). (11)

Similarly, we have

ṽ(t)=M2,2(t)ṽ(0)+M2,3(t)λ̃v(0)−cG2,2(t)−λ̃xG2,3(t). (12)

Subtracting (11) from (12) gives

z(t) = M2,3(t)(λ̃v(0)− λv(0))− (λ̃x − λx)G2,3(t)
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= M2,3(t)∆λv0 −∆λxG2,3(t).

Let τ 6= 0 be a non-zero root ofz(t) = 0, thenτ must satisfy

M2,3(τ)∆λv0 −∆λxG2,3(τ) = 0,

which can be further simplified according to the analytic
expressions ofM(t) andG(t):

∆λv0 = ∆λx

(

2A3

A2p

)

tanh (pτ/4) , (13)

wherep = 2
√

A2
1 +A2A3.

If λ̃x = λx, ∆λx = 0, then (13) holds only if̃λv(0) =
λv(0), which further implies that̃v(t) ≡ v(t) for any t ac-
cording to (11) and (12)–a contradiction. Therefore,λ̃x 6= λx,
∆λx 6= 0, and (13) can be written as

∆λv0

∆λx

=
2A3

A2p
tanh (pτ/4) , (14)

Since the left hand side (LHS) of (14) is a constant, and the
right hand side (RHS) is a strictly monotonically increasing
function, (14) has at most one solution. Hence,z(t) has at
most one root other thant = 0. The proof of 1) is completed.

2). By differentiating (11) and (12) with respect tot and
subtracting one from the other, we obtain

ż(t) = ∆λv0A2 cosh(pt/2) +
2∆λxA2

p
sinh(pt/2)

=
2∆λxA2

p
cosh(pt/2)

(

p∆λv0

2∆λx

+ tanh(pt/2)

)

.

Sincecosh(pt/2) ≥ 1, andtanh(pt/2) is strictly monotonic,
ż(t) = 0 has at most one solution. 2) is proven.

Proposition 3.2:Let (x, v, λx, λv) be the optimal solution
of Problem 2. The following facts hold

1) there existt1, t2 ∈ R such thatv̇(t1)v̇(t2) < 0;
2) v̇(t) is a strictly monotonic function.

Proof: 1). It is clear thatv(t) is continuously differen-
tiable over[0, tf ]. To ensurexf > 0, it is necessary to have
T1 such thatv(T1) > 0. Considering the factv0 = 0, there
exists t1 ∈ [0, T1] such thatv̇(t1) > 0. On the other hand,
the factsvf = 0 and v(T1) > 0 implies the existence of
t2 ∈ [T1, tf ] such thatv̇(t2) < 0. The proof of 1) is complete.

2). From (8), we have

v̇(t) = A1v(t) +A2λv(t)− c. (15)

Eliminatingv(t) from the RHS of (15) by considering (9) and
the expressions ofM(t, t0) andG(t, t0), we have

v̇(t) =(A2λv0 − c+ A1v0) cosh(pt/2)

+ 2(v0A
2
1 − cA1 −A2λx + A2A3v0) sinh(pt/2)/p.

Let τ = pt/2. Noticing that sinh(τ) = (eτ − e−τ )/2 and
cosh(τ) = (eτ + e−τ )/2, there exist constantsc1, c2 ∈ R

such thatv̇(t) can be rewritten as

v′(τ) = c1e
τ + c2e

−τ ,

wherev′ denotes the derivative ofv with respect toτ . Besides,
with τ1 = pt1/2 and τ2 = pt2/2, we havev′(τ1)v′(τ2) <
0. Without loss of generality, assume thatτ1 < τ2. Sincev′

is proportional tov̇, it suffices to prove thatv′ is a strictly
monotone function.

If v′(τ1) > 0 andv′(τ2) < 0, then we must havec1c2 < 0,
otherwise,v′(τ) is either always positive or always negative,
which leads to a contradiction. Now consider the second
derivative of v: v′′(τ) = c1e

τ − c2e
−τ . Note thatv′′(τ) is

continuous. Becausec1c2 < 0, we must have eitherv′′(τ) > 0
for any τ ∈ R when c1 > 0, or that v′′(τ) < 0 for any
τ ∈ R when c1 < 0, which implies thatv′(τ) > 0 is either
a strictly monotonically increasing function whenc1 > 0 or
a strictly monotonically decreasing function whenc1 < 0.
Similar conclusion holds whenv′(τ1) < 0 and v′(τ2) > 0.
Therefore, the proof is complete.

Remark 3.3:Proposition 3.2 means that given an optimal
solution of Problem 2(x∗, v∗, u∗), the largest acceleration and
deceleratioṅv∗(t) appear att = 0 and t = tf , respectively.

B. Solve Acceleration Constrained Optimal Control Problems

We are ready to solve the following ACOCP.
Problem 3:Given the servomotor system (1) subject to the

acceleration constraints (2b), the initial state(0, 0), the final
state(xf , 0)

T , and the final timetf , find (x∗, v∗, u∗) which
minimize the cost function (3), i.e.,

min
u

E =

∫ tf

0

P (v(t), u(t))dt

subject to (1), (2b), and (4).

Remark 3.4:The ACOCP is different from Problem 2
by including acceleration constraints (2b). Work [15, Sec.
4] provides a complete analysis of possible structures of
optimal solutions for Problem 1. It is not difficult to conclude
that an optimal solution for Problem 3 in general exhibits
a three-phase structure: an acceleration constrained arc in
the first phase, followed by an unconstrained arc, finally a
deceleration constrained arc in the third phase. The three-
phase structure is illustrated by Fig. 2, where three phases
are defined over[t0, t1], [t1, t2], [t2, tf ], respectively. Such a
three-phase structure is also inferred from Remark 3.3.

An optimal solution of the ACOCP may not contain the first
and/or the third phase, depending on problem data including
Amax andAmin, model parameters, initial and final states, and
the final timetf . We however focus on the general case and
assume that the optimal solution has all three phases. Given
t1 andt2, the optimal solution in the first and third phases can
be determined explicitly as follows

vl(t) = Amaxt, t ∈ [0, t1], (16a)

xl(t) =
1

2
Amaxt

2, , t ∈ [0, t1], (16b)

vr(t) = Amin(t− tf ), t ∈ [t2, tf ], (16c)

xr(t) = xf +
1

2
Amin(t− tf )

2, t ∈ [t2, tf ]. (16d)

DenotingXm = (xm, vm, um)T the optimal solution in the
second phase defined over[t1, t2], we have

Xm(t) = M(t, t1)Xm(t1) +G(t, t1)B. (17)
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Fig. 2. Optimal speed trajectory with active acceleration constraints.

Since no constraint is active in the second phase, the opti-
mal solutionXm(t) over [t1, t2] can be obtained by solving
Problem 2 with the following BC:

xm(t1) = xl(t1), vm(t1) = vl(t1),

xm(t2) = xr(t2), vm(t2) = vr(t2).
(18)

We use the term ATBVP to represent the TBVP defined by
(1), (5), (6), and the BC (18).

Remark 3.5:The definition of the ATBVP is contingent on
switch timest1 andt2. This is because the BC (18) has explicit
dependence ont1 andt2. As shown in [15], switch times can
be determined from switch conditions which are part of NOCs.
For Problem 3, the optimal control is continuous, and switch
conditions are given byu(t+1 ) = u(t−1 ) andu(t+2 ) = u(t−2 ),
or equivalently

v̇l(t
−

1 ) = v̇m(t+1 ), v̇m(t−2 ) = v̇r(t
+
2 ). (19)

Clearly, the ACOCP is reduced to findt1 and t2 satisfying
switch conditions (19), and solve the resultant ATBVP.

Remark 3.6:An MBVP formulation for the ACOCP con-
tains a total of thirteen equations–seven algebraic equations
(16)-(17), four BCs (18), two switch conditions (19)–and
thirteen unknowns (t1, t2, xm(t1), xm(t2), vm(t1), vm(t2),
λv(t1), λv(t2), xl(t1), vl(t1), xr(t2), vr(t2), λx). Hence, the
MBVP is solvable. On the other hand, the MBVP is nonlinear
thus difficult to solve efficiently, because (16b) and (16d)
are nonlinear, and switch timest1 and t2 enter nonlinearly
into (17) throughM(t2 − t1) andG(t2 − t1) terms, and are
multiplied by other unknowns. We focus on algorithms to solve
the MBVP efficiently and reliably.

We propose Algorithm 1 to solve the ACOCP by identifying
optimal switch timest1, t2. Once the optimal switch times
t1 and t2 are obtained, the optimal solution of Problem 3
can be computed by combining (16) and the solution of
the ATBVP. Algorithm 1 conducts the following steps in an
iterative manner

1) given switch times(t1, t2), constructs an ATBVP de-
fined by (1), (5), (6), and the BC (18);

2) solves the optimal solution of the ATBVP;
3) updates the switch times(t1, t2) according to the optimal

solution and switch conditions.

Fig. 3 briefly illustrates the construction of sequences oft1
and t2 at thekth iteration of Algorithm 1. More details can
be found in Algorithm 1. The convergence of Algorithm 1 is
established by the following theorem. The proof of Theorem
3.7 is given in Appendix.

Algorithm 1 Algorithm for Problem 3
1: e ⇐ 1, k ⇐ 1, and choose a small tolerance parameter

ε ≪ 1
2: tak

⇐ 0, tbk ⇐ tf
3: while e > ε do
4: solve the unconstrained problem with BCvk(tak

) =
vl(tak

), xk(tak
) = xl(tak

), vk(tbk) = vr(tbk),
xk(tbk) = xr(tbk), and denote the solution as
(xk, vk, uk)

T .
5: if v̇k(tak

) > Amax then
6: solve v̇k(τl) = Amax for τl
7: tak+1

⇐ τl
8: else
9: tak+1

⇐ tak

10: end if
11: if v̇k(tbk) < Amin then
12: solve v̇k(τr) = Amin for τr
13: tbk+1

⇐ τr
14: else
15: tbk+1

⇐ tbk
16: end if
17: k ⇐ k + 1
18: e ⇐ |tak

− tak−1
|+ |tbk − tbk−1

|
19: end while
20: t1 ⇐ tak

, t2 ⇐ tbk
21: return x∗, v∗, u∗, where

x∗(t) =







xl(t), 0 ≤ t ≤ t1,
xk(t), t1 < t ≤ t2,
xr(t), t2 < t ≤ tf ,

v∗(t) =







vl(t), 0 ≤ t ≤ t1,
vk(t), t1 < t ≤ t2,
vr(t), t2 < t ≤ tf ,

u∗(t) =







Amax + dvl(t) + c)/b, 0 ≤ t ≤ t1,
uk(t), t1 < t ≤ t2,
(Amin + dvr(t) + c)/b, t2 < t ≤ tf ,

t

v

tbktak tbk+1
tak+1

vk+1

vk

tck tdktek

Fig. 3. Update scheme of switch times.

Theorem 3.7:The sequences{tak
} and{tbk} as updated in

Algorithm 1 converge monotonically to optimal switch times
t∗1 and t∗2, respectively, ask → ∞.

C. Solve Problem 1

Earlier work [15] has shown that an optimal solution of
Problem 1 may contain as many as five phases and the
structure is as follows: an acceleration constrained arc inthe
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Fig. 4. Optimal speed trajectory with speed constraint.

first phase, an unconstrained arc in the second phase, an speed
constrained arc in the third phase, another unconstrained arc in
the forth phase, and an deceleration constrained arc in the fifth
phase. We consider the general case, i.e., an optimal solution
consists of all five phases. Given the structure of an optimal
solution, one can always formulate an MBVP and turn to
NLP solvers. Solving the MBVP corresponding to Problem 1
directly is more challenging than the ACOCP case due to
increased number of variables. Further analysis of structures of
optimal solutions for Problems 3 and 1 enables us to recognize
that the key to solving Problem 1 is to determine the time
interval when the speed constraint is active. In this section,
we propose Algorithm 2 to deal with the speed constraint,
i.e., determine the time interval of the speed constraint arc.
Algorithm 2 relies on a partial equivalence between an optimal
solution to Problem 1 and an optimal solution to a particular
ACOCP, which can be solved using Algorithm 1. The partial
equivalence is established by Theorem 3.8, the proof of which
is given in Appendix.

Theorem 3.8:Let (x∗, v∗, u∗) be the optimal solution to
Problem 1 with final positionxf and final timetf . Suppose
the speed constraintv ≤ vmax is active on the interval[t∗3, t

∗

4],
wheret∗3 andt∗4 are the optimal switch times at whichv∗ enters
and exits the speed constrained arc. Let∆∗

t = t∗4 − t∗3, and let
(x̃∗, ṽ∗, ũ∗) be the optimal solution to Problem 1 without the
speed constraint and with the final positionxf −∆∗

t vmax and
the final timetf −∆∗

t , then(x∗, v∗, u∗) and (x̃∗, ṽ∗, ũ∗) are
related by







x∗(t) = x̃∗(t)
v∗(t) = ṽ∗(t)
u∗(t) = ũ∗(t)

, t ∈ [0, t∗3], (20)







x∗(t) = x̃∗(t−∆∗

t ) + ∆∗

t vmax

v∗(t) = ṽ∗(t−∆∗

t )
u∗(t) = ũ∗(t−∆∗

t )
, t ∈ [t∗4, tf ]. (21)

Algorithm 2 is essentially a bisection algorithm combined
with the Newton’s update to find the root to the equation
η(δ) = 0. The Newton’s update can improve the convergence
rate when the current update is close to the root ofη(δ) = 0.
We have the following theorem about the convergence of
Algorithm 2. The proof of Theorem 3.9 is given in Appendix.

Theorem 3.9:Algorithm 2 converges to an optimal solution
of Problem 1.

IV. VALIDATION OF ALGORITHMS

The computation speed of Algorithm 2 and its capability
to deal with constraints are evaluated in this section. Algo-

Algorithm 2 Algorithm for Problem 1
1: i ⇐ 1, δi ⇐ 0, ηi ⇐ 1, and choose a small tolerance

parameter0 < ε ≪ 1
2: while |ηi| > ε do
3: apply Algorithm 1 to solve the acceleration constrained

problem on interval[0, tf − δi] with BC v(0) = 0,
x(0) = 0, v(tf − δi) = 0, x(tf − δi) = xf − vmaxδi.
Denote the solution by(xi, vi, ui).

4: solve v̇i(tsi) = 0 for tsi
5: ηi ⇐ v(tsi)− vmax

6: if i=1 then
7: if ηi ≤ 0 then
8: ηi ⇐ 0
9: else

10: δL ⇐ 0, δU ⇐ ∆w =
xf

vmax
+ vmax

2Amin
− vmax

2Amax

11: δi+1 ⇐ 1
2 (δL + δU )

12: end if
13: else
14: if ηi < 0 then
15: δU ⇐ δi
16: else
17: δL ⇐ δi
18: end if
19: δi+1 ⇐ δi −

(

ηi−ηi−1

δi−δi−1

)

−1

ηi
20: if δi+1 > δU or δi+1 < δL then
21: δi+1 = 1

2 (δL + δU )
22: end if
23: end if
24: i ⇐ i+ 1
25: end while
26: ts ⇐ tsi−1

, ∆∗

t ⇐ δi
27: (x̃∗, ṽ∗, ũ∗) ⇐ (x, v, u)
28: return x∗, v∗, u∗, where

x∗(t) =







x̃∗(t), 0 ≤ t ≤ ts,
x̃∗(ts) + vmax(t− ts), ts < t ≤ ts +∆∗

t ,
x̃∗(t−∆∗

t ) + vmax∆
∗

t , ts +∆∗

t < t ≤ tf ,

v∗(t) =







ṽ∗(t), 0 ≤ t ≤ ts,
vmax, ts < t ≤ ts +∆∗

t ,
ṽ∗(t−∆∗

t ), ts +∆∗

t < t ≤ tf ,

u∗(t) =







ũ∗(t), 0 ≤ t ≤ t1,
(dvmax + c)/b, t1 < t ≤ t2,
ũ∗(t−∆∗

t ), t2 < t ≤ tf .

rithms 1-2 are implemented in MatlabR©, and tested on a
desktop computer with an IntelR© CoreTM2 2.4GHz processor.
Algorithm 2, with Algorithm 1 embedded, is used to compute
energy-optimal trajectories for 64 positioning tasks where
xf , tf , Amax, Amin, d0, c0, J are different.

A. Computation Speed

For Algorithm 2, among all test cases, the shortest compu-
tation time for a single task is 3.1msec, which corresponds to
solving the LUOCP; the longest computation time is 33.7msec
for a task involving active acceleration and speed constraints;
the average computation time of all 64 cases is 6.9msec. One
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Fig. 5. Trajectories(x, v, u) for task #1.

can argue that Algorithm 2 is suitable for real-time energy-
optimal trajectory generation. As a comparison, Problem 1
is also solved via numerical optimization methods including
the mesh refinement method in [26]. Numerical optimization-
based algorithms typically take 2.5-4.8sec to solve a single
task with acceptable accuracy. For all cases, Algorithm 2 and
various numerical optimization algorithms produce the same
energy-optimal trajectories. This confirms that Algorithm2
indeed solves Problem 1. For illustration purposes, Figures 5-
7 give trajectories generated by using different methods for 3
test cases. Particularly, the green solid and the blue star repre-
sent energy-optimal trajectories computed using Algorithm 2
and the mesh refinement method, respectively. The red dash
depicts trajectories generated by the trapezoidal method.The
main advantage of Algorithm 2, as compared to numerical
optimization approaches, is its low computational burden.

B. Satisfaction of Constraints

It is not difficult to verify Algorithm 2 produces trajectories
satisfying all constraints for all cases. Figures 5-7 present
trapezoidal and energy-optimal trajectories for three example
tasks. To simplify the presentation, let the final time be
parameterized bytf = T0(1 + α), whereT0 is constant and
α is a relaxation factor. The three example tasks share the
following problem data

Amax = 13260rad/sec2, Amin = −13260rad/sec2,

Vmax = 314.16rad/sec, J = 7.2× 10−5kgm2,

R = 5.06Ohm, Kt = 0.2723Nm/A,

c0 = 6.37× 10−1N, d0 = 1.01× 10−3Nsec/m,

and have the following different problem data

task #1:T0 = 0.0592sec, xf = 11.2rad, α = 0.5,

task #2:T0 = 0.0592sec, xf = 11.2rad, α = 0.1,

task #3:T0 = 0.166sec, xf = 44.7rad, α = 0.05.

Optimal trajectories shown in Figures 5-7 exhibit different
structures. For task #1, the energy-optimal trajectory merely
consists of an unconstrained arc. For task #2, the energy-
optimal trajectory does not have speed constrained arcs. For
task #3, the energy-optimal trajectory contains five phases:
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Fig. 6. Trajectories(x, v, u) for task #2.
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Fig. 7. Trajectories(x, v, u) for task #3.

acceleration constrained arc, unconstrained arc, speed con-
strained arc, another unconstrained arc, and decelerationcon-
strained arc.

V. EXPERIMENTAL VALIDATION

Experiments are conducted to compare energy consump-
tions of the following two systems: the energy-optimal system
which uses energy-optimal trajectories as references, andthe
conventional system which uses trapezoidal speed trajectories
as references. Experimental results verify that the energy-
optimal system achieves comparable tracking performance but
consumes less energy than the conventional system.

A. The Testbed

The testbed comprises a Mitsubishi Electric’s AC servomo-
tor HF-MP43K with a flexible inertia load, an amplifier MR-
J3-40A1, dSPACER© ACE Kit 1104, and Matlab/SimulinkR©.
The testbed is illustrated by Fig. 8 where the black solid and
the red dash represent signal and power flows, respectively.
The input signal of the testbed is the position trajectoryx∗(t)
which is generated offline using either Algorithm 2 or the
trapezoidal method according to a positioning task data. The
position trajectoryx∗(t) is fed through a low pass filter to
eliminate high frequency components and produce the refer-
ence position, speed and acceleration trajectories denoted by
xr, vr, and ar, respectively; the tracking controller produces
the torque referenceur(t), linearly proportional to current,
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Fig. 8. Architecture of the testbed.

based on the referencesxr, vr, ar and the measured position
signalx; the amplifier MR-J3-40A1 runs in the torque control
mode and drives the servomotor by generating three-phase
voltagesVa, Vb, Vc according tour(t). The amplifier acts as
the power supply of itself and the motor, and the torque
controller. Since the amplifier runs in the torque control mode,
the testbed including the amplifier and the motor is consistent
with the model (1).

The dSPACE executes the data acquisition and real-time
tracking control tasks. For data acquisition, the dSPACE
collects three signals: the motor positionx, the voltageV
and currentI. The motor position is sensed by the encoder
and the measured signalx enters the dSPACE through the
Digital Incremental Encoder Interface (DIEI); the voltageV (t)
and currentI(t) are measured by Fluke DP120 and Fluke
i30s, respectively. BothV and I are fed into the dSPACE
through Analog Input (AI) ports. The control signalur drives
the amplifier through an Analog Output (AO) port. While
performing a real-time positioning task, the dSPACE operates
at a sampling frequency of 10kHz, i.e., all DIEI/AI/AO signals
are sampled every 100µs. Note that the position signalx to
the DIEI is relayed by the amplifier; the interface between
the amplifier and the DIEI is compatible because the DIEI
expects its inputs from incremental encoders, and the amplifier
only outputs incremental encoder signals in the torque control
mode. The amplifier runs in the setting that the resolution of
the relayed signalx is 12500 pulses per revolution.

B. The Low Pass Filter and Tracking Controller

A third order low pass filter, smoothingx∗(t), is given by

ξ̇1 = ξ2,

ξ̇2 = ξ3,

ξ̇3 = −λ3ξ1 − 3λ2ξ2 − 3λξ3 + λ3x∗(t),

y = ξ,

whereξ = (ξ1, ξ2, ξ3)
T , y = (xr, vr, ar)

T , andλ = 5000. The
low pass filter implicitly imposes jerk constraints on reference
trajectories which are easier to track. Since all poles of the
low pass filter, located at−5000, are much larger than the
bandwidth of the servomotor system (130rad/sec), the phase
shift of the reference trajectory introduced by the low pass
filter is negligible. Fig. 9 shows differences between inputs and
outputs of the low pass filter for task #3 for both the energy-
optimal and trapezoidal cases. The amplitude ofx∗−xr is less
than0.25rad, or 0.56% of xf – thus negligible. The amplitude
of v∗ − vr is relatively large, which is not critical since the
position tracking performance is of interest.
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The tracking controller consists of a feed-forwarduff and
a feedbackufb. The uff is based on the dynamics (1) and
takes the following form

uff =
1

b
(kfaar + kfddvr + kfcc) , (22)

wherekfa, kfd, kfc are constants. Theufb is a PD control and
given by

ufb = kx(xr − x) + kv(vr − v), (23)

wherekx, kv are constant, andv is the speed signal obtained
by differentiatingx. All constantskfa, kfd, kfc, kx, and kv
are obtained by trial and error to achieve satisfactory position
tracking performance.

C. Experimental Results

Experiment is performed to validate that the energy-optimal
system can achieve comparable position tracking performance
as the trapezoidal system but consume less energy. During
the validation, both the energy-optimal and trapezoidal sys-
tems complete 18 positioning tasks parameterized by(xf , α)
with xf ∈ F = {1.86, 11.2, 44.7}, and α ∈ T =
{0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. Since all tasks lead to similar
qualitative conclusion, we take the positioning task #3 as an
example and look into detailed experimental results. Task #3
has been used in Section IV to verify the proposed algorithm,
and the corresponding trajectory generation results are shown
in Fig. 7. In lining up with experiment, concise simulation
is conducted for verification. Simulation diagram is given
in Fig. 10, where the tracking control is given by (22)-
(23), the motor model is given by (1), ande is to mimic
the measurement noise. The simulation diagram is slightly
different from Fig. 8 since the low pass filter and the amplifier
blocks are not simulated. Parameters of the tracking controller
take different values during simulation and experiment. Due to
the perfect modeling assumption, almost perfect position and
velocity tracking performance is achieved during simulation.
That is: position and velocity tracking errors are almost zero.
Hereinafter, reference trajectories are thus omitted in figures
to avoid redundance.
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Fig. 12. Speed trajectories for task #3.

1) Position Tracking Performance:Fig. 11 gives the sim-
ulation and experimental position trajectories for task #3.
According to Fig. 11, the energy-optimal and trapezoidal
position trajectories are distinct from each other but the
difference is not remarkable. Given the referencexr and the
position trajectories from simulation and experiments, Fig. 11
also shows the position tracking errors for the trapezoidaland
the energy-optimal cases. Since experimental position tracking
errors for both cases are within0.15rad, both systems have
similar position tracking performance.

2) Velocity Tracking Performance:Fig. 12 shows the speed
trajectoriesv for task #3, where, for simplicity,v are ob-
tained by differentiatingx. More elegant solutions to infer
unmeasured states from measured outputs in practice are
available e.g. Kalman filters and Luenberger observers. In Fig.
12, the energy-optimal and trapezoidal speed trajectoriesare
remarkably different from each other, andv for both cases can
roughly track their individual referencevr. Fig. 13 plots the
speed tracking errors. Both the energy-optimal and trapezoidal
systems yield similar speed tracking errors:20rad/sec.

3) Energy Efficiency:For each positioning task, the energy
consumptions of the entire testbed for both the energy-optimal
and trapezoidal cases are computed asE(t) =

∫ t

0 V (τ)I(τ)dτ,
wheret is the time when the testbed settles. For task #3, exper-
iment shows that the energy-optimal system consumes11.32%
less energy than the trapezoidal case. For all 18 positioning
tasks, energy consumption comparison results are summarized
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Fig. 13. Speed tracking errors for task #3.
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Fig. 14. Energy efficiency.

in Fig. 14, where the horizontal axis is the relaxation factor α,
and the vertical axis denotes energy saving percentages of
the energy-optimal system versus the trapezoidal case. As
shown in Fig. 14, the energy-saving percentages vary case by
case. For all 18 cases, the energy-optimal system consumes
16.2% less energy than the conventional system. The energy
saving percentage in experiment are however slightly off that
predicted by simulation. The discrepancy is due to factors
including uncertainties of the system and energy consumption
models. Although the energy efficiency varies case by case,
experimental results however corroborate consistently that the
energy-optimal system achieves similar tracking performance
but consumes less energy than the conventional system.

4) Design Tradeoff:For positioning systems, the tracking
accuracy of the final position is crucial. The position tracking
error during transient is also important to ensure certain prop-
erties, for instance satisfaction of all constraints, optimality,
etc. The tracking performance of the testbed system is influ-
enced by references, measurement noises, motor dynamics,
the tracking controller, etc. There exists a well-known design
tradeoff between fast tracking and robustness to measurement
noises. In experiments, we weight the tracking performance
more than robustness, which necessarily results in relatively
large PD gains. Accordingly, the resultant testbed is likely
sensitive to measurement noises.

5) Harmonics inv: Although harmonics analysis can be
carried out systematically, we merely give brief discussions
on the large harmonics inv, which are given by Figures 12-
13. This is because first, the presence of harmonics does not
affect conclusions, and second, the harmonics analysis is not
the main focus of this paper. To find out the factors inducing
large harmonics in the speedv, we examine the experimental
speed tracking error as shown in Fig. 15 where the solid black
and blue lines represent the signals obtained by feeding the
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Fig. 15. Speed tracking errors for task #3.
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Fig. 16. Zoomed speed tracking errors for task #3.

speed tracking errorsvr − v through a first-order low pass
filter: 1000

s+1000 .
Since the filtered speed error signals are quite smooth,

one can see that the harmonics lies in the high frequency
range. Fig. 16, obtained by zooming in Fig. 15 , shows that
the harmonic frequencies are half of the sampling frequency.
It is a reasonable conjecture that the quantization error in
the measured positionx might be the main factor for the
harmonics. Indeed, all speedv are obtained by differentiat-
ing the measured positionx, which apparently amplifies the
measurement noise including quantization errors. Considering
that the sample frequency is10Khz, the measurement noise
at the frequency5KHz could be amplifiedπ × 104 times.
Assuming the quantization error is±0.5 pulse in the position
measurement, with the encoder resolution12500 pulses per
revolution, the induced speed error is±7.90rad/sec. This
calculation result is roughly consistent with the amplitudes
of curves shown in Figures 13 and 16.

The aforementioned analysis can also be validated by sim-
ulation, where a pulse signal is injected into the measurement
x. The pulse signale(t) has an amplitude of2π/12500rad, a
frequency of5kHz, and its pulse width is50% of the period.
Simulation results are summarized by Fig. 17, where the
induced harmonics inv has an amplitude close to6rad/sec.
One can therefore conclude that the measurement noise in-
cluding quantization error in the position measurement, and
the differentiation ofx in order to obtain the speed, contribute
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Fig. 17. Speed tracking errors for task #3, trapezoidal case.

to the large harmonics in speed trajectories. It is understood
that the large harmonics can be presumably suppressed by
choosing a lower sample frequency, for instance1Khz, in-
creasing the encoder resolution, and designing sophisticated
speed estimators instead of a differentiator to obtainv, etc.

VI. CONCLUSION

This paper proposed computationally efficient algorithms
to generate energy-optimal trajectories for a servomotor sys-
tem subject to acceleration and speed constraints. Insteadof
solving the MBVP directly, the linear constrained optimal
control problem (LCOCP) was transformed to determine the
optimal time interval of the speed constrained arc by solv-
ing a sequence of acceleration constrained optimal control
problems (ACOCPs). Each ACOCP is parameterized by a
specific choice of the time interval of the speed constrained
arc and equivalent to the LCOCP. The ACOCP was further
reduced to determine optimal switch times of acceleration
constrained arcs by solving a sequence of two-point boundary
value problems (TBVPs), whose BC is uniquely defined by
the switch times. It was proved that the proposed algorithm
is guaranteed to converge to an optimal solution, and incurs
low computational burden as compared to various numerical
optimization methods. Experiments were performed to verify
that the servomotor system using an energy-optimal trajectory
as reference indeed leads to less energy consumption.

APPENDIX

A. Definitions ofM andG

With ∆t = tf − t0,

M(tf , t0) =





M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3





M1,1 = 1;

M1,2 =
4

p2

[

p

2
sinh

(

p∆t

2

)

+ A1 cosh

(

p∆t

2

)

−A1

]

;

M1,3 =
4A2

p2

(

cosh

(

p∆t

2

)

− 1

)

;

M2,2 = cosh

(

p∆t

2

)

+
2A1

p
sinh

(

p∆t

2

)

;
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M2,3 =
2A2

p
sinh

(

p∆t

2

)

M3,1 = 0;

M3,2 =
2A3

p
sinh

(

p∆t

2

)

;

M3,3 = cosh

(

p∆t

2

)

−
2A1

p
sinh

(

p∆t

2

)

G1,1 = ∆t;

G1,2 =
4

p2
[M2,2 − 1−A1∆t] ;

G1,3 =
8A2

p3
sinh

(

p∆t

2

)

−
4A2

p2
∆t;

G2,1 = 0;

G2,2 =
4A1

p2

(

cosh

(

p∆t

2

)

− 1

)

+
2

p
sinh

(

p∆t

2

)

G2,3 = M1,3

G3,1 = 0;

G3,2 =
A3

A2
M1,3

G3,3 = −
4A1

p2

(

cosh

(

p∆t

2

)

− 1

)

+
2

p
sinh

(

p∆t

2

)

B. Proof of Theorem 3.7

Proof: Suppose that the acceleration constraints (2b) are
active in the optimal solution to the ACOCP. We first show
that Algorithm 1 ensurestak+1

≥ tak
and tbk+1

≤ tbk . Let
(xk, vk, uk) be the optimal solution at thekth step with BC
xk(tak

) = xl(tak
), vk(tak

) = vl(tak
), xk(tbk) = xl(tbk),

vk(tbk) = vl(tbk). Whenv̇ak
≤ Amax, tak+1

≥ tak
holds since

tak+1
= tak

by Algorithm 1. Therefore, it suffices to consider
only the case thaṫvk(tak

) > Amax, and v̇k(tbk) < Amin.
Becausev̇k(tak

) > Amax > 0, v̇k(tbk) < Amin < 0, and v̇
is continuous, botḣvk(τl) = Amax and v̇k(τr) = Amin have
at least one root on(tak

, tbk). Becausėvk(tak
)v̇k(tbk) < 0, v̇k

is strictly monotone according to Proposition 3.2. This implies
that bothv̇k(τl) = Amax and v̇k(τr) = Amin have a unique
solution, which can only be on(tak

, tbk). Therefore, we must
havetak+1

> tak
and tbk+1

< tbk .
Next we show thatv̇ak+1

> Amax, and v̇bk+1
< Amin,

which ensure that the same conditions in the current iteration
still holds in the next iteration. Sincevk(tak

) = vl(tak
),

and v̇k(t) > Amax = v̇l for t ∈ [tak
, tak+1

), we have
vk(tak+1

) > vl(tak+1
) = vk+1(tak+1

) by the Comparison
Lemma. Similarly, we havevk(tbk+1

) > vl(tbk+1
).

Becausexk(tak
) = xl(tak

) and vk(t) > vl(t) for t ∈
(tak

, tak+1
), we havexk(tak+1

) > xl(tak+1
) by the Com-

parison Lemma. Similarly, we havexk(tbk+1
) < xr(tbk+1

).
Therefore, the following is true,

xk(tbk+1
)− xk(tak+1

) < xr(tbk+1
)− xl(tak+1

)

= xk+1(tbk+1
)− xk+1(tak+1

), (24)

which implies that the average ofvk on [tak+1
, tbk+1

] is smaller
than that of vk+1, which further implies that there exists

τk ∈ (tak+1
, tbk+1

) such thatvk(τk) < vk+1(τk). Since vk
andvk+1 are continuous, and we have shown thatvk(tak+1

) >
vk+1(tak+1

) andvk(tbk+1
) > vk+1(tbk+1

), vk andvk+1 must
intersect at two points on[tak+1

, tbk+1
] following the first part

of Proposition 3.1. Without loss of generality, denote these two
points bytck and tdk

with tak+1
< tck < τk < tdk

< tbk+1
.

Becausevk(tck) − vk+1(tck) = 0, vk(tdk
) − vk+1(tdk

) =
0, there must existstek ∈ (tck , tdk

) such that v̇k(tek) −
v̇k+1(tek) = 0 following the Mean Value Theorem. According
to the second part of Proposition 3.1,tek is the only real
solution of v̇k(tek) − v̇k+1(tek ) = 0, therefore we have
v̇k(t) < v̇k+1(t) for any t < tek and v̇k(t) > v̇k+1(t)
for any t > tek . Specifically, attak+1

and tbk+1
, we have

Amax = v̇k(tak+1
) < v̇k+1(tak+1

) andAmin = v̇k(tbk+1
) >

v̇k+1(tbk+1
), which guarantees that the same condition in the

kth step still holds for the(k + 1)th step.
Algorithm 1 generates two monotone sequences{tak

} and
{tbk} with tak

≤ tak+1
and tbk ≥ tbk+1

for any k ∈ N,
k > 1. Since{tak

} and {tbk} are bounded from both below
and above, they must converge monotonically ask → ∞.

Let t1 = limk→∞ tak
andt2 = limk→∞ tbk . Sincet1, t2 are

the fixed-point of Algorithm 1, we must havėv(t1) = Amax

and v̇(t2) = Amin. Then the solution with switch timet1 and
t2 satisfies all NOCs, hence, is optimal.

If only the acceleration constraint is active at the beginning
of the optimal solution,tbk = tf for all k ∈ N, and it can
be shown similarly that{tak

} is a monotone increasing se-
quence. A similar conclusion holds when only the deceleration
constraint is active. In these two cases, Algorithm 1 can still
identify the optimal switch time. The proof is complete.

C. Proof of Theorem 3.8

Proof: On the speed constrained arc, we haveu∗(t) =
(dvmax+c)/b, t ∈ [t∗3, t

∗

4). Without loss of generality, we may
assume that the acceleration constraints are active on[0, t∗1]
and [t∗2, tf ] with switch timest∗1 andt∗2. From (6), the costate
λv on the unconstrained arcs is given by

λv(t) = −2Ru∗(t)−Ktv
∗(t), t ∈ [t∗1, t

∗

3) ∪ [t∗4, t
∗

2).

Since u∗, x∗ and v∗ are continuous with respect tot,
we haveλ∗

v(t
∗−

3 ) = λ∗

v(t
∗

4). According to (10), the optimal
solution on[t∗1, t

∗

3) is given by

X∗(t) = M(t, t∗1)X(t∗1) +G(t, t∗1)B, t ∈ [t∗1, t
∗

3), (25)

andX∗(t∗3) = M(t∗3, t
∗

1)X
∗(t∗1) +G(t∗3, t

∗

1)B. On [t∗4, t
∗

2), the
optimal solution is given by

X∗(t) = M(t, t∗4)X
∗(t∗4) +G(t, t∗4)B, t ∈ [t∗4, t

∗

2]. (26)

With a change of the time variable, (26) can be written as

X∗(t+∆∗

t ) = M(t+∆∗

t , t
∗

4)X
∗(t∗4) +G(t+∆∗

t , t
∗

4)B

= M(t, t∗3)





x∗(t∗3) + ∆∗

t vmax

v∗(t∗3)
λ∗

v(t
∗−

3 )



+G(t, t∗3)B, t ∈[t∗3, t
∗

2−∆∗

t ].

SinceM1,1 = 1, M2,1 = M3,1 = 0, we have




x∗(t+∆∗

t )−∆∗

t vmax

v∗(t+∆∗

t )
λ∗

v(t+∆∗

t )



 = M(t, t∗3)





x∗(t∗3)
v∗(t∗3)
λ∗

v(t
∗−

3 )



+G(t, t∗3)B
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= M(t, t∗3) (M(t∗3, t
∗

1)X
∗(t∗1) +G(t∗3, t

∗

1)B) +G(t, t∗3)B

= M(t, t∗1)X
∗(t∗1) +G(t, t∗1)B, t ∈ [t∗3, t

∗

2 −∆∗

t ]. (27)

Because the right-hand-side of (27) is identical to that of (25),
one can see that fort ∈ [t∗3, t

∗

2 −∆∗

t ],

(x∗(t+∆∗

t )−∆∗

t vmax, v
∗(t+∆∗

t ), λ
∗

v(t+∆∗

t ))

is an extension of the optimal solution(x∗, v∗, λ∗

v) from
[t∗1, t

∗

3) to [t∗3, t
∗

2 −∆∗

t ].
Let (x̃∗(t), ṽ∗(t), ũ∗(t)) = (x∗(t), v∗(t), u∗(t)) for t ∈

[t∗1, t
∗

3), and (x̃∗(t), ṽ∗(t), ũ∗(t)) = (x∗(t + ∆∗

t ) −
∆∗

t vmax, v
∗(t + ∆∗

t ), u
∗(t + ∆∗

t )) for t ∈ [t∗3, t
∗

2 − ∆∗

t ],
then (x̃∗(t), ṽ∗(t), ũ∗(t)) is the optimal solution to the un-
constrained problem with initial conditioñx∗(t∗1) = xl(t

∗

1),
ṽ∗(t∗1) = vl(t

∗

1) at the initial time t∗1, and final condition
x̃∗(t∗2 − ∆∗

t ) = xr(t
∗

2), ṽ∗(t∗2 − ∆∗

t ) = vr(t
∗

2) at the final
time t∗2 −∆∗

t .
Extending the definition of(x̃∗(t), ṽ∗(t), ũ∗(t)) to [0, t∗1)

and [t∗2 −∆∗

t , tf −∆∗

t ] with

x̃∗(t) =

{

xl(t), t ∈ [0, t∗1),
xr(t+∆∗

t ), t ∈ [t∗2 −∆∗

t , tf −∆∗

t ],

ṽ∗(t) =

{

vl(t), t ∈ [0, t∗1),
vr(t+∆∗

t ), t ∈ [t∗2 −∆∗

t , tf −∆∗

t ],

ũ∗(t) =

{

ul(t), t ∈ [0, t∗1),
ur(t+∆∗

t ), t ∈ [t∗2 −∆∗

t , tf −∆∗

t ],

whereul(t) = (Amax + dvl(t) + c)/b, andur(t) = (Amin +
dvr(t) + c)/b. Then(x̃∗, ṽ∗, ũ∗) is the optimal solution to the
acceleration constrained energy-optimal motor control prob-
lem with initial condition x(0) = 0, v(0) = 0 and final
conditionx(tf −∆∗

t ) = xf −∆∗

t vmax. (x̃∗, ṽ∗, ũ∗) is indeed
optimal because it satisfies all NOCs. Note that junctions
conditions are satisfied because˙̃v∗(t∗1) = v̇∗(t∗1) = Amax and
˙̃v∗(t∗2 − ∆∗

t ) = v̇∗(t∗2) = Amin. The proof is complete since
the relation between(x∗, v∗, u∗) and(x̃∗, ṽ∗, ũ∗) as described
by (20) is ensured by the construction of(x̃∗, ṽ∗, ũ∗).

D. Proof of Theorem 3.9

Proof: Consider a trapezoidal speed trajectory defined by

w(t) =







Amaxt, 0 ≤ t ≤ vmax

Amax
,

vmax,
vmax

Amax
< t ≤ vmax

Amax
+∆w,

vmax + Amint,
vmax

Amax
+∆w < t ≤ tfw ,

where∆w is defined in Algorithm 2, andtfw = vmax/Amax+
∆w − vmax/Amin. Then it can be easily verified that such
a trapezoidal speed trajectory is the optimal solution to a
minimum-time motor position control problem with the same
dynamics, BC, and constraints as those of Problem 1.

Let ṽ denote the energy-optimal solution to the acceleration
constrained, but not speed constrained motor position control
problem with the final timetf − δ and the BCx(tf − δ) =
xf − vmaxδ. The other unspecified BC is the same as those of
Problem 1. Henceforth, we denote this problem as therelaxed
problem. Also, let ta and tb denote the switch times from
acceleration constrained arc to unconstrained arc, and from
unconstrained arc to deceleration constrained arc. According

to Proposition 3.2,̇̃v is monotonically decreasing on[ta, tb]
with ˙̃v(ta) > 0 and ˙̃v(tb) < 0. Therefore, by solving forts
from ˙̃v(ts) = 0 as in Algorithm 2, we can obtain the maximum
value of ṽ, which is ṽ(ts).

Let η(δ) = ṽ(ts) − vmax. Note thatη(δ) depends continu-
ously onδ, sinceṽ depends continuously on the associated BC,
which further depends continuously onδ. Since Algorithm 2
includes a bisection search with updated bounds, in order to
prove the convergence of Algorithm 2, we only need to prove
that η(0) > 0, η(∆w) < 0, and there is a uniqueδ ∈ (0,∆w)
such thatη(δ) = 0.

When δ = 0, the relaxed problem share the same BC and
final time with Problem 1 except that the relaxed problem
has no speed constraint. Ifη(0) ≤ 0, then ṽ does not violate
the speed constraint. Hence,ṽ is also the optimal solution to
Problem 1. But̃v does not contain any speed constrained arc,
which is a contradiction. Therefore we must haveη(0) > 0.

In order to show thatη(∆w) < 0, consider a second
minimum-time problem with a new final positionxf −
vmax∆w. Then the second minimum-time problem and the
relaxed energy-optimal problem withδ = ∆w share the same
final position. It is easily seen that the optimal speed solution
w2(t) to this second minimum-time problem is a triangle, and
max{w2(t)|0 < t < vmax/Amax − vmax/Amin} = vmax, as
illustrated in Fig. 18. Because for both problems the position
increases monotonically with respect to the time, we may
parameterize the speed using the position, and writew2 and
ṽ asw2(x) and ṽ(x). Sincew2 is a minimum-time solution,
we must havew2(x) ≥ ṽ(x) for all x ∈ [0, xf − vmax∆w].
Let xm be the position at whichw2(xm) = vmax. Suppose, ad
absurdum, that there existsxs ∈ [0, xf − vmax∆w] such that
ṽ(xs) ≥ vmax. Without loss of generality, we may assume that
xs ∈ [0, xm]. If xs ∈ [0, xm), then ṽ(xs) > w2(xs), which
means that̃̇v(x) > ẇ2(x) = Amax for somex ∈ [0, xs), which
is a contradiction. Hence, we can only havexs = xm. Since
in ṽ, the acceleration arc and the deceleration constrained arc
are connected by an unconstrained arc,ṽ is not constrained
by the acceleration constraints in a neighborhood ofxs. It
follows that ṽ′ > w′

2 in [xs− ǫ, xs+ ǫ] for someǫ > 0, where
the prime denotes the derivative with respect tox. However,
by integratingṽ′ forward we havẽv(xs + ǫ) > w′

2(xs + ǫ),
which is a contradiction to the fact thatw2 is the minimum-
time solution. Therefore, we must haveṽ(x) < vmax for all
x ∈ [0, xf − vmax∆w], which is equivalent tõv(t) < vmax for
all t ∈ [0, tf −∆w]. Hence we have shown thatη(∆w) < 0.

Suppose there exist two solutionsδ1 and δ2 to η(δ) = 0.
We can recover two different solutions to Problem 1 using
the two partially equivalent solutions corresponding toδ1
and δ2. Theorem 3.8 ensures both recovered solutions are
optimal, which contradicts the fact that Problem 1 has a unique
solution. Hence,η(δ) = 0 has an unique root.
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